/
IEEE TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING Learning motor dependent IEEE TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING Learning motor dependent

IEEE TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING Learning motor dependent - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
579 views
Uploaded On 2014-12-07

IEEE TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING Learning motor dependent - PPT Presentation

e reconstruct approximately the topology of the sensory body map In this paper we argue that the informational sensors topology changes with motor con64257gurations in many robotic bodies but yet because measuring Crutch64257elds distance is very tim ID: 21611

reconstruct approximately the topology

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TH INTERNATIONAL CONFERENCE ON DEVE..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2009IEEE8THINTERNATIONALCONFERENCEONDEVELOPMENTANDLEARNING7 Fig.8.EvolutionofmeansquarederrorsinpredictingCrutcheld'smetricsbetweenthetwosensorsofbodies1,2,3and4whenvariousnumberoflearningexamplarsareavailable(eachlearningexamplarisanassociationbetweenarandommotorcongurationandtheassociatedmeasuredCrutch-eldinformationaldistance)andwithatestdatabasecomposedof100motorcongurationsuniformlyspreadinthespaceofcongurations. Fig.9.ComparisonbetweentheCrutchelddistancesinthetestdatabaseofbody2withthecorrespondingpredictedinformationaldistancesafter1024learningexamplarshavebeenprovided:oneobservesthatthesystempredictsaccuratelytheCrutcheldinformationdistanceamongthetwosensorsformotorcongurationsthatwerenotexperimentedbeforehand.Thesequenceofexamplarsisgeneratedbyxingthepositionofthersteffector,thenrotatingprogressivelythesecondeffectoraroundtheclock,beforerotatingthersteffectorbyaddingit2 10androtatingagainthesecondeffectoraroundtheclock,whichisrepeateduntilthersteffectorhasitselfrotatedby2.ThepeakswheretheCrutchelddistanceiszerocorrespondstomotorcongurationsinwhichsensorssuperposeandperceiveexactlythesamething. Fig.10.ComparisonbetweentheCrutchelddistancesinthetestdatabaseofbody3withthecorrespondingpredictedinformationaldistancesafter1024learningexamplarshavebeenprovided:oneobservesthatthesystempredictsaccuratelytheCrutcheldinformationdistanceamongthetwosensorsformotorcongurationsthatwerenotexperimentedbeforehand.Thesequenceofexamplarsisgeneratedinthesamewaythaninthepreviousgure.Theshapeofthecurveisnotequivalentsincerotationsofthesecondeffectorsarenotsymmetricinrelationshiptorotationsofthersteffector.Thepeakswithlowvaluescorrespondtomotorcongurationforwhichsensorsperceiveoverlappingregions,andthepeakswithvaluescloseto1correspondtomotorcongurationsforwhichsensorsperceivenon-overlappingregions.REFERENCES[1]T.M.CoverandThomasJ.A.ElementsofInformationTheory.JohnWileyandSons,Inc.,N.Y.,1991.[2]J.P.Crutcheld.Informationanditsmetric.NonlinearStructuresinPhysicalSystems-Patternformation,ChaosandWaves,pages119–130,1990.[3]J.J.Gibson.Thetheoryofaffordances.NJ:LaurenceErlbaumAssociates.[4]G.Goodhill,S.Finch,andT.Sejnowski.Quantifyingneighbourhoodpreservationintopographicmappings.InstituteforNeuralComputationTechnicalReportSeries,No.INC-9505,1995.[5]E.R.Kandel,J.H.Schwartz,andT.M.Jessel.PrinciplesofNeuralScience,4thedition.McGraw-Hill,N.Y.,2000.[6]F.KaplanandV.V.Hafner.Information-theoreticframeworkforun-supervisedactivityclassication.AdvancedRobotics,20:1087–1103,2006.[7]T.M.Mitchell.MachineLearning.McGraw-Hill,N.Y.,1997.[8]L.Olsson,C.L.Nehaniv,andD.Polani.Sensorychannelgroupingandstructurefromuninterpretedsensordata.In2004NASA/DoDConferenceonEvolvableHardwareJune24-26,2004Seattle,Washington,USA,2004.[9]L.Olsson,C.L.Nehaniv,andD.Polani.Fromunknownsensorsandactuatorstoactionsgroundedinsensorimotorperceptions.ConnectionScience,18:121–144,2006.[10]D.PierceandB.Kuipers.Maplearningwithuninterpretedsensorsandeffectors.ArticialIntelligence,92:169–229,1997.[11]P.Rochat.Self-perceptionandactionininfancy.ExperimentalBrainResearch,123:102–109,1998.[12]S.Vijayakumar,A.DSouza,andS.Schaal.Incrementalonlinelearninginhighdimensions.NeuralComputation,17(12):119–130.[13]J.Weng,J.McClelland,A.Pentland,andO.Sporns.Autonomousmentaldevelopmentbyrobotsandanimals.Science,291:599–600,2001.[14]I.H.WittenandF.Eibe.DataMining.2000. 2009IEEE8THINTERNATIONALCONFERENCEONDEVELOPMENTANDLEARNING6 Fig.4.Apparentanglesensor.Thelocationandorientationofthesensorarerepresentedbythebluearrow.Perceivetheangle underwhichisseenfromthesensortheclosestobjectoftheenvironmentwithinitsperceptiveeld. Fig.5.Apparentdiametersensor.Thelocationandorientationofthesensorarerepresentedbythebluearrow.Theperceivedlengthdcorrespondtothesizeoftheprojectionofthesensedobjectonaplanorthogonaltothesensordirectionandsituatedatafocaldistancefbehindthesensor. Fig.6.Pathofacoloreddisk.Ateverymoment,ithasacertainprobabilityofmovingtowardanotheruniformlyrandomlychosendirection.Itsspeedremainsconstant. Fig.7.Body1(withtworigidsegments,twosuperposedjointandtwosensors),Body2(withtwochainedrigidsegments,twojointsandtwosensors),Body3(withtwoindependantrigidsegments,twojointsandtwosensors),Body4(withtwoindependantchainsofsegments,fourjointsandtwosensors)databasesareindependant.Aswecanobserveongure8,weseethatthesystemisabletolearnveryefcientlytopredicttheCrutchelddistancebetweentwosensorsinallbodiesandformotorcongurationsthatwerenotencounteredinthetrainingdatabase.Figures9and10comparesallCrutchelddistancesinthetestdatabasewiththecorrespondingdistancespredictedbythelearntmodelafter1024learningexamplarshavebeenprovided.ThisallowsustoseethatrelativelytotheglobalamplitudeoftheCrutchelddistancevariationswhenmotorcongurationsarevaried,thepredictionerrorsarelow.ThisshowsthatamodelofCrutchelddistancesoverthewholespaceofmotorcongurationhasbeenefcientlylearnt,andthus,reusingthebodymapreconstructiontechniquespresentedin[6],[8],couldbeusedtodynamicallyanticipateinformationalsensorybodymapswhenmotorcongurationsarechanging.E.Discussion:ComputationalcomplexityandscalabilityIntheexperimentspresentedabove,100000measureswereusedforestimatingtheinformationaltopologyofagivenmo-torconguration.Thisisalotandmaypreventthesystemtobeapplicableinrealtimeroboticexperiments.Yet,ontheonehandthesemeasurecanbedoneatahigh-frequencywithoutaffectingtheresults,e.g.100hz,ifthesensoriapparatusper-mitsit,andwebelievethataccuratemeasuresofinformationaldistancecanberealizedwithmuchlesssamples.Thiswillbethetopicoffutureexperiments.Furthermore,itcanbenotedthatincreasingthenumberofsensorsinthesystemwouldincreasethecomplexityquadratically,sinceCrutchelddistancesneedonlybemeasured,learntandpredictedpairwisetoreconstructthewholeinformationaltopology.Asfarasthemotorspaceisconcerned,increasingthenumberofdegrees-of-freedomtoseveraldozensshouldnotbeproblematicsincemathematically,theregressionperformedhereisquitesim-ilartohigh-dimensionalregressionproblemsofrobotmotorlearningadressedbytechniquesrecentlydevelopped,suchasLWPR[12]. 2009IEEE8THINTERNATIONALCONFERENCEONDEVELOPMENTANDLEARNING5sensorswasxed.ThisisindeedthecaseinexamplessuchasthedistancesensorsofKheperarobotsorthepixelsensorsofacamera.In[6]'swork,themotorcommandschangedaccordingtooneofseveralpre-denedactivity:theyidentiedthefactthatagivenmotoractivityorconguration,aswellasagivendynamicsoftheenvironmentitself,couldmodifytheinformationalstructureofasetofsensors.Yet,intheirexperiment,onlyanitesetofmotorcongurationswasusedandthepairwiseCrutcheldmetricswascomputedforeachcongurationaftermanymeasurementsofthesensorvalues.Inmostrealrobotbodies,achangeinmotorcongurationwillprovokeachangeintheinformationalstructureofthesetofsensors,andbecausewithcontinuousmotorsthereisaninnite(orverylarge)numberofmotorcongurations,itisimpossibletocomputetheCrutcheldmetricforeachofthem.Rather,wearguethatitisnecessarythatamodelofCrutchelddistances,correspondingtoallparticularmotorcongurations,belearntfromasmallnitesetofreallymeasuredmetrics,suchthatmetricsfornovelmotorcongurationscanbeaccu-ratelypredicted.Inthefollowing,wewillshowthatitisindeedpossibletolearnCrutchelddistancesinmotordependantdynamicallyrecongurableinformationalbodymaps.B.LearningalgorithmAmemory-basedlearningalgorithmischoseninthisarticle,basedontheuseofagaussiankernelonthek-nearestneighboursofaquerypoint.Letasystemwithmmotorchannelsbe.FromadatabasecontainingthedistanceobtainedwithCrutcheld'smetricsbetweentwosensorss1ands2ofthesystemforngivenmotorcommand,apredictionofthedistancebetweenthemforanycommandxisgivenby:ds1;s2(x)=Pki=1ds1;s2(xi)e�jjx�xijj22 2 Pki=1e�jjx�xijj22 2;where(x1;x2;::;xk)arethekclosestcommandtoxinthedatabaseinthesenseoftheeuclideanmetricsonRm(withkn).Thealgorithmisparameterizedbyandk.Adecreaseinacceleratethedecreasingoftheinuenceoftheknearestneighboursonthepredictionwiththedistancetothepredictionpoint.See[7]formoredetailsonthisalgorithm.Inthefollowingexperiments,optimalvaluesofkandwerechosentomaximizeperformancesingeneralizations(dependingontheexperiment,kisbetween1and10).C.PresentationofthesimulationToevaluatetheperformanceofCrutcheld'smetrics'au-tomatedlearning,measuresweremadeondifferentsimulatedsystems.Thesimulatedspaceisaplan.Thebodiesaremadeofrigidsegmentsassembledtogetherbypivotjointswithamotorineachjoint(cf.gure2).Severaltypesofsensors(distance,color,apparentangleandapparentdiameter)canbeplacedonthesegments.Figures3,4and5showtheprinciplesofdistance,apparentangleandapparentdiametersensorsrespectively.ThecolorsensortakesthevalueoftheRGBencodingon24bitsofthecolorofthenearestobjectpresentinitsperceptiveeld.Theenvironmentismadeofcolored Fig.2.Exampleofabodymadeoftwosegments.Thesegmentinthebottomislinkedtothegroundbyapivotjointandtheuppersegmentislinkedtothesegmentinthebottombyanotherpivotjoint.Onthisbody,sensorscanbeattachedatanyplacealongthesegments.Therearefourtypesofsensors,threeofwhicharedescribedinthefollowinggures(thefourthoneisacolorsensor).Thesebodyareplacedinanenvironmentwherecoloreddisksmoveonarandompath(seegure6). Fig.3.Distancesensor.Thelocationandorientationofthesensorarerepresentedbythebluearrow.Theperceiveddistancedcorrespondtothedistancebetweentheoriginofthesensorandthenearestobjectoftheenvironmentwithintheperceptiveeldofthesensor(yellow-greenarea).disksofvariousradiusmovingintheplan.Themovementofadiskisdeterminedbytwoparameters,itsspeedanditsinstantaneousprobabilityofchangingitsdirection,thepathofthediskbeingconsequentlyabrokenline(cf.gure10).Topreservethesimplicityofthemodel,collisionsbetweenthedifferentelementsinpresencearen'ttakenintoaccount.Atanytimeitispossibletoaccessthevaluesofthesensorsandtoxatethepositionofthejoints.D.ExperimentsandresultsWeranexperimentsonfourdifferentsimulatedbodiesillustratedongure7.Thetypesofsensorsonthesebodiesarerandomlychosen(butxedoncechosen).Figure8summarizestheevolutionofperformancesinpredictingCrutcheld'sin-formationdistancebetweenthetwosensorsofeachofthefourbodiesforvariousnumbersoflearningexamplars.AlearningexamplarconsistsinanassociationbetweenarandommotorcongurationandtheassociatedCrutcheldmetricsbetweenthetwosensorsofthebodycomputeddirectlywith100000samples.FortestingthelearntmodelofCrutchelddistances,weuseatestdatabasecomposedof100uniformlydistributedmotorcongurationsassociatedtothecorrespondingrecom-putedCrutchelddistances.Ofcourse,thetrainingandtest 2009IEEE8THINTERNATIONALCONFERENCEONDEVELOPMENTANDLEARNING4(sfreq2(1);sfreq2(2):::;sfreq2(N))be,wheresfreqi(f)standsfortheratioofvaluestakenbysiinthefthinterval.Then:dN;T(s1;s2)=1 2NXf=1jsfreq1(f)�sfreq2(f)j:However,thesemetricssuffersseveralproblems,notablytheycan'taccountfornon-linearcorrelationsbetweensensors,whicharenonethelessveryusualinthecaseoftwosensorsphysicallyclose,butofdifferentmodalities(e.g.conesandrodcellsintheretina).Evenanafnecorrelationwon'tbedetected.Olssonandal.introducedanothermetrics,originatingfrominformationtheory:Crutcheld'smetrics[2].Asareminder,beinggivenarandomvariableXofprobabilitylawpwithvaluesinE,X'sShannonentropyormeaninformationis:H(X)=Xe2E�p(fX=eg)log2(p(fX=eg)):Beinggivenarandomvector(X;Y)ofprobabilitylawpwithvaluesinEF,theconditionalentropyofXknowingYis:H(XjY)=X(e;f)2EF�p(f(X;Y)=(e;f)g)log2(p(f(X;Y)=(e;f)g) p(fY=fg))(See[1]foranin-depthpresentationofinformationtheory).Lets1ands2betwosensors,and(s1(1);s1(2):::;s1(T)),(s2(1);s2(2):::;s2(T))thevaluestakenbythesesensorsatTconsecutivetimes.WeconsiderthiscoupleoftimeseriesasaT-sampleofarandomvectorofdimension2(S1;S2),S1andS2takingtheirvaluesinnitesets.Fromtheempiricprobabilitylawassociatedtothecoupleofsamples,wethencompute:dT(s1;s2)=HT(S1jS2)+HT(S2jS1) HT(S1)+HT(S2):Theonlyinterestofthefraction'sdenominatoristonormalizethemetricsin[0;1].HT(SijSj)canbeinterpretedastheinformationbroughtinproperbySi,i.e.theinformationcontainedbySi,whichisn'talreadyinSj.SoCrutcheld'smetricsgivesameasureofthequantityofinformationwhichisn'tcommontoSiandSj,whichisindeedaformofdistance.Besidesit'sapseudo-metricsinthemathematicalsense,i.e:it'ssymetric:dT(S1;S2)=dT(S2;S1),it'spositive:dT(S1;S2)2R+,itcompliestotriangularinequality:dT(S1;S3)dT(S1;S2)+dT(S2;S3):Itlacksthepropertyofbeingdenedtobearealmetrics.IndeeditispossibletondS1;S2suchasdT(S1;S2)=0andS16=S2.However,itcanbeshownthatCrutcheld'smetricsbetweentworandomvariablesiszeroif,andonlyif,theyaretwoequivalentencodingofasamesource.See[2]forproofs.Oncethemetricsoverthesetofsensorsismeasured,[10]proposetodetermineawell-tteddimensionforthesensoritopicmapwiththemetricscalingmethod:thedistance Fig.1.SensoritopicmapoftheAIBOrobotwithCrutcheld'smetrics.Eachpixelofthevisualsensorisdepictedbyanumberbetween1and100.TheinfrareddistancesensorisdepictedbyIr,theaccelerometersbyBa,LaandDa,thetemperaturesensorbyTe,theremainingpowerinthebatterybyP,thebinarycontactsensorsofthepawsbyBLP,BRP,FLPandFRP,whereFLmeansfrontright,BRbackright,etc.Eachpawhasthreedegreesoffreedom:E(elevation),R(rotation)etK(knee),foreachdegreeofeachpawthereisapositionsensor(forinstanceFLKforFrontLeftKnee)andatorquesensor,depictedinlower-caseletters(forinstancek).Theneckhasthreedegreesoffreedomtoonamedtilt,panandrollandsothreepositionsensorsNT,NPandNRandthreetorquesensorsnt,np,nr.It'sthesameforthetail:TT,TP,TR,tt,tp,tr.Atlastthejawhasonlyonedegreeoffreedom,andsoonlytwosensorsJAWandjaw.[After[8]]betweenthepairsofsensorsarerepresentedbyasquarematrix(mi;j)suchasmi;j=dT(si;sj).Thismatrixissymetricreal,soit'sdiagonalizableandit'seigenvaluesarereals,let'scallthem1;2;:::;n,with12:::n.Weshallthenbeabletoselectinformationinanumberofdimensionmorerestrictedthannwhilelosingaminimumofinformationbyretainingonlythemaineigenvalues.Theselecteddimensionmissuchthat2m+1�2mbemaximal.Intuitivelytheselecteddimensionissuchthattherebethebiggestpossibledifferencebetweenthequantityofinformationbroughtinbythisdimensionandtheonebroughtinbyasupplementarydimension.Foradetailedpresentationofprincipalcomponentanalysis,see[14].Eventually,eachsensorisdepictedbyapointinaneu-clideanspaceofdimensionm,insuchawaythattheeuclideandistancebetweentwopointscoincideatbestwiththemeasureddistancebetweenthetwocorrespondingsensors.Therearenumerousmethodsforthisclassicoptimizationproblem,see[4].Oneexampleofsensoritopicmapsobtainedby[8]isgivenongure1.II.AUTOMATEDLEARNINGOFCRUTCHFIELD'SMETRICSA.IntroductionIntheworkof[10]and[8]theinformationalCrutchelddistanceoverallpairsofsensorswascomputedbasedonaseriesofsensorvaluesmeasurementscorrespondingtorandomlychangingmotorcommands:thisimplicitlyassumedthattherewasonlyonepossibledistanceperpairofsensor,i.e.itassumedthattheinformationalstructureofthesetof