/
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION VOL IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION VOL

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION VOL - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
464 views
Uploaded On 2014-12-24

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION VOL - PPT Presentation

6 NO 2 APRIL 2002 A Fast and Elitist Multiobjective Genetic Algorithm NSGAII Kalyanmoy Deb Associate Member IEEE Amrit Pratap Sameer Agarwal and T Meyarivan Abstract Multiobjective evolutionary algorithms EAs that use nondominated sorting and shar ID: 28861

APRIL

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON EVOLUTIONARY COMPUT..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002AFastandElitistMultiobjectiveGeneticAlgorithm:KalyanmoyDeb,AssociateMember,IEEE,AmritPratap,SameerAgarwal,andT.MeyarivanMultiobjectiveevolutionaryalgorithms(EAs)thatusenondominatedsortingandsharinghavebeencriti-cizedmainlyfortheir:1) ( computationalcomplexity(where isthenumberofobjectivesand isthepopulationsize);2)nonelitismapproach;and3)theneedforspecifyingasharingparameter.Inthispaper,wesuggestanondominatedsorting-basedmultiobjectiveEA(MOEA),callednondominatedsortinggeneticalgorithmII(NSGA-II),whichalleviatesalltheabovethreedifficulties.Specifically,afastnondominatedsortingapproachwith ( computationalcomplexityispresented.Also,aselectionoperatorispresentedthatcreatesamatingpoolbycombiningtheparentandoffspringpopulationsandselectingthebest(withrespecttofitnessandspread) solutions.Simulationresultsondifficulttestproblemsshowthat (where isthenumberofobjectivesand isthepopulationsize).ThismakesNSGAcomputationallyexpensiveforlargepopu-lationsizes.Thislargecomplexityarisesbecauseofthecomplexityinvolvedinthenondominatedsortingproce-dureineverygeneration.Lackofelitism:Recentresults[25],[18]showthatelitismcanspeeduptheperformanceoftheGAsignificantly,whichalsocanhelppreventingthelossofgoodsolutionsoncetheyarefound.Needforspecifyingthesharingparameter Tradi-tionalmechanismsofensuringdiversityinapopulationsoastogetawidevarietyofequivalentsolutionshavereliedmostlyontheconceptofsharing.Themainproblemwithsharingisthatitrequiresthespecificationofasharingparameter( ).Thoughtherehasbeensomeworkondynamicsizingofthesharingparameter[10],aparam-eter-lessdiversity-preservationmechanismisdesirable.Inthispaper,weaddressalloftheseissuesandproposeanimprovedversionofNSGA,whichwecallNSGA-II.Fromthesimulationresultsonanumberofdifficulttestproblems,wefindthatNSGA-IIoutperformstwoothercontemporaryMOEAs: etal.:AFASTANDELITISTMULTIOBJECTIVEGA:NSGA-IIwedescribetheproposedNSGA-IIalgorithmindetails.Sec-tionIVpresentssimulationresultsofNSGA-IIandcomparesthemwithtwootherelitistMOEAs(PAESandSPEA).InSec-tionV,wehighlighttheissueofparameterinteractions,amatterthatisimportantinevolutionarycomputationresearch.ThenextsectionextendsNSGA-IIforhandlingconstraintsandcomparestheresultswithanotherrecentlyproposedconstraint-handlingmethod.Finally,weoutlinetheconclusionsofthispaper.II.EULTIOBJECTIVEVOLUTIONARYDuring1993–1995,anumberofdifferentEAsweresug-gestedtosolvemultiobjectiveoptimizationproblems.Ofthem,FonsecaandFleming’sMOGA[7],SrinivasandDeb’sNSGA[20],andHornetal.’sNPGA[13]enjoyedmoreattention.Thesealgorithmsdemonstratedthenecessaryadditionaloper-atorsforconvertingasimpleEAtoaMOEA.Twocommonfeaturesonallthreeoperatorswerethefollowing:i)assigningfitnesstopopulationmembersbasedonnondominatedsortingandii)preservingdiversityamongsolutionsofthesamenondominatedfront.Althoughtheyhavebeenshowntofindmultiplenondominatedsolutionsonmanytestproblemsandanumberofengineeringdesignproblems,researchersrealizedtheneedofintroducingmoreusefuloperators(whichhavebeenfoundusefulinsingle-objectiveEA’s)soastosolvemultiobjectiveoptimizationproblemsbetter.Particularly,theinteresthasbeentointroduceelitismtoenhancetheconvergencepropertiesofaMOEA.Reference[25]showedthatelitismhelpsinachievingbetterconvergenceinMOEAs.AmongtheexistingelitistMOEAs,ZitzlerandThiele’sSPEA[26],KnowlesandCorne’sPareto-archivedPAES[14],andRudolph’selitistGA[18]arewellstudied.Wedescribetheseapproachesinbrief.Fordetails,readersareencouragedtorefertotheoriginalstudies.ZitzlerandThiele[26]suggestedanelitistmulticriterionEAwiththeconceptofnondominationintheirSPEA.Theysug-gestedmaintaininganexternalpopulationateverygenerationstoringallnondominatedsolutionsdiscoveredsofarbeginningfromtheinitialpopulation.Thisexternalpopulationpartici-patesinallgeneticoperations.Ateachgeneration,acombinedpopulationwiththeexternalandthecurrentpopulationisfirstconstructed.Allnondominatedsolutionsinthecombinedpop-ulationareassignedafitnessbasedonthenumberofsolutionstheydominateanddominatedsolutionsareassignedfitnessworsethantheworstfitnessofanynondominatedsolution.Thisassignmentoffitnessmakessurethatthesearchisdirectedtowardthenondominatedsolutions.Adeterministicclusteringtechniqueisusedtoensurediversityamongnondominatedsolutions.Althoughtheimplementationsuggestedin[26]is ,withproperbookkeepingthecomplexityofSPEAcanbereducedto KnowlesandCorne[14]suggestedasimpleMOEAusingasingle-parentsingle-offspringEAsimilarto(1 1)-evolutionstrategy.Insteadofusingrealparameters,binarystringswereusedandbitwisemutationswereemployedtocreateoffsprings.IntheirPAES,withoneparentandoneoffspring,theoffspringiscomparedwithrespecttotheparent.Iftheoffspringdomi-natestheparent,theoffspringisacceptedasthenextparentandtheiterationcontinues.Ontheotherhand,iftheparentdom-inatestheoffspring,theoffspringisdiscardedandanewmu-tatedsolution(anewoffspring)isfound.However,iftheoff-springandtheparentdonotdominateeachother,thechoicebe-tweentheoffspringandtheparentismadebycomparingthemwithanarchiveofbestsolutionsfoundsofar.Theoffspringiscomparedwiththearchivetocheckifitdominatesanymemberofthearchive.Ifitdoes,theoffspringisacceptedasthenewparentandallthedominatedsolutionsareeliminatedfromthearchive.Iftheoffspringdoesnotdominateanymemberofthearchive,bothparentandoffspringarecheckedfortheirwiththesolutionsofthearchive.Iftheoffspringresidesinaleastcrowdedregionintheobjectivespaceamongthemem-bersofthearchive,itisacceptedasaparentandacopyofaddedtothearchive.Crowdingismaintainedbydividingtheentiresearchspacedeterministicallyin subspaces,where isthedepthparameterand isthenumberofdecisionvariables,andbyupdatingthesubspacesdynamically.Investigatorshavecal-culatedtheworstcasecomplexityofPAESfor evaluations ,where isthearchivelength.Sincethearchivesizeisusuallychosenproportionaltothepopulationsize ,theoverallcomplexityofthealgorithmis Rudolph[18]suggested,butdidnotsimulate,asimpleelitistMOEAbasedonasystematiccomparisonofindividualsfromparentandoffspringpopulations.Thenondominatedsolutionsoftheoffspringpopulationarecomparedwiththatofparentso-lutionstoformanoverallnondominatedsetofsolutions,whichbecomestheparentpopulationofthenextiteration.Ifthesizeofthissetisnotgreaterthanthedesiredpopulationsize,otherindividualsfromtheoffspringpopulationareincluded.Withthisstrategy,heprovedtheconvergenceofthisalgorithmtothePareto-optimalfront.Althoughthisisanimportantachievementinitsownright,thealgorithmlacksmotivationforthesecondtaskofmaintainingdiversityofPareto-optimalsolutions.Anex-plicitdiversity-preservingmechanismmustbeaddedtomakeitmorepractical.Sincethedeterminismofthefirstnondominatedfrontis ,theoverallcomplexityofRudolph’salgo-rithmisalso Inthefollowing,wepresenttheproposednondominatedsortingGAapproach,whichusesafastnondominatedsortingprocedure,anelitist-preservingapproach,andaparameterlessnichingoperator.III.EONDOMINATEDORTINGA.FastNondominatedSortingApproachForthesakeofclarity,wefirstdescribeanaiveandslowprocedureofsortingapopulationintodifferentnondominationlevels.Thereafter,wedescribeafastapproach.Inanaiveapproach,inordertoidentifysolutionsofthefirstnondominatedfrontinapopulationofsize ,eachsolutioncanbecomparedwitheveryothersolutioninthepopulationtofindifitisdominated.Thisrequires comparisonsforeachsolution,where isthenumberofobjectives.Whenthisprocessiscontinuedtofindallmembersofthefirstnondomi-natedlevelinthepopulation,thetotalcomplexityis Atthisstage,allindividualsinthefirstnondominatedfrontarefound.Inordertofindtheindividualsinthenextnondominated IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002front,thesolutionsofthefirstfrontarediscountedtemporarilyandtheaboveprocedureisrepeated.Intheworstcase,thetaskoffindingthesecondfrontalsorequires tions,particularlywhen numberofsolutionsbelongtothesecondandhighernondominatedlevels.Thisargumentistrueforfindingthirdandhigherlevelsofnondomination.Thus,theworstcaseiswhenthereare frontsandthereexistsonlyonesolutionineachfront.Thisrequiresanoverall computations.Notethat storageisrequiredforthispro-cedure.Inthefollowingparagraphandequationshownatthebottomofthepage,wedescribeafastnondominatedsortingapproachwhichwillrequire First,foreachsolutionwecalculatetwoentities:1)domi-nationcount ,thenumberofsolutionswhichdominatethe ,and2) ,asetofsolutionsthatthesolution inates.Thisrequires Allsolutionsinthefirstnondominatedfrontwillhavetheirdominationcountaszero.Now,foreachsolution with wevisiteachmember( )ofitsset andreduceitsdomina-tioncountbyone.Indoingso,ifforanymember thedomi-nationcountbecomeszero,weputitinaseparatelist .Thesemembersbelongtothesecondnondominatedfront.Now,theaboveprocedureiscontinuedwitheachmemberof andthethirdfrontisidentified.Thisprocesscontinuesuntilallfrontsareidentified.Foreachsolution inthesecondorhigherlevelofnondom-ination,thedominationcount canbeatmost .Thus,eachsolution willbevisitedatmost timesbeforeitsdominationcountbecomeszero.Atthispoint,thesolutionisassignedanondominationlevelandwillneverbevisitedagain.Sincethereareatmost suchsolutions,thetotalcom-plexityis .Thus,theoverallcomplexityoftheprocedure .Anotherwaytocalculatethiscomplexityistore-alizethatthebodyofthefirstinnerloop(foreach )isexecutedexactly timesaseachindividualcanbethememberofatmostonefrontandthesecondinnerloop(foreach canbeexecutedatmaximum timesforeachindividual[eachindividualdominates individualsatmaximumandeachdominationcheckrequiresatmost comparisons]resultsintheoverall computations.Itisimportanttonotethatalthoughthetimecomplexityhasreducedto ,thestoragerequirementhasincreasedto B.DiversityPreservationWementionedearlierthat,alongwithconvergencetothePareto-optimalset,itisalsodesiredthatanEAmaintainsagoodspreadofsolutionsintheobtainedsetofsolutions.TheoriginalNSGAusedthewell-knownsharingfunctionapproach,whichhasbeenfoundtomaintainsustainablediversityinapopula-tionwithappropriatesettingofitsassociatedparameters.Thesharingfunctionmethodinvolvesasharingparameter whichsetstheextentofsharingdesiredinaproblem.Thispa-rameterisrelatedtothedistancemetricchosentocalculatetheproximitymeasurebetweentwopopulationmembers.Thepa- denotesthelargestvalueofthatdistancemetricwithinwhichanytwosolutionsshareeachother’sfitness.Thisparameterisusuallysetbytheuser,althoughthereexistsomeguidelines[4].Therearetwodifficultieswiththissharingfunc-tionapproach.1)Theperformanceofthesharingfunctionmethodinmaintainingaspreadofsolutionsdependslargelyonthe value. - - - foreach foreach if thenIf dominates Add tothesetofsolutionsdominatedby elseif then Incrementthedominationcounterof if then belongstothefirstfront Initializethefrontcounter Usedtostorethemembersofthenextfrontforeach foreach if then belongstothenextfront etal.:AFASTANDELITISTMULTIOBJECTIVEGA:NSGA-II Fig.1.Crowding-distancecalculation.Pointsmarkedinfilledcirclesaresolutionsofthesamenondominatedfront.2)Sinceeachsolutionmustbecomparedwithallotherso-lutionsinthepopulation,theoverallcomplexityofthesharingfunctionapproachis IntheproposedNSGA-II,wereplacethesharingfunctionapproachwithacrowded-comparisonapproachthateliminatesboththeabovedifficultiestosomeextent.Thenewapproachdoesnotrequireuser-definedparameterformaintainingdiversityamongpopulationmembers.Also,thesuggestedap-proachhasabettercomputationalcomplexity.Todescribethisapproach,wefirstdefineadensity-estimationmetricandthenpresentthecrowded-comparisonoperator.1)DensityEstimation:Togetanestimateofthedensityofsolutionssurroundingaparticularsolutioninthepopulation,wecalculatetheaveragedistanceoftwopointsoneithersideofthispointalongeachoftheobjectives.Thisquantity servesasanestimateoftheperimeterofthecuboidformedbyusingthenearestneighborsasthevertices(callthisthecrowding).InFig.1,thecrowdingdistanceofthe thsolutioninitsfront(markedwithsolidcircles)istheaveragesidelengthofthecuboid(shownwithadashedbox).Thecrowding-distancecomputationrequiressortingthepop-ulationaccordingtoeachobjectivefunctionvalueinascendingorderofmagnitude.Thereafter,foreachobjectivefunction,theboundarysolutions(solutionswithsmallestandlargestfunctionvalues)areassignedaninfinitedistancevalue.Allotherinter-mediatesolutionsareassignedadistancevalueequaltotheab-solutenormalizeddifferenceinthefunctionvaluesoftwoadja-centsolutions.Thiscalculationiscontinuedwithotherobjectivefunctions.Theoverallcrowding-distancevalueiscalculatedasthesumofindividualdistancevaluescorrespondingtoeachob-jective.Eachobjectivefunctionisnormalizedbeforecalculatingthecrowdingdistance.Thealgorithmasshownatthebottomofthepageoutlinesthecrowding-distancecomputationprocedureofallsolutionsinannondominatedset .Here, referstothe thobjectivefunctionvalueofthe thindividualintheset andtheparameters and themaximumandminimumvaluesofthe thobjectivefunc-tion.Thecomplexityofthisprocedureisgovernedbythesortingalgorithm.Since independentsortingsofatmost tions(whenallpopulationmembersareinonefront )arein-volved,theabovealgorithmhas complexity.Afterallpopulationmembersintheset areassignedadistancemetric,wecancomparetwosolutionsfortheirextentofproximitywithothersolutions.Asolutionwithasmallervalueofthisdistancemeasureis,insomesense,morecrowdedbyothersolutions.Thisisexactlywhatwecompareintheproposedcrowded-comparisonoperator,describedbelow.AlthoughFig.1illustratesthecrowding-distancecomputationfortwoobjectives,theprocedureisapplicabletomorethantwoobjectivesaswell.2)Crowded-ComparisonOperator:Thecrowded-compar-isonoperator( )guidestheselectionprocessatthevariousstagesofthealgorithmtowardauniformlyspread-outPareto-optimalfront.Assumethateveryindividual inthepopulationhastwoattributes:1)nondominationrank( 2)crowdingdistance( Wenowdefineapartialorder as if or and Thatis,betweentwosolutionswithdifferingnondominationranks,wepreferthesolutionwiththelower(better)rank.Other-wise,ifbothsolutionsbelongtothesamefront,thenwepreferthesolutionthatislocatedinalessercrowdedregion.Withthesethreenewinnovations—afastnondominatedsortingprocedure,afastcrowdeddistanceestimationproce-dure,andasimplecrowdedcomparisonoperator,wearenowreadytodescribetheNSGA-IIalgorithm.C.MainLoopInitially,arandomparentpopulation iscreated.Thepop-ulationissortedbasedonthenondomination.Eachsolutionisassignedafitness(orrank)equaltoitsnondominationlevel(1isthebestlevel,2isthenext-bestlevel,andsoon).Thus,mini-mizationoffitnessisassumed.Atfirst,theusualbinarytourna-mentselection,recombination,andmutationoperatorsareusedtocreateaoffspringpopulation ofsize .Sinceelitism - - numberofsolutionsin foreach set initializedistanceforeachobjective sort sortusingeachobjectivevalue sothatboundarypointsarealwaysselected to forallotherpoints IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002isintroducedbycomparingcurrentpopulationwithpreviouslyfoundbestnondominatedsolutions,theprocedureisdifferentaftertheinitialgeneration.Wefirstdescribethe thgenerationoftheproposedalgorithmasshownatthebottomofthepage.Thestep-by-stepprocedureshowsthatNSGA-IIalgorithmissimpleandstraightforward.First,acombinedpopulation isformed.Thepopulation isofsize .Then,the issortedaccordingtonondomination.Sinceallpreviousandcurrentpopulationmembersareincludedin elitismisensured.Now,solutionsbelongingtothebestnon-dominatedset areofbestsolutionsinthecombinedpopu-lationandmustbeemphasizedmorethananyothersolutioninthecombinedpopulation.Ifthesizeof issmallerthen wedefinitelychooseallmembersoftheset forthenewpop- .Theremainingmembersofthepopulation arechosenfromsubsequentnondominatedfrontsintheorderoftheirranking.Thus,solutionsfromtheset arechosennext,followedbysolutionsfromtheset ,andsoon.Thisprocedureiscontinueduntilnomoresetscanbeaccommodated.Saythattheset isthelastnondominatedsetbeyondwhichnoothersetcanbeaccommodated.Ingeneral,thecountofsolutionsinallsetsfrom to wouldbelargerthanthepopulationsize.Tochooseexactly populationmembers,wesortthesolutionsofthe usingthecrowded-comparisonoperator indescendingorderandchoosethebestsolutionsneededtofillallpopulationslots.TheNSGA-IIprocedureisalsoshowninFig.2.Thenewpopulation ofsize isnowusedforse-lection,crossover,andmutationtocreateanewpopulation ofsize .Itisimportanttonotethatweuseabinarytournamentselectionoperatorbuttheselectioncriterionisnowbasedonthecrowded-comparisonoperator .Sincethisoperatorrequiresboththerankandcrowdeddistanceofeachsolutioninthepop-ulation,wecalculatethesequantitieswhileformingthepopula- ,asshownintheabovealgorithm.Considerthecomplexityofoneiterationoftheentirealgo-rithm.Thebasicoperationsandtheirworst-casecomplexitiesareasfollows:1)nondominatedsortingis 2)crowding-distanceassignmentis 3)sortingon is Theoverallcomplexityofthealgorithmis ,whichisgovernedbythenondominatedsortingpartofthealgorithm.If Fig.2.NSGA-IIprocedure.performedcarefully,thecompletepopulationofsize notbesortedaccordingtonondomination.Assoonasthesortingprocedurehasfoundenoughnumberoffrontstohave bersin ,thereisnoreasontocontinuewiththesortingpro-Thediversityamongnondominatedsolutionsisintroducedbyusingthecrowdingcomparisonprocedure,whichisusedinthetournamentselectionandduringthepopulationreductionphase.Sincesolutionscompetewiththeircrowding-distance(ameasureofdensityofsolutionsintheneighborhood),noextranichingparameter(suchas neededintheNSGA)isre-quired.Althoughthecrowdingdistanceiscalculatedintheob-jectivefunctionspace,itcanalsobeimplementedintheparam-eterspace,ifsodesired[3].However,inallsimulationsper-formedinthisstudy,wehaveusedtheobjective-functionspaceIV.SIMULATIONESULTSInthissection,wefirstdescribethetestproblemsusedtocomparetheperformanceofNSGA-IIwithPAESandSPEA.ForPAESandSPEA,wehaveidenticalparametersettingsassuggestedintheoriginalstudies.ForNSGA-II,wehavechosenareasonablesetofvaluesandhavenotmadeanyeffortinfindingthebestparametersetting.Weleavethistaskforafuturestudy. combineparentandoffspringpopulation - - - allnondominatedfrontsof and until untiltheparentpopulationisfilled - - calculatecrowding-distancein include thnondominatedfrontintheparentpop checkthenextfrontforinclusion sortindescendingorderusing choosethefirst elementsof - - useselection,crossoverandmutationtocreateanewpopulation incrementthegenerationcounter etal.:AFASTANDELITISTMULTIOBJECTIVEGA:NSGA-IITABLEIROBLEMSSEDINTUDY Allobjectivefunctionsaretobeminimized.A.TestProblemsWefirstdescribethetestproblemsusedtocomparedifferentMOEAs.Testproblemsarechosenfromanumberofsignifi-cantpaststudiesinthisarea.Veldhuizen[22]citedanumberoftestproblemsthathavebeenusedinthepast.Ofthem,wechoosefourproblems:Schaffer’sstudy(SCH)[19],FonsecaandFleming’sstudy(FON)[10],Poloni’sstudy(POL)[16],andKursawe’sstudy(KUR)[15].In1999,thefirstauthorsuggestedasystematicwayofdevelopingtestproblemsformultiobjec-tiveoptimization[3].Zitzleretal.[25]followedthoseguide-linesandsuggestedsixtestproblems.WechoosefiveofthosesixproblemshereandcallthemZDT1,ZDT2,ZDT3,ZDT4,andZDT6.Allproblemshavetwoobjectivefunctions.Noneoftheseproblemshaveanyconstraint.Wedescribetheseprob-lemsinTableI.Thetablealsoshowsthenumberofvariables,theirbounds,thePareto-optimalsolutions,andthenatureofthePareto-optimalfrontforeachproblem.Allapproachesarerunforamaximumof25000functionevaluations.Weusethesingle-pointcrossoverandbitwisemutationforbinary-codedGAsandthesimulatedbinarycrossover(SBX)operatorandpolynomialmutation[6]forreal-codedGAs.Thecrossoverprobabilityof amutationprobabilityof or (where isthenumberofdecisionvariablesforreal-codedGAsand isthestringlengthforbinary-codedGAs)areused.Forreal-codedNSGA-II,weusedistributionindexes[6]forcrossoverandmutationoperatorsas and ,respectively.Thepopulationobtainedattheendof250generations(thepopulationafterelite-preservingoperatorisapplied)isusedtocalculateacoupleofperformancemetrics,whichwediscussinthenextsection.ForPAES,weuseadepthvalue tofourandanarchivesize of100.Weuseallpopulationmembersofthearchiveobtainedattheendof25000iterationstocalculatetheperformancemetrics.ForSPEA,weuseapopulationofsize80andanexternalpopulationofsize20(this4:1ratioissuggestedbythedevelopersofSPEAtomaintainanadequateselectionpressurefortheelitesolutions),sothatoverallpopulationsizebecomes100.SPEAisalsorununtil25000functionevaluationsaredone.ForSPEA,weusethe IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002 Fig.3.DistancemetricnondominatedsolutionsofthecombinedGAandexternalpopulationsatthefinalgenerationtocalculatetheperformancemetricsusedinthisstudy.ForPAES,SPEA,andbinary-codedNSGA-II,wehaveused30bitstocodeeachdecisionvariable.B.PerformanceMeasuresUnlikeinsingle-objectiveoptimization,therearetwogoalsinamultiobjectiveoptimization:1)convergencetothePareto-op-timalsetand2)maintenanceofdiversityinsolutionsofthePareto-optimalset.Thesetwotaskscannotbemeasuredade-quatelywithoneperformancemetric.Manyperformancemet-ricshavebeensuggested[1],[8],[24].Here,wedefinetwoper-formancemetricsthataremoredirectinevaluatingeachoftheabovetwogoalsinasolutionsetobtainedbyamultiobjectiveoptimizationalgorithm.Thefirstmetric measurestheextentofconvergencetoaknownsetofPareto-optimalsolutions.Sincemultiobjectiveal-gorithmswouldbetestedonproblemshavingaknownsetofPareto-optimalsolutions,thecalculationofthismetricispos-sible.Werealize,however,thatsuchametriccannotbeusedforanyarbitraryproblem.First,wefindasetof formlyspacedsolutionsfromthetruePareto-optimalfrontintheobjectivespace.Foreachsolutionobtainedwithanalgo-rithm,wecomputetheminimumEuclideandistanceofitfrom chosensolutionsonthePareto-optimalfront.Theaverageofthesedistancesisusedasthefirstmetric (theconver-gencemetric).Fig.3showsthecalculationprocedureofthismetric.TheshadedregionisthefeasiblesearchregionandthesolidcurvedlinesspecifythePareto-optimalsolutions.Solu-tionswithopencirclesare chosensolutionsonthePareto-op-timalfrontforthecalculationoftheconvergencemetricandso-lutionsmarkedwithdarkcirclesaresolutionsobtainedbyanalgorithm.Thesmallerthevalueofthismetric,thebettertheconvergencetowardthePareto-optimalfront.Whenallobtainedsolutionslieexactlyon chosensolutions,thismetrictakesavalueofzero.Inallsimulationsperformedhere,wepresenttheaverage andvariance ofthismetriccalculatedforsolutionsetsobtainedinmultipleruns.EvenwhenallsolutionsconvergetothePareto-optimalfront,theaboveconvergencemetricdoesnothaveavalueofzero.Themetricwillyieldzeroonlywheneachobtainedsolutionliesex-actlyoneachofthechosensolutions.Althoughthismetricalone Fig.4.Diversitymetriccanprovidesomeinformationaboutthespreadinobtainedso-lutions,wedefineandifferentmetrictomeasurethespreadinsolutionsobtainedbyanalgorithmdirectly.Thesecondmetric measurestheextentofspreadachievedamongtheobtainedsolutions.Here,weareinterestedingettingasetofsolutionsthatspanstheentirePareto-optimalregion.WecalculatetheEuclideandistance betweenconsecutivesolutionsintheob-tainednondominatedsetofsolutions.Wecalculatetheaverage ofthesedistances.Thereafter,fromtheobtainedsetofnon-dominatedsolutions,wefirstcalculatetheextremesolutions(intheobjectivespace)byfittingacurveparalleltothatofthetruePareto-optimalfront.Then,weusethefollowingmetrictocal-culatethenonuniformityinthedistribution: Here,theparameters and aretheEuclideandistancesbe-tweentheextremesolutionsandtheboundarysolutionsoftheobtainednondominatedset,asdepictedinFig.4.Thefigureil-lustratesalldistancesmentionedintheaboveequation.Thepa- istheaverageofalldistances , ,assumingthatthereare solutionsonthebestnondomi-natedfront.With solutions,thereare consecutivedistances.Thedenominatoristhevalueofthenumeratorforthecasewhenall solutionslieononesolution.Itisinterestingtonotethatthisisnottheworstcasespreadofsolutionspossible.Wecanhaveascenarioinwhichthereisalargevariancein Insuchscenarios,themetricmaybegreaterthanone.Thus,themaximumvalueoftheabovemetriccanbegreaterthanone.However,agooddistributionwouldmakealldistances equalto andwouldmake (withexistenceofextremesolutionsinthenondominatedset).Thus,forthemostwidelyanduniformlyspreadoutsetofnondominatedsolutions,thenu-meratorof wouldbezero,makingthemetrictotakeavaluezero.Foranyotherdistribution,thevalueofthemetricwouldbegreaterthanzero.Fortwodistributionshavingidenticalvalues and ,themetric takesahighervaluewithworsedistri-butionsofsolutionswithintheextremesolutions.Notethattheabovediversitymetriccanbeusedonanynondominatedsetofsolutions,includingonethatisnotthePareto-optimalset.Using etal.:AFASTANDELITISTMULTIOBJECTIVEGA:NSGA-IITABLEIIOWSOWSOFTHE TABLEIIIOWSOWSOFTHE atriangularizationtechniqueoraVoronoidiagramapproach[1]tocalculate ,theaboveprocedurecanbeextendedtoestimatethespreadofsolutionsinhigherdimensions.C.DiscussionoftheResultsTableIIshowsthemeanandvarianceoftheconvergence obtainedusingfouralgorithmsNSGA-II(real-coded),NSGA-II(binary-coded),SPEA,andPAES.NSGA-II(realcodedorbinarycoded)isabletoconvergebetterinallproblemsexceptinZDT3andZDT6,wherePAESfoundbetterconvergence.InallcaseswithNSGA-II,thevari-anceintenrunsisalsosmall,exceptinZDT4withNSGA-II(binarycoded).ThefixedarchivestrategyofPAESallowsbetterconvergencetobeachievedintwooutofnineproblems.TableIIIshowsthemeanandvarianceofthediversitymetric obtainedusingallthreealgorithms.NSGA-II(realorbinarycoded)performsthebestinallninetestproblems.TheworstperformanceisobservedwithPAES.Forillustration,weshowoneofthetenrunsofPAESwithanar-bitraryrunofNSGA-II(real-coded)onproblemSCHinFig.5.Onmostproblems,real-codedNSGA-IIisabletofindabetterspreadofsolutionsthananyotheralgorithm,includingbinary-codedNSGA-II.Inordertodemonstratetheworkingofthesealgorithms,wealsoshowtypicalsimulationresultsofPAES,SPEA,andNSGA-IIonthetestproblemsKUR,ZDT2,ZDT4,andZDT6.TheproblemKURhasthreediscontinuousregionsinthePareto-optimalfront.Fig.6showsallnondominatedsolutionsobtainedafter250generationswithNSGA-II(real-coded).ThePareto-optimalregionisalsoshowninthefigure.ThisfiguredemonstratestheabilitiesofNSGA-IIinconvergingtothetruefrontandinfindingdiversesolutionsinthefront.Fig.7showstheobtainednondominatedsolutionswithSPEA,whichisthenext-bestalgorithmforthisproblem(refertoTablesIIandIII). Fig.5.NSGA-IIfindsbetterspreadofsolutionsthanPAESonSCH. Fig.6.NondominatedsolutionswithNSGA-II(real-coded)onKUR. IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002 Fig.7.NondominatedsolutionswithSPEAonKUR. Fig.8.NondominatedsolutionswithNSGA-II(binary-coded)onZDT2.Inbothaspectsofconvergenceanddistributionofsolutions,NSGA-IIperformedbetterthanSPEAinthisproblem.SinceSPEAcouldnotmaintainenoughnondominatedsolutionsinthefinalGApopulation,theoverallnumberofnondominatedsolutionsismuchlesscomparedtothatobtainedinthefinalpopulationofNSGA-II.Next,weshowthenondominatedsolutionsontheproblemZDT2inFigs.8and9.ThisproblemhasanonconvexPareto-op-timalfront.Weshowtheperformanceofbinary-codedNSGA-IIandSPEAonthisfunction.Althoughtheconvergenceisnotadifficultyherewithbothofthesealgorithms,bothreal-andbinary-codedNSGA-IIhavefoundabetterspreadandmoresolutionsintheentirePareto-optimalregionthanSPEA(thenext-bestalgorithmobservedforthisproblem).TheproblemZDT4has21 or7.94(10 )differentlocalPareto-optimalfrontsinthesearchspace,ofwhichonlyonecorrespondstotheglobalPareto-optimalfront.TheEuclideandistanceinthedecisionspacebetweensolutionsoftwocon-secutivelocalPareto-optimalsetsis0.25.Fig.10showsthatbothreal-codedNSGA-IIandPAESgetstuckatdifferentlocalPareto-optimalsets,buttheconvergenceandabilitytofindadiversesetofsolutionsaredefinitelybetterwithNSGA-II.Binary-codedGAshavedifficultiesinconverging Fig.9.NondominatedsolutionswithSPEAonZDT2. Fig.10.NSGA-IIfindsbetterconvergenceandspreadofsolutionsthanPAESonZDT4.neartheglobalPareto-optimalfront,amatterthatisalsobeenobservedinprevioussingle-objectivestudies[5].Onasimilarten-variableRastrigin’sfunction[thefunction thatstudyclearlyshowedthatapopulationofsizeofaboutatleast500isneededforsingle-objectivebinary-codedGAs(withtournamentselection,single-pointcrossoverandbitwisemutation)tofindtheglobaloptimumsolutioninmorethan50%ofthesimulationruns.Sincewehaveusedapopulationofsize100,itisnotexpectedthatamultiobjectiveGAwouldfindtheglobalPareto-optimalsolution,butNSGA-IIisabletofindagoodspreadofsolutionsevenatalocalPareto-optimalfront.SinceSPEAconvergespoorlyonthisproblem(seeTableII),wedonotshowSPEAresultsonthisfigure.Finally,Fig.11showsthatSPEAfindsabetterconvergedsetofnondominatedsolutionsinZDT6comparedtoanyotheralgorithm.However,thedistributioninsolutionsisbetterwithreal-codedNSGA-II.D.DifferentParameterSettingsInthisstudy,wedonotmakeanyseriousattempttofindthebestparametersettingforNSGA-II.Butinthissection,weper- etal.:AFASTANDELITISTMULTIOBJECTIVEGA:NSGA-II Fig.11.Real-codedNSGA-IIfindsbetterspreadofsolutionsthanSPEAonZDT6,butSPEAhasabetterconvergence.TABLEIVEANANDARIANCEOFTHEONVERGENCEANDUPTO500GENERATIONS formadditionalexperimentstoshowtheeffectofacoupleofdifferentparametersettingsontheperformanceofNSGA-II.First,wekeepallotherparametersasbefore,butincreasethenumberofmaximumgenerationsto500(insteadof250usedbefore).TableIVshowstheconvergenceanddiversitymetricsforproblemsPOL,KUR,ZDT3,ZDT4,andZDT6.Now,weachieveaconvergenceveryclosetothetruePareto-optimalfrontandwithamuchbetterdistribution.Thetableshowsthatinallthesedifficultproblems,thereal-codedNSGA-IIhasconvergedveryclosetothetrueoptimalfront,exceptinZDT6,whichprob-ablyrequiresadifferentparametersettingwithNSGA-II.Par-ticularly,theresultsonZDT3andZDT4improvewithgenera-tionnumber.TheproblemZDT4hasanumberoflocalPareto-optimalfronts,eachcorrespondingtoparticularvalueof .Alargechangeinthedecisionvectorisneededtogetoutofalocaloptimum.Unlessmutationorcrossoveroperatorsarecapableofcreatingsolutionsinthebasinofanotherbetterattractor,theimprovementintheconvergencetowardthetruePareto-op-timalfrontisnotpossible.WeuseNSGA-II(real-coded)withasmallerdistributionindex formutation,whichhasaneffectofcreatingsolutionswithmorespreadthanbefore.Restoftheparametersettingsareidenticalasbefore.Theconver-gencemetric anddiversitymeasure onproblemZDT4attheendof250generationsareasfollows: Fig.12.ObtainednondominatedsolutionswithNSGA-IIonproblemZDT4.TheseresultsaremuchbetterthanPAESandSPEA,asshowninTableII.Todemonstratetheconvergenceandspreadofso-lutions,weplotthenondominatedsolutionsofoneoftherunsafter250generationsinFig.12.ThefigureshowsthatNSGA-IIisabletofindsolutionsonthetruePareto-optimalfrontwith V.ROTATEDROBLEMSIthasbeendiscussedinanearlierstudy[3]thatinteractionsamongdecisionvariablescanintroduceanotherlevelofdif-ficultytoanymultiobjectiveoptimizationalgorithmincludingEAs.Inthissection,wecreateonesuchproblemandinvesti-gatetheworkingofpreviouslythreeMOEAsonthefollowingepistaticproblem: minimize where and for AnEAworkswiththedecisionvariablevector ,buttheaboveobjectivefunctionsaredefinedintermsofthevariablevector whichiscalculatedbytransformingthedecisionvariablevector byafixedrotationmatrix .Thisway,theobjectivefunctionsarefunctionsofalinearcombinationofdecisionvariables.InordertomaintainaspreadofsolutionsoverthePareto-optimalregionorevenconvergetoanyparticularsolutionrequiresanEAtoupdatealldecisionvariablesinaparticularfashion.Withagenericsearchoperator,suchasthevariablewiseSBXoperatorusedhere,thisbecomesadifficulttaskforanEA.However,here,weareinterestedinevaluatingtheoverallbehaviorofthreeelitistMOEAs.Weuseapopulationsizeof100andruneachalgorithmuntil500generations.ForSBX,weuse andweuse formutation.TorestrictthePareto-optimalsolutionstolie IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002 Fig.13.ObtainednondominatedsolutionswithNSGA-II,PAES,andSPEAontherotatedproblem.withintheprescribedvariablebounds,wediscouragesolutions byaddingafixedlargepenaltytobothobjec-tives.Fig.13showstheobtainedsolutionsattheendof500generationsusingNSGA-II,PAES,andSPEA.ItisobservedthatNSGA-IIsolutionsareclosertothetruefrontcomparedtosolutionsobtainedbyPAESandSPEA.Thecorrelatedpa-rameterupdatesneededtoprogresstowardthePareto-optimalfrontmakesthiskindofproblemsdifficulttosolve.NSGA-II’selite-preservingoperatoralongwiththereal-codedcrossoverandmutationoperatorsisabletofindsomesolutionsclosetothePareto-optimalfront[with resulting Thisexampleproblemdemonstratesthatoneoftheknowndif-ficulties(thelinkageproblem[11],[12])ofsingle-objectiveop-timizationalgorithmcanalsocausedifficultiesinamultiobjec-tiveproblem.However,moresystematicstudiesareneededtoamplyaddressthelinkageissueinmultiobjectiveoptimization.VI.CInthepast,thefirstauthorandhisstudentsimplementedapenalty-parameterlessconstraint-handlingapproachforsingle-objectiveoptimization.Thosestudies[2],[6]haveshownhowatournamentselectionbasedalgorithmcanbeusedtohandleconstraintsinapopulationapproachmuchbetterthananumberofotherexistingconstraint-handlingapproaches.Asimilarap-proachcanbeintroducedwiththeaboveNSGA-IIforsolvingconstrainedmultiobjectiveoptimizationproblems.A.ProposedConstraint-HandlingApproach(ConstrainedThisconstraint-handlingmethodusesthebinarytournamentselection,wheretwosolutionsarepickedfromthepopulationandthebettersolutionischosen.Inthepresenceofconstraints,eachsolutioncanbeeitherfeasibleorinfeasible.Thus,theremaybeatmostthreesituations:1)bothsolutionsarefeasible;2)oneisfeasibleandotherisnot;and3)bothareinfeasible.Forsingleobjectiveoptimization,weusedasimpleruleforeachCase1)Choosethesolutionwithbetterobjectivefunctionvalue.Case2)Choosethefeasiblesolution.Case3)ChoosethesolutionwithsmalleroverallconstraintSinceinnocaseconstraintsandobjectivefunctionvaluesarecomparedwitheachother,thereisnoneedofhavinganypenaltyparameter,amatterthatmakestheproposedconstraint-handlingapproachusefulandattractive.Inthecontextofmultiobjectiveoptimization,thelattertwocasescanbeusedastheyareandthefirstcasecanberesolvedbyusingthecrowded-comparisonoperatorasbefore.TomaintainthemodularityintheproceduresofNSGA-II,wesimplymodifythedefinitionofbetweentwosolutions and Definition1:Asolution issaidtoconstrained-dominatea ,ifanyofthefollowingconditionsistrue.1)Solution isfeasibleandsolution isnot.2)Solutions and arebothinfeasible,butsolution hasasmalleroverallconstraintviolation.3)Solutions and arefeasibleandsolution dominatessolution Theeffectofusingthisconstrained-dominationprincipleisthatanyfeasiblesolutionhasabetternondominationrankthananyinfeasiblesolution.Allfeasiblesolutionsarerankedaccordingtotheirnondominationlevelbasedontheobjectivefunctionvalues.However,amongtwoinfeasiblesolutions,thesolutionwithasmallerconstraintviolationhasabetterrank.Moreover,thismodificationinthenondominationprincipledoesnotchangethecomputationalcomplexityofNSGA-II.TherestoftheNSGA-IIprocedureasdescribedearliercanbeusedasusual.Theaboveconstrained-dominationdefinitionissimilartothatsuggestedbyFonsecaandFleming[9].Theonlydifferenceisinthewaydominationisdefinedfortheinfeasiblesolutions.Intheabovedefinition,aninfeasiblesolutionhavingalargeroverallconstraint-violationareclassifiedasmembersofalargernondominationlevel.Ontheotherhand,in[9],infeasiblesolu-tionsviolatingdifferentconstraintsareclassifiedasmembersofthesamenondominatedfront.Thus,oneinfeasiblesolutionviolatingaconstraintmarginallywillbeplacedinthesamenondominatedlevelwithanothersolutionviolatingadifferentconstrainttoalargeextent.Thismaycauseanalgorithmtowanderintheinfeasiblesearchregionformoregenerationsbe-forereachingthefeasibleregionthroughconstraintboundaries.Moreover,sinceFonseca–Fleming’sapproachrequiresdomina-tioncheckswiththeconstraint-violationvalues,theproposedapproachofthispaperiscomputationallylessexpensiveandissimpler.B.Ray–Tai–Seow’sConstraint-HandlingApproachetal.[17]suggestedamoreelaborateconstraint-han-dlingtechnique,whereconstraintviolationsofallconstraintsarenotsimplysummedtogether.Instead,anondominationcheckofconstraintviolationsisalsomade.Wegiveanoutlineofthisprocedurehere. etal.:AFASTANDELITISTMULTIOBJECTIVEGA:NSGA-IITABLEVROBLEMSSEDINTUDY Allobjectivefunctionsaretobeminimized.Threedifferentnondominatedrankingsofthepopulationarefirstperformed.Thefirstrankingisperformedusing tivefunctionvaluesandtheresultingrankingisstoredina mensionalvector .Thesecondranking isperformedusingonlytheconstraintviolationvaluesofall( ofthem)con-straintsandnoobjectivefunctioninformationisused.Thus,constraintviolationofeachconstraintisusedacriterionandanondominationclassificationofthepopulationisperformedwiththeconstraintviolationvalues.Noticethatforafeasiblesolutionallconstraintviolationsarezero.Thus,allfeasibleso-lutionshavearank1in .Thethirdrankingisperformedonacombinationofobjectivefunctionsandconstraint-violationvalues[atotalof values].Thisproducestheranking .Althoughobjectivefunctionvaluesandconstraintviola-tionsareusedtogether,oneniceaspectofthisalgorithmisthatthereisnoneedforanypenaltyparameter.Inthedominationcheck,criteriaarecomparedindividually,therebyeliminatingtheneedofanypenaltyparameter.Oncetheserankingsareover,solutionshavingthebestrankin arechosenforthenewpopulation.Ifmorepopulationslotsareavailable,theyarecreatedfromtheremainingsolutionssystematically.Bygivingimportancetotherankingin intheselectionop-eratorandbygivingimportancetotherankingin inthecrossoveroperator,theinvestigatorslaidoutasystematicmulti-objectiveGA,whichalsoincludesaniche-preservingoperator.Fordetails,readersmayreferto[17].Althoughtheinvestiga-torsdidnotcomparetheiralgorithmwithanyothermethod,theyshowedtheworkingofthisconstraint-handlingmethodonanumberofengineeringdesignproblems.However,sincenondominatedsortingofthreedifferentsetsofcriteriaarere-quiredandthealgorithmintroducesmanydifferentoperators,itremainstobeinvestigatedhowitperformsonmorecomplexproblems,particularlyfromthepointofviewofcomputationalburdenassociatedwiththemethod.Inthefollowingsection,wechooseasetoffourprob-lemsandcomparethesimpleconstrainedNSGA-IIwiththeRay–Tai–Seow’smethod.C.SimulationResultsWechoosefourconstrainedtestproblems(seeTableV)thathavebeenusedinearlierstudies.Inthefirstproblem,apartoftheunconstrainedPareto-optimalregionisnotfeasible.Thus,theresultingconstrainedPareto-optimalregionisaconcatena-tionofthefirstconstraintboundaryandsomepartoftheuncon-strainedPareto-optimalregion.ThesecondproblemSRNwasusedintheoriginalstudyofNSGA[20].Here,theconstrainedPareto-optimalsetisasubsetoftheunconstrainedPareto-op-timalset.ThethirdproblemTNKwassuggestedbyTanaka[21]andhasadiscontinuousPareto-optimalregion,fallingentirelyonthefirstconstraintboundary.Inthenextsection,weshowtheconstrainedPareto-optimalregionforeachoftheaboveproblems.ThefourthproblemWATERisafive-objec-tiveandseven-constraintproblem,attemptedtosolvein[17].Withfiveobjectives,itisdifficulttodiscusstheeffectoftheconstraintsontheunconstrainedPareto-optimalregion.Inthenextsection,weshowall ortenpairwiseplotsofobtainednondominatedsolutions.Weapplyreal-codedNSGA-IIhere.Inallproblems,weuseapopulationsizeof100,distribu-tionindexesforreal-codedcrossoverandmutationoperatorsof20and100,respectively,andrunNSGA-II(realcoded)withtheproposedconstraint-handlingtechniqueandwithRay–Tai–Seow’sconstraint-handlingalgorithm[17]foramaximumof500generations.Wechoosethisratherlargenumberofgenerationstoinvestigateifthespreadinsolutions IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002 Fig.14.ObtainednondominatedsolutionswithNSGA-IIontheconstrainedproblemCONSTR. Fig.15.ObtainednondominatedsolutionswithRay-Tai-Seow’salgorithmontheconstrainedproblemCONSTR.canbemaintainedforalargenumberofgenerations.However,ineachcase,weobtainareasonablygoodspreadofsolutionsasearlyas200generations.Crossoverandmutationprobabilitiesarethesameasbefore.Fig.14showstheobtainedsetof100nondominatedsolu-tionsafter500generationsusingNSGA-II.ThefigureshowsthatNSGA-IIisabletouniformlymaintainsolutionsinbothPareto-optimalregion.Itisimportanttonotethatinordertomaintainaspreadofsolutionsontheconstraintboundary,thesolutionsmusthavetobemodifiedinaparticularmannerdic-tatedbytheconstraintfunction.Thisbecomesadifficulttaskofanysearchoperator.Fig.15showstheobtainedsolutionsusingRay-Tai-Seow’salgorithmafter500generations.ItisclearthatNSGA-IIperformsbetterthanRay–Tai–Seow’salgorithmintermsofconvergingtothetruePareto-optimalfrontandalsointermsofmaintainingadiversepopulationofnondominatedNext,weconsiderthetestproblemSRN.Fig.16showsthenondominatedsolutionsafter500generationsusingNSGA-II. Fig.16.ObtainednondominatedsolutionswithNSGA-IIontheconstrainedproblemSRN. Fig.17.ObtainednondominatedsolutionswithRay–Tai–Seow’salgorithmontheconstrainedproblemSRN.ThefigureshowshowNSGA-IIcanbringarandompopulationonthePareto-optimalfront.Ray–Tai–Seow’salgorithmisalsoabletocomeclosetothefrontonthistestproblem(Fig.17).Figs.18and19showthefeasibleobjectivespaceandtheobtainednondominatedsolutionswithNSGA-IIandRay–Tai–Seow’salgorithm.Here,thePareto-optimalregionisdiscontinuousandNSGA-IIdoesnothaveanydifficultyinfindingawidespreadofsolutionsoverthetruePareto-optimalregion.AlthoughRay–Tai–Seow’salgorithmfoundanumberofsolutionsonthePareto-optimalfront,thereexistmanyinfeasiblesolutionsevenafter500generations.InordertodemonstratetheworkingofFonseca–Fleming’sconstraint-han-dlingstrategy,weimplementitwithNSGA-IIandapplyonTNK.Fig.20shows100populationmembersattheendof500generationsandwithidenticalparametersettingasusedinFig.18.BoththesefiguresdemonstratethattheproposedandFonseca–Fleming’sconstraint-handlingstrategiesworkwellwithNSGA-II. etal.:AFASTANDELITISTMULTIOBJECTIVEGA:NSGA-II Fig.18.ObtainednondominatedsolutionswithNSGA-IIontheconstrainedproblemTNK. Fig.19.ObtainednondominatedsolutionswithRay–Tai–Seow’salgorithmontheconstrainedproblemTNK.etal.[17]haveusedtheproblemWATERintheirstudy.Theynormalizedtheobjectivefunctionsinthefollowing SincetherearefiveobjectivefunctionsintheproblemWATER,weobservetherangeofthenormalizedobjectivefunctionvaluesoftheobtainednondominatedsolutions.TableVIshowsthecomparisonwithRay–Tai–Seow’salgorithm.Inmostobjectivefunctions,NSGA-IIhasfoundabetterspreadofsolutionsthanRay–Tai–Seow’sapproach.Inordertoshowthepairwiseinteractionsamongthesefivenormalizedobjectivefunctions,weplotall orteninteractionsinFig.21forbothalgorithms.NSGA-IIresultsareshownintheupperdiagonalportionofthefigureandtheRay–Tai–Seow’sresultsareshowninthelowerdiagonalportion.Theaxesofanyplotcanbeobtainedbylookingatthecorrespondingdiagonalboxesandtheirranges.Forexample,theplotatthefirstrowandthirdcolumnhasitsverticalaxisas andhorizontalaxisas Sincethisplotbelongsintheuppersideofthediagonal,this Fig.20.ObtainednondominatedsolutionswithFonseca–Fleming’sconstraint-handlingstrategywithNSGA-IIontheconstrainedproblemTNK.plotisobtainedusingNSGA-II.InordertocomparethisplotwithasimilarplotusingRay–Tai–Seow’sapproach,welookfortheplotinthethirdrowandfirstcolumn.Forthisfigure,theverticalaxisisplottedas andthehorizontalaxisisplotted .Togetabettercomparisonbetweenthesetwoplots,weobserveRay–Tai–Seow’splotasitis,butturnthepage90 theclockwisedirectionforNSGA-IIresults.Thiswouldmakethelabelingandrangesoftheaxessameinbothcases.WeobservethatNSGA-IIplotshavebetterformedpatternsthaninRay–Tai–Seow’splots.Forexample,figures - , - ,and - interactionsareveryclearfromNSGA-IIresults.AlthoughsimilarpatternsexistintheresultsobtainedusingRay–Tai–Seow’salgorithm,theconvergencetothetruefrontsisnotadequate.VII.CWehaveproposedacomputationallyfastandelitistMOEAbasedonanondominatedsortingapproach.Onninedifferentdifficulttestproblemsborrowedfromtheliterature,thepro-posedNSGA-IIwasabletomaintainabetterspreadofsolu-tionsandconvergebetterintheobtainednondominatedfrontcomparedtotwootherelitistMOEAs—PAESandSPEA.How-ever,oneproblem,PAES,wasabletoconvergeclosertothetruePareto-optimalfront.PAESmaintainsdiversityamongsolutionsbycontrollingcrowdingofsolutionsinadeterministicandpre-specifiednumberofequal-sizedcellsinthesearchspace.Inthatproblem,itissuspectedthatsuchadeterministiccrowdingcoupledwiththeeffectofmutation-basedapproachhasbeenbeneficialinconvergingnearthetruefrontcomparedtothedy-namicandparameterlesscrowdingapproachusedinNSGA-IIandSPEA.However,thediversitypreservingmechanismusedinNSGA-IIisfoundtobethebestamongthethreeapproachesstudiedhere.Onaproblemhavingstrongparameterinteractions,NSGA-IIhasbeenabletocomeclosertothetruefrontthantheothertwoapproaches,buttheimportantmatteristhatallthreeapproachesfaceddifficultiesinsolvingthisso-calledhighlyepistaticproblem.Althoughthishasbeenamatterofongoing IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002TABLEVIOWERANDOUNDSOFTHEBSERVEDINTHEBTAINEDONDOMINATED Fig.21.UpperdiagonalplotsareforNSGA-IIandlowerdiagonalplotsareforRay–Tai–Seow’salgorithm.Comparei;jplot(Ray–Tai–Seow’salgorithm�ij)withj;iplot(NSGA-II).Labelandrangesusedforeachaxisareshowninthediagonalboxes.researchinsingle-objectiveEAstudies,thispapershowsthathighlyepistaticproblemsmayalsocausedifficultiestoMOEAs.Moreimportantly,researchersinthefieldshouldconsidersuchepistaticproblemsfortestinganewlydevelopedalgorithmformultiobjectiveoptimization.Wehavealsoproposedasimpleextensiontothedefinitionofdominanceforconstrainedmultiobjectiveoptimization.Al-thoughthisnewdefinitioncanbeusedwithanyotherMOEAs,thereal-codedNSGA-IIwiththisdefinitionhasbeenshowntosolvefourdifferentproblemsmuchbetterthananotherre-cently-proposedconstraint-handlingapproach.Withthepropertiesofafastnondominatedsortingprocedure,anelitiststrategy,aparameterlessapproachandasimpleyetefficientconstraint-handlingmethod,NSGA-II,shouldfindin-creasingattentionandapplicationsinthenearfuture.[1]K.Deb,MultiobjectiveOptimizationUsingEvolutionaryAlgo-.Chichester,U.K.:Wiley,2001. ,“Anefficientconstraint-handlingmethodforgeneticalgorithms,”Comput.MethodsAppl.Mech.Eng.,vol.186,no.2–4,pp.311–338, ,“Multiobjectivegeneticalgorithms:Problemdifficultiesandcon-structionoftestfunctions,”inEvol.Comput.,1999,vol.7,pp.205–230.[4]K.DebandD.E.Goldberg,“Aninvestigationofnicheandspeciesfor-mationingeneticfunctionoptimization,”inProceedingsoftheThirdIn-ternationalConferenceonGeneticAlgorithms,J.D.Schaffer,Ed.SanMateo,CA:MorganKauffman,1989,pp.42–50.[5]K.DebandS.Agrawal,“Understandinginteractionsamonggeneticalgorithmparameters,”inFoundationsofGeneticAlgorithmsV,W.BanzhafandC.Reeves,Eds.SanMateo,CA:MorganKauffman,1998,pp.265–286.[6]K.DebandR.B.Agrawal,“Simulatedbinarycrossoverforcontinuoussearchspace,”inComplexSyst.,Apr.1995,vol.9,pp.115–148. etal.:AFASTANDELITISTMULTIOBJECTIVEGA:NSGA-II[7]C.M.FonsecaandP.J.Fleming,“Geneticalgorithmsformultiobjec-tiveoptimization:Formulation,discussionandgeneralization,”inPro-ceedingsoftheFifthInternationalConferenceonGeneticAlgorithms,S.Forrest,Ed.SanMateo,CA:MorganKauffman,1993,pp.416–423. ,“Ontheperformanceassessmentandcomparisonofstochasticmultiobjectiveoptimizers,”inParallelProblemSolvingfromNature,H.-M.Voigt,W.Ebeling,I.Rechenberg,andH.-P.Schwefel,Eds.Berlin,Germany:Springer-Verlag,1996,pp.584–593. ,“Multiobjectiveoptimizationandmultipleconstrainthandlingwithevolutionaryalgorithms—PartI:Aunifiedformulation,”Trans.Syst.,Man,Cybern.A,vol.28,pp.26–37,Jan.1998. ,“Multiobjectiveoptimizationandmultipleconstrainthandlingwithevolutionaryalgorithms—PartII:Applicationexample,”Trans.Syst.,Man,Cybern.A,vol.28,pp.38–47,Jan.1998.[11]D.E.Goldberg,B.Korb,andK.Deb,“Messygeneticalgorithms:Mo-tivation,analysis,andfirstresults,”inComplexSyst.,Sept.1989,vol.3,pp.93–530.[12]G.Harik,“Learninggenelinkagetoefficientlysolveproblemsofboundeddifficultyusinggeneticalgorithms,”llinoisGeneticAlgo-rithmsLab.,Univ.IllinoisatUrbana-Champaign,Urbana,IL,IlliGALRep.97005,1997.[13]J.Horn,N.Nafploitis,andD.E.Goldberg,“AnichedParetogeneticalgorithmformultiobjectiveoptimization,”inProceedingsoftheFirstIEEEConferenceonEvolutionaryComputation,Z.Michalewicz,Ed.Piscataway,NJ:IEEEPress,1994,pp.82–87.[14]J.KnowlesandD.Corne,“TheParetoarchivedevolutionstrategy:Anewbaselinealgorithmformultiobjectiveoptimization,”inProceedingsofthe1999CongressonEvolutionaryComputation.Piscataway,NJ:IEEEPress,1999,pp.98–105.[15]F.Kursawe,“Avariantofevolutionstrategiesforvectoroptimization,”ParallelProblemSolvingfromNature,H.-P.SchwefelandR.Männer,Eds.Berlin,Germany:Springer-Verlag,1990,pp.193–197.[16]C.Poloni,“HybridGAformultiobjectiveaerodynamicshapeoptimiza-tion,”inGeneticAlgorithmsinEngineeringandComputerScience,G.Winter,J.Periaux,M.Galan,andP.Cuesta,Eds.NewYork:Wiley,1997,pp.397–414.[17]T.Ray,K.Tai,andC.Seow,“Anevolutionaryalgorithmformultiobjec-tiveoptimization,”Eng.Optim.,vol.33,no.3,pp.399–424,2001.[18]G.Rudolph,“Evolutionarysearchunderpartiallyorderedsets,”Dept.Comput.Sci./LS11,Univ.Dortmund,Dortmund,Germany,Tech.Rep.CI-67/99,1999.[19]J.D.Schaffer,“Multipleobjectiveoptimizationwithvectorevaluatedgeneticalgorithms,”inProceedingsoftheFirstInternationalConfer-enceonGeneticAlgorithms,J.J.Grefensttete,Ed.Hillsdale,NJ:LawrenceErlbaum,1987,pp.93–100.[20]N.SrinivasandK.Deb,“Multiobjectivefunctionoptimizationusingnondominatedsortinggeneticalgorithms,”Evol.Comput.,vol.2,no.3,pp.221–248,Fall1995.[21]M.Tanaka,“GA-baseddecisionsupportsystemformulticriteriaopti-mization,”inProc.IEEEInt.Conf.Systems,ManandCybernetics-21995,pp.1556–1561.[22]D.VanVeldhuizen,“Multiobjectiveevolutionaryalgorithms:Classifica-tions,analyzes,andnewinnovations,”AirForceInst.Technol.,Dayton,OH,Tech.Rep.AFIT/DS/ENG/99-01,1999.[23]D.VanVeldhuizenandG.Lamont,“Multiobjectiveevolutionaryalgorithmresearch:Ahistoryandanalysis,”AirForceInst.Technol.,Dayton,OH,Tech.Rep.TR-98-03,1998.[24]E.Zitzler,“Evolutionaryalgorithmsformultiobjectiveoptimization:Methodsandapplications,”DoctoraldissertationETH13398,SwissFederalInstituteofTechnology(ETH),Zurich,Switzerland,1999.[25]E.Zitzler,K.Deb,andL.Thiele,“Comparisonofmultiobjectiveevolu-tionaryalgorithms:Empiricalresults,”Evol.Comput.,vol.8,no.2,pp.173–195,Summer2000.[26]E.ZitzlerandL.Thiele,“Multiobjectiveoptimizationusingevolu-tionaryalgorithms—Acomparativecasestudy,”inParallelProblemSolvingFromNature,V,A.E.Eiben,T.Bäck,M.Schoenauer,andH.-P.Schwefel,Eds.Berlin,Germany:Springer-Verlag,1998,pp. KalyanmoyDeb(A’02)receivedtheB.TechdegreeinmechanicalengineeringfromtheIndianInstituteofTechnology,Kharagpur,India,1985andtheM.S.andPh.D.degreesinengineeringmechanicsfromtheUniversityofAlabama,Tuscaloosa,in1989and1991,respectively.HeiscurrentlyaProfessorofMechanicalEn-gineeringwiththeIndianInstituteofTechnology,Kanpur,India.Hehasauthoredorcoauthoredover100researchpapersinjournalsandconfer-ences,anumberofbookchapters,andtwobooks:MultiobjectiveOptimizationUsingEvolutionaryAlgorithms(Chichester,U.K.:Wiley,2001)andOptimizationforEngineeringDesign(NewDelhi,India:Prentice-Hall,1995).Hiscurrentresearchinterestsareinthefieldofevolutionarycomputation,particularlyintheareasofmulticriterionandreal-parameterevolutionaryalgorithms.Dr.DebisanAssociateEditorofIEEETRANSACTIONSONVOLUTIONARYOMPUTATIONandanExecutiveCouncilMemberoftheInternationalSocietyonGeneticandEvolutionaryComputation. AmritPratapwasborninHyderabad,India,onAu-gust27,1979.HereceivedtheM.S.degreeinmath-ematicsandscientificcomputingfromtheIndianIn-stituteofTechnology,Kanpur,India,in2001.HeisworkingtowardthePh.D.degreeincomputerscienceattheCaliforniaInstituteofTechnology,Pasadena,HewasamemberoftheKanpurGeneticAl-gorithmsLaboratory.HeiscurrentlyaMemberoftheCaltechLearningSystemsGroup.Hiscurrentresearchinterestsincludeevolutionarycomputation,machinelearning,andneuralnetworks. SameerAgarwalwasborninBulandshahar,India,onFebruary19,1977.HereceivedtheM.S.degreeinmathematicsandscientificcomputingfromtheIn-dianInstituteofTechnology,Kanpur,India,in2000.HeisworkingtowardthePh.D.degreeincomputerscienceatUniversityofCalifornia,SanDiego.HewasaMemberoftheKanpurGeneticAlgo-rithmsLaboratory.Hisresearchinterestsincludeevo-lutionarycomputationandlearningbothinhumansaswellasmachines.Heiscurrentlydevelopinglearningmethodsforlearningbyimitation. T.MeyarivanwasborninHaldia,India,onNovember23,1977.HeisworkingtowardtheM.S.degreeinchemistryfromIndianInstituteofTechnology,Kanpur,India.HeisaMemberoftheKanpurGeneticAlgorithmsLaboratory.Hiscurrentresearchinterestsincludeevolutionarycomputationanditsapplicationstobiologyandvariousfieldsinchemistry.