/
Undirected Graphical Models Chordal Graphs Decomposabl Undirected Graphical Models Chordal Graphs Decomposabl

Undirected Graphical Models Chordal Graphs Decomposabl - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
444 views
Uploaded On 2015-05-25

Undirected Graphical Models Chordal Graphs Decomposabl - PPT Presentation

October 2003 These notes present some properties of chordal graphs a set of undirected graphs that are important for undirected graphical models De64257nitions We consider undirected graphs VE where is the vertex set and the edge set is a set of ID: 74383

October 2003 These notes

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Undirected Graphical Models Chordal Grap..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Avertexissimplicialinagraphifitsneighborsformacompletesubgraph.Agraphisrecursivelysimplicialifitcontainsasimplicialvertexvandwhenvisremovedthesubgraphthatremainsisrecursivelysimplicial.EquivalenceTheoremTheorem1.ThefollowingpropertiesofGareequivalent.1.Gischordal.2.Gisdecomposable.3.Gisrecursivelysimplicial.4.Ghasajunctiontree.Weshallpresenttheproofasaseriesoflemmas(1=)2=)3=)4=)1).Lemma1.GischordalimpliesGisdecomposable.Proof.Weprovebyinductionthateverychordalgraphwithnverticesisde-composable.Thisistriviallytrueforn=1.Ifitistrueforanyn,thenthefollowingargumentshowsthatitistrueforagraphGwithn+1vertices.Step1:IfGiscomplete,itisdecomposable.SosupposethatGisnotcomplete.Step2:WecanexpressVasthedisjointunionV=A[B[S,whereSseparatesAfromBinGandA;Barenonempty.Indeed,sinceGisnotcomplete,Vcontainsa;bthatarenotneighbors.LetSVbeaminimalsetthatseparatesafromb.(NoticethatSmightbeempty).LetAbethesubsetofV�SconnectedtoabysomepathinV�S,andletBbetheremainder,B=V�S�A.Clearly,SseparatesAfromBinG.Step3:Siscomplete.3a:WemayassumethatShascardinalityatleast2,forotherwiseitistriviallycomplete.3b:Foranytwodistinctnodesu;vinS,therearepathsu;a1;:::;an;vandu;b1;:::;bm;vwithai2A,bi2Bandn;m1.Indeed,sinceSwasaminimalsetthatseparatesafromb,theremustbeapathfromatouandfromatov,sincetheabsenceofoneofthesepathswouldimplythatSwasnotminimal.3c:uandvareneighbors.Toseethis,takethepathfromutovthroughAthathasminimallength,andsimilarlythepathfromutovthroughBofminimallength.Thispairofpathsformsacycle,whichmusthaveachord.Toseethatthechordmustbebetweenuandv,noticethattheminimalityofthepathsimpliesthatthechordcannotbebetweenverticesthatarebothinA,norcanitbebetweenverticesthatarebothinB.Inaddition,thefactthatSseparatesAfromBimpliesthechordcannotbebetweenavertexinAandoneinB.Step4:ThesubgraphsinducedbyA[SandB[Sarechordal.Indeed,ifoneofthesesubgraphscontainsachordlesscycle,thensodoesG.2 Assumingthatthestatementistrueforsomevalueofn,consideragraphwithajunctiontreeTcontainingn+1nodes.FixaleafCofT,andletC0betheneighborofCinT,andletT0bethetreethatremainswhenCisremoved.Step1:IfCC0,thenT0isajunctiontreeforG.Step2:Ontheotherhand,ifC\C0C,removingthenonemptysetR=C�C0fromVleavesasubgraphG0thatischordal.Toseethis,noticethatRhasanemptyintersectionwitheverycliqueinT0.ItiseasytoseethatT0isajunctiontreeforG0,andsoG0ischordal.Step3:ItfollowsthatGcontainsnochordlesscycles.Indeed,ifacycleisentirelyinG0,itisnotchordless.Ifthecycleisentirelyinthecompletesubgraphde nedbyC,itisnotchordless.IfthecycleintersectsR,C\C0,andV�C,thensincethesubgraphde nedbyC\C0iscomplete,thecyclehasachord. UndirectedgraphicalmodelswithchordalgraphsTheorem2.ThefollowingpropertiesofGareequivalent.1.Gischordal.2.ThereisaneliminationorderingforwhichthegraphGisa xedpointoftheUndirectedGraphEliminatealgorithm.3.ThereisanorientationoftheedgesofGthatgivesadirectedacyclicgraphwhosemoralgraphisG.4.Thereisadirectedgraphicalmodelwithconditionalindependenciesiden-ticaltothoseimpliedbyG.Wesketchtheproofoftheseimplications.De neasimplicialvertexsequenceasanorderingofthenodesofarecursivelysimplicialgraphthatexhibitstherecursivelysimplicialityofthegraph.Thatis,asweprogressivelyremovethenodesinthisorder,thenextnodeintheorderissimplicialintheremainingsubgraph.Eliminationordering:Eliminatinganodeleavesthegraphunchangedi thenodeissimplicial.Thus,theexistenceofaneliminationorderingthatleavesthereconstitutedgraphidenticalisequivalenttotheexistenceofasimplicialvertexsequence.DAGwithsamemoralgraph:GivenarecursivelysimplicialgraphG,wecanconstructaDAGGDasfollows.Fixasimplicialvertexsequence(v1;:::;vn)forG.De neG1=G.Atstept,addvtanditsneighborsinGttoGD(iftheyarenotalreadypresent),andaddthecorrespondingedgestoGDsothattheyaredirectedtowardsvt.ThensetGt+1tothesubgraphofGtthatremainswhenvtisremoved.ItisclearthatGDisacyclic,sincetheedgesaredirectedina xedorder.Also,byconstruction,themoralgraphrequiresnoadditionaledges.4 ReferencesTheclassicpaperonthegraph-theoreticequivalencespresentedhereisC.Beeri,R.Fagin,D.Maier,andM.Yannakakis,Onthedesirabilityofacyclicdatabaseschemes,JournaloftheACM,30(3):479{513,July1983.SeealsoJ.Pearl,ProbabilisticReasoninginIntelligentSystems,MorganKaufmann,1988.AndChapters16and17ofthetext,M.Jordan,AnIntroductiontoProbabilisticGraphicalModels.6