PPT-Efficient Logistic Regression with Stochastic Gradient Desc
Author : alexa-scheidler | Published Date : 2015-11-18
William Cohen Reminder Your mapreduce assignments are mostly done Old NB learning Stream amp sort Stream sort aggregate Counter update message Optimization inmemory
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Efficient Logistic Regression with Stoch..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Efficient Logistic Regression with Stochastic Gradient Desc: Transcript
William Cohen Reminder Your mapreduce assignments are mostly done Old NB learning Stream amp sort Stream sort aggregate Counter update message Optimization inmemory hash periodically emptied. SIT095. The Collection and Analysis of Quantitative Data II. Week 7. Luke Sloan. About Me. Name: Dr Luke Sloan. Office: 0.56 . Glamorgan. Email: . SloanLS@cardiff.ac.uk. To see me: . please email first. itation. Feb. 5, 2015. Outline. Linear regression. Regression: predicting a continuous value. Logistic regression. Classification: predicting a discrete value. Gradient descent. Very general optimization technique. William Cohen. 1. SGD for Logistic Regression. 2. SGD for . Logistic regression. Start with . Rocchio. -like linear classifier:. Replace sign(. .... ) with something differentiable: . Also scale from 0-1 not -1 to +1. un 10/1. . If you’d like to work with 605 students then indicate this on your proposal.. 605 students: the week after 10/1 I will post the proposals on the wiki and you will have time to contact 805 students and join teams.. Lecture 4. September 12, 2016. School of Computer Science. Readings:. Murphy Ch. . 8.1-3, . 8.6. Elken (2014) Notes. 10-601 Introduction to Machine Learning. Slides:. Courtesy William Cohen. Reminders. Weifeng Li and . Hsinchun. Chen. Credits: Hui Zou, University of Minnesota. Trevor Hastie, Stanford University. Robert . Tibshirani. , Stanford University. 1. Outline. Logistic Regression. Why Logistic Regression?. Maria - Florina Balcan 02/07/2018 Na Maria-FlorinaBalcan02/07/2018Nave Bayes Recapx0099Classifier2x009Ax0095x009Bx0095yPx0099NB Assumptionx0099NB Classifierx0099Assume parametric form for PXx009DYand PYPXXdYidPXiYx009ANBx0095x009Bx0095yi Maria-FlorinaBalcan02/08/2019Nave Bayes Recapx0099Classifier2x009Ax0095x009Bx0095yPx0099NB Assumptionx0099NB Classifierx0099Assume parametric form for PXx009DYand PYPXXdYidPXiYx009ANBx0095x009Bx0095yi Logistic Regression. Mark Hasegawa-Johnson, 2/2022. License: CC-BY 4.0. Outline. One-hot vectors: rewriting the perceptron to look like linear regression. Softmax. : Soft category boundaries. Cross-entropy = negative log probability of the training data. Machine Learning. Classification. Email: Spam / Not Spam?. Online Transactions: Fraudulent (Yes / No)?. Tumor: Malignant / Benign ?. 0: “Negative Class” (e.g., benign tumor). . 1: “Positive Class” (e.g., malignant tumor). Outline. Linear regression. Regression: predicting a continuous value. Logistic regression. Classification: predicting a discrete value. Gradient descent. Very general optimization technique. Regression wants to predict a continuous-valued output for an input.. Logistic Regression. Important analytic tool in natural and social sciences. Baseline supervised machine learning tool for classification. Is also the foundation of neural networks. Generative and Discriminative Classifiers. 2. Dr. Alok Kumar. Logistic regression applications. Dr. Alok Kumar. 3. When is logistic regression suitable. Dr. Alok Kumar. 4. Question. Which of the following sentences are . TRUE. about . Logistic Regression.
Download Document
Here is the link to download the presentation.
"Efficient Logistic Regression with Stochastic Gradient Desc"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents