/
Energy Band Gap  Behavior as Energy Band Gap  Behavior as

Energy Band Gap Behavior as - PowerPoint Presentation

aaron
aaron . @aaron
Follow
382 views
Uploaded On 2018-11-04

Energy Band Gap Behavior as - PPT Presentation

a Function of Optical Electronegativity for Semiconducting and Insulating Binary Oxides Kristen Dagenais Chemical Engineering UMBC Matthew Chamberlain Physics and Astronomy James Madison ID: 713703

gap band oxides model band gap model oxides optical vol metal electronegativity earth physics oxide energy phys lee 2011

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Energy Band Gap Behavior as" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Energy Band Gap Behavior as a Function of Optical Electronegativity for Semiconducting and Insulating Binary Oxides

Kristen

Dagenais

, Chemical Engineering,

UMBC

Matthew Chamberlain, Physics and Astronomy, James Madison

Unviersity

Dr.

Costel

Constantin

, Physics and Astronomy, James

Madison UniversitySlide2

TopicsEnergy Band GapsElectronegativityCurrent ModelsIonization of Oxygen

Accounting for Band Gap Variation

First Look

Periodic Table

Second Look with Models and TrendsSlide3

Define E

F

as the level below which all electrons fill up the states (little cups).

METALS - Fermi energy level falls at the middle of the allowed band.

INSULATORS and SEMICONDUCTORS - Fermi energy level falls at

the middle of the forbidden gap.

Energy Band GapsSlide4

Semiconducting and Insulating Binary OxidesA big part of electronicsEx. SiO2 used as an insulator in transistorsAs devices get smaller, better materials must be chosen

Band gap is used to justify research

Usually found experimentally

Band gaps models try to replace extra experiment

Usually relate band gap to

electronegativitySlide5

ElectronegativityDifferent ScalesMulliken, Allred-Rochow, Allen etc.

Most Commonly Used Pauling Scale

Optical

Electronegativity

Based on electron transference between atoms

ComparisonOptical Electronegativity is more accurate and preciseSlide6

Accepted Models for EgText Book Model [21]

J.A. Duffy’s Model [2]

*

Di Quarto [20]

Slide7

Duffy ModelDuffy Model [2]Developed based on optical electronegativityModel:

Example:

NaBr

But oxides behave differentlySlide8

Ionization of OxygenOptical electronegativity of oxygen varies with the cation

No fixed value

Duffy’s Oxide Model [2]Slide9

Band Gap VariationBand gap depends on many other factorsDefectsGrowth methodCrystal structure

Temperature

One

cation

may have different oxide forms

Ex. Ytterbium Oxide’s two forms

How do we account/handle these changes?Slide10

Criteria of Choosing a Band GapAt or around room temperature (~300 K)Most stable formMost useful formEx.

Eg

of

YbO

vs

Yb2O3Doesn’t solve the problem of Crystal structureDefectsGrowth methodSlide11

SubstancesReferences [3]-[11]

Compound

Eg (eV)

χ*

BeO

10.5

3.15

B

2

O

3

8.45

3.45

MgO

7.8

2.86

Al

2

O

3

6.96

3.18

Si

2

O

2

9.24

3.38

CaO

6.26

2.26

TiO

2

3.6

3.12

Cr

2

O

3

2.58

3.22

MnO

4

3.13

FeO

3.2

3.33

CoO

3.2

3.37

NiO

2.86

3.38

Cu

2

O

2.04

3.38

ZnO

3.3

3.25

Ga

2

O

3

5.4

3.3

GeO

2

5.35

3.44

Se

2

O

3

5

3.64

SrO

6.5

2.11

MoO

3

2.74

3.51

CdO

2.5

3.24

In

2

O

3

3.55

3.31

SnO

2

3.57

3.41

BaO

5.2

1.9

La

2

O

3

5.5

2.5

CeO

2

3.78

2.54

Pr

2

O

3

3.8

2.56

Nd

2

O

3

4.6

2.58

Sm

2

O

3

5

2.64

Eu

2

O

3

4.3

2.69

Gd

2

O

3

5.4

2.69

Tb

2

O

3

3.8

2.69

Dy

2

O

3

4.9

2.72

Ho

2

O

3

5.3

2.74

Er

2

O

3

5.3

2.76

Tm

2

O

3

5.4

2.77

Yb

2

O

3

4.9

2.5

Lu

2

O

3

5.5

2.8

HgO

2.58

3.43

Tl

2

O

3

2.25

3.19

PbO

2.75

3.57

Bi

2

O

3

2.85

3.44Slide12

Band Gap Error

Compound

First Band Gap, (

eV

)

Second Band Gap, (

eV

)

Average Band Gap

Standard Dev.

Normalized Standard Dev

Average Error

BeO

10.5

5

7.75

3.889

0.5018

0.215

Cr2O3

2.58

3.25

2.92

0.4737

0.1625

ZnO

3.30

3.7

3.5

0.2828

0.08081

GeO2

5.35

6.1

5.73

0.5303

0.09263

CdO

2.50

1.11

1.81

0.9829

0.5445

La2O3

5.50

5.50

5.50

0

0

CeO2

3.78

3.19

3.49

0.4172

0.1197

HgO

2.58

1.9

2.24

0.4808

0.2146

References [12]-[18]Slide13

Final ValuesSlide14

Using the Periodic TableSlide15

With GroupingSlide16

Z Number Model for Alkali Earth Metal OxidesSlide17

Z number Model for Poor Metal OxidesSlide18

Viable ModelsAlkali Earth Metal OxidesElectronegativity model:Z model:

Poor Metal Oxides

Electronegativity

model:

Z model:

Slide19

Transition and Rare Earth Difficulties Transition Metal OxideElectronegativity model: Range of values: 1.82 to 3.82

eV

Rare Earth Oxide

Electronegativity

model:

Range of values: 3.59 to 5.73

eV

Slide20

ResultsAlkali Earth Metal OxidesPoor Metal OxidesRare Earth Oxides

3.59 to 5.73

eV

Transition Metal Oxides

1.82 to 3.82

eVSlide21

Comparison Accepted ModelsSlide22

ConclusionThe behavior of binary oxides’ band gap can be related to the chemical groups on the periodic table Band gap is affected by the presence of a d orbital in the valence band

Band gap behavior can be modeled for individual chemical groups and rows of oxidesSlide23

Questions?

AcknowledgementsSlide24

References[1] Paivasaari

, J,

Niinisto

J,

Myllymaki

P,

Dezelah C, Winter C.H, Putkonen M, Nieminen M, Niinisto Lauri

(2007). Atomic layer deposition of rare earth oxides. Topics Appl. Physics 106. [2] Duffy, J.A (1980). Trends in energy gaps of binary compounds: an approach based on electron transfer parameters from optical spectroscopy. J. Phys. C: Solid St. Phys. 13.

 [3] J.H. Yum, T. Akyol

, M. Lei, T. Hudnall, G. Bersuker, M. Downer, C.W.

Bielawski, J.C. Lee, and S.K. Banerjee (2011). Atomic layer deposited beryllium oxide: effective passivation

layer for III-V metal/oxide/semiconductor devices. Journal of Applied Physics 109, 064101.[4] R.R. Reddy, Y. Nazeer

Ahammed, K. Rama Gopal

, D.V. Raghuram (1998). Optical electronegativity and refractive index of materials. Optical Materials vol 10.

[5] Liang Chen, Can Xu, Xiaofang Zhang, Chuan Cheng, Tao Zhou. (2008) Size Dependent Structural and Electronic Properties of MgO

Nanotube Clusters. International Journal of Quantum Chemistry Vol.109, 2.

[6] Hyeong-Ho Park, Xin Zhang, Zoo-Won Lee, Dong-Joo

Jeong, Sang-Moo Lee, Ki-don Kim, Dae-Geun

Choi, Jun-Hyuk

Choi, Jihye Lee, Eung-Sug Lee, Ho Kwan Kang, Hyung

-Ho Park, Ross H. Hill, Jun-Ho Jeong. (2011). Optical characterization of anatas TiO2 films patterned by direct ultraviolet-assisted nanoimprint

lithography vol. 88.[7]

Srikant, and D. R. Clarke (1998). On the optical band gap of Zinc Oxide. Journal of Applied Physics. Vol. 83, 10.[8] W.H. Strehlow and E. L. Cook. (1973) Compilation of Energy Band Gaps in Elemental and Binary Compound. J. Phys. Chem. Data. Vol. 2 1.

[9] Giovanna

Scarel, Axwl

Svane, and Marco Fancuilli (2007). Scientific and Technological Issues Related to Rare Earth Oxides: An Introduction. Journal of Applied Physics. vol. 106.[10]

Keezer, R.C., Bowman, D.L., Becker, J.H. (1968) J. Appl. Phys. Vol. 39 2062.[11] Dolocan, V. (1987). Phys. Status

Solidi (a) 45 KISS.

[12] Baumeier B, Kruger P, and Pollman J (2006). Structural, elactic, and electronic properties of SiC

, BN and BeO nanotubes. Physical Review B 79[13]

Tabbal M, Kahwaji

S, Christidis T.C., Nsouli B, and Zahraman K (2006). Pulsed laser deposition of

nanostructured dichromium trioxide thin films. Thin Solid Films Vol. 515 Issue 4[14] Lin L, Xiong

K, Robertson J, (2010). Atomic structure, electronic structure, and band offsets at Ge:GeO

: GeO2 interfaces. Applied Physics Letters Vol. 97. Issue 24 [15] Choudhary G, Raykar V,

Tiwari S, Dashora A, and Ahuga B.L., (2011) Electronic Structure and compton

profiles of CdO and

HgO. Phyica Status Solidi B 248 No.1[16] Stephen Thesis

[17] Goharshadi E.K., Samiee S., Nancarrow

P. (2011) Fabrication of cerium oxide nanoparticles: Characterization and optical properties. Journal of Colloid and Interface Science 356

[18] Choudhary G, Raykar V, Tiwari

S, Dashora A, and Ahuga B.L., (2011) Electronic Structure and compton profiles of

CdO and HgO

. Phyica Status Solidi B 248 No.1[20] Di Quarto F,

Sunseri C, Piazza S, Romano M.C., (1997). Semiempirical correlation between optical band gap values of oxides and the difference of electronegativity of the elements. Its Importance for a

quantitatice use of photocurrent spectroscopy in corrosion studies. J. Phys. Chem. B 101.