/
Numberingsandrandomness5denotethefair-coinCantor-Lebesguemeasureon2!.B Numberingsandrandomness5denotethefair-coinCantor-Lebesguemeasureon2!.B

Numberingsandrandomness5denotethefair-coinCantor-Lebesguemeasureon2!.B - PDF document

yoshiko-marsland
yoshiko-marsland . @yoshiko-marsland
Follow
351 views
Uploaded On 2015-09-12

Numberingsandrandomness5denotethefair-coinCantor-Lebesguemeasureon2!.B - PPT Presentation

1TobepreciseifjjnthenthereareuniversalconstantscandcsuchthatthinkingofpsometimesasastringK0pKKpc2jj2jpjc2n2logpcnpcprovidedp2logpnccwhichistrueforppncthatwecan ID: 127432

1Tobeprecise ifjj=nthenthereareuniversalconstants^cand~csuchthat thinkingofpsometimesasastring K(_0p)K()+K(p)+^c2jj+2jpj+~c=2n+2logp+~cn+pcprovidedp2logpn+~c+c;whichistrueforp=pn;cthatwecan

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Numberingsandrandomness5denotethefair-co..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Numberingsandrandomness5denotethefair-coinCantor-Lebesguemeasureon2!.BytheproofofSchnorr'sTheoremwehave(fx:(8n)K(xn)n�cg)1�2�(c+1):Consequently,ifc0,thenA[0;c]�0andA[0;c]6=?.Theorem6.Letc0.Thereisnoe ectiveenumerationofR[0;c].Proof.Supposethatf ege2!issuchanenumeration,withauniformlycom-putableapproximation e;ssuchthat e=lims!1 e;sand e;s e;s+1.NotethatA[0;c]=fx:(8n)K(xn)n�cgisa01class.Let s=maxf e;s:esg.Then =lims!1 sisleft-c.e.,andsincetheleft-c.e.membersofA[0;c]aredenseinA[0;c], istherightmostpathofA[0;c].Howevertherightmostpathofa01classisalsoright-c.e.,de nedintheobviousway.Thus isaMartin-Lofrandomrealthatiscomputable,acontradiction.Theorem7.Foreachcthereisane ectivenumberingofR[c+1;1).Proofsketch.Letfmege2!beane ectiveenumerationofallleft-c.e.randomreals,withtheadditionalpropertythatforeachetherearein nitelymanye0suchthatforalls,me;s=me0;s.Wewillde neane ectivenumberingf ege2!ofR[c+1;1).Wesaythatastringsatis esrandomnessconstantcatstagetifKt()jj�c;otherwise,wesaythatfailsrandomnessconstantcatstaget.Weproceedinstagest2!,monitoringeachme;tforetatstaget.Ifforsomet0,n,e,weobservethatme;t0[n]failsrandomnessconstantc,thenwewanttoassignaplaceformeinourenumerationofR[c+1;1).Soweletdbeminimalsothat dhasnotyetbeenmentionedintheconstruction,andlet d;s=me;sforallstagesst0untilfurthernotice.Ifme;t1[n]atsomestaget1t0sati esrandomnessconstantc,thenweregrethavingassignedmeaplaceinourenumerationf ege2!.Tocompensateforthisregret,wechoosealargenumberp=pc;nandforallstagesst1let d;s=me;s[n]_0p_ s.Thelargenessofpguaranteesthatme;s[n]_0pdoesnotsatisfyrandomnessconstantc.1Ifmeactuallydoesfailrandomnessconstantc,butatalargerlengthn0�n,thenbecausetherearein nitelymanye0withme0=mewewilleventuallyassignsome d0tosomesuchme0atastaget2thatissolargethatme0;t2[n0]=me0[n0].Thus,eachrealinR[c+1;1)willeventuallybeassignedapermanent d0. 1Tobeprecise,ifjj=nthenthereareuniversalconstants^cand~csuchthat,thinkingofpsometimesasastring,K(_0p)K()+K(p)+^c2jj+2jpj+~c=2n+2logp+~cn+p�cprovidedp�2logpn+~c+c;whichistrueforp=pn;cthatwecan nde ectively. Numberingsandrandomness7Proof.(1)implies(2):LetfTege2!begiven,andde neS=f(X;e):8nXn2Teg:(2)implies(1):LetSbegiven,letabeaTuringfunctionalsuchthat(X;e)2S,Xa(e)",andletTe=f22:a;jj(e)"g.InlightofProposition1,wemayuseeithernotion.NotethatifCbelongstoafamilyasinProposition1thenCisa01class.3.1ExistenceofnumberingsTheorem8.LetP2!,letCPbethecollectionofall01classescontainedinP,andletNPbethecollectionofallnonempty01classescontainedinP.AssumePhasthefollowingproperties:(i)Pisco-dense:nocone[],22,iscontainedinP;(ii)Pisclosedundershifts:ifx2Pthen_x2P;(iii)NP6=;.Thenthereisnoe ectivenumberingofeitherCPorNP.Proof.IfthereisanumberingofNPthenthereisoneofCP,becauseif;2CP(asisalwaysthecase)wemaysimplyaddanindexof;tothenumbering.Thusitsucestoshowthatthereisnoe ectivenumberingofCP.Supposetothecontrarythate7![Te]enumeratesthefamilyof01classesinCP.By(iii),wemayassume[T0]6=;.By(i),T0hasin nitelymanydeadends.LetthedeadendsofT0belistedinacomputableway(forinstance,bylength-lexicographicorder),asn,n2!.By(i)again,wemayletnbetheleastextensionofnwhichextendsadeadendofTn.De neacomputabletreeTbyputtingT0aboven.Thatis,let[T]\[n]=[nT0]and[T]=[T0][Sn[nT0].By(ii),theresultingclass[T]belongstoCP.Since[T0]6=?,[T]\[n]6=;=[Tn]\[n],so[T]isnotcontainedinorequaltoany[Tn].Allassumptions(i),(ii),(iii)ofTheorem8arenecessary:considerP=2!,P=fxg,wherexisasinglecomputablereal,andP=;,respectively.Corollary1.Thefollowingfamiliesof01classeshavenoe ectivenumbering:1.01classescontainingonlyMartin-Lofrandomreals;2.special01classes(thosecontainingonlynon-computablereals);3.01classescontainingonlyrealsxsuchthattheMuchnikdegree[7]offxgisabovea xednonzeroMuchnikdegree;4.01classescontainingonly nite(oronlyco- nite)subsetsof!.Proposition2.(1)Thefamilyofall01classescontainingonlyrealsthatareMartin-Lofrandomwithrespecttoa xedrandomnessconstantise ectivelyenumerable. Numberingsandrandomness9Theorem10.Anye ectivelyenumerablefamilyof01classesFwithFf[O]:O2AghasaFriedbergnumbering.Proof.ForasetZ2,wesaythatZis lterclosedifZisclosedunderextensions(2Z)_2Z)andsuchthatwheneverboth_0and_1areinZthen2Z.The lterclosureofYistheintersectionofall lterclosedsetscontainingYandisdenotedbyY".SinceFise ectivelyenumerable,wemaylete7!Yebeanumberingofall lterclosedsetsofstringswith[Ye]2F.SinceYe6=Ye0implies[Ye]6=[Ye0],itsucestoinjectivelyenumeratethesesetsYe.LetL1=O":O2A andL2=fYe:Ye62L1g:ItisclearthatL1isinjectivelyenumerable.Bytheassumptionofthethe-orem,each[O"]2F.Itisalsoclearthateach nitesubsetofanyY2L2iscontainedinin nitelymanyO"2L1.WeclaimthatL2hasane ectivelyenumerationfYege2!,tobeconstructedbelow.FixeandletYe=fngn2!inorderofenumeration.S2isanacceptablefamilyifitsoptimalcoveringOhas niteevencardinality.InparticularO62A.WesaythatstagenisgoodifnhasgreaterlengththananymemberofOn=OSnforSn=f0;:::;n�1ganddoesnotextendanymemberofOn.Construction.WewillconstructYeasYe=Sn2!Ye;nforuniformlycomputablesetsYe;n.WesetYe;�1=?.Supposen0.Ifstagenisnotgood,wekeepYe;n=Ye;n�1.Ifstagenisgood,therearetwocases.Casea.Snisanacceptablefamily.ThenletYe;nbethe lterclosureofOn.Caseb.Otherwise.ThenletYe;nbethe lterclosureofOn[fng.Weseparatelyenumerateallsetsgeneratedfromanyacceptablefamilywhoseoptimalcoveringhas niteevencardinality.(*)EndofConstruction.Veri cation.NotethatinbothCaseaandCaseb,Ye;nisthe lterclosureofanacceptablefamily,sowedonotenumerateanymemberofL1.By(*),itthereforesucestoshowthatweenumerateallsetsgeneratedfromanin nitefamily,i.e.non-clopensets,andthateachYeissomeYe0.IfYeisnotclopenthentherearein nitelymanygoodstages.ThenintheendYe=Ye,becauseniscoveredeitherrightaway(caseb)oratthenextgoodstage(caseb).Corollary3.Thefamilyofall01classesofmeasurelessthanone,orequiva-lently01classesofpositivemeasure,hasaFriedbergnumbering.AcknowledgmentsThesecondauthorwaspartiallysupportedbyNSFgrantDMS-0652669. Bibliography[1]PaulBrodheadandDouglasCenzer,E ectivelyclosedsetsandenumerations,Arch.Math.Logic46(2008),no.7-8,565{582.MR2395559(2009b:03119)[2]YuriL.Ershov,Theoryofnumberings,Handbookofcomputabilitytheory,Stud.LogicFound.Math.,vol.140,North-Holland,Amsterdam,1999,pp.473{503.MR1720731(2000j:03060)[3]RichardM.Friedberg,Threetheoremsonrecursiveenumeration.I.Decomposition.II.Maximalset.III.Enumerationwithoutduplication,J.Symb.Logic23(1958),309{316.MR0109125(22#13)[4]MingLiandPaulVitanyi,AnintroductiontoKolmogorovcomplexityanditsappli-cations,2nded.,GraduateTextsinComputerScience,Springer-Verlag,NewYork,1997.MR1438307(97k:68086)[5]MartinKummer,Aneasypriority-freeproofofatheoremofFriedberg,Theoret.Comput.Sci.74(1990),no.2,249{251.MR1067521(91h:03056)[6]AndreNies,Computabilityandrandomness,OxfordUniversityPress,2009.[7]StephenG.Simpson,AnextensionoftherecursivelyenumerableTuringdegrees,J.Lond.Math.Soc.(2)75(2007),no.2,287{297.MR2340228(2008d:03041)

Related Contents


Next Show more