/
IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL

IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL - PDF document

alida-meadow
alida-meadow . @alida-meadow
Follow
487 views
Uploaded On 2014-12-13

IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL - PPT Presentation

49 NO 8 AUGUST 2004 Cooperative Control of Mobile Sensor Networks Adaptive Gradient Climbing in a Distributed Environment Petter 57558gren Member IEEE Edward Fiorelli Member IEEE and Naomi Ehrich Leonard Senior Member IEEE Abstract We present ID: 23305

AUGUST

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON AUTOMATIC CONTROL V..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.49,NO.8,AUGUST2004CooperativeControlofMobileSensorNetworks:AdaptiveGradientClimbinginaDistributedEnvironmentPetterÖgren,Member,IEEE,EdwardFiorelli,Member,IEEE,andNaomiEhrichLeonard,SeniorMember,IEEEWepresentastablecontrolstrategyforgroupsofvehiclestomoveandreconÞgurecooperativelyinresponsetoasensed,distributedenvironment.Eachvehicleinthegroupservesasamobilesensorandthevehiclenetworkasamobileand etal.:COOPERATIVECONTROLOFMOBILESENSORNETWORKSeachindividualinthegroupusescontrolforcesthatderivefrominter-vehiclepotentialssimilartothoseusedtomodelnaturalswarms[10],[20].Theseprovidegroupcohesionandhelppreventcollisions.Theframeworkisbasedonthatpresentedin[16].Thisframeworkleadstodistributedcontroldesignsinwhicheachvehiclerespondstoitslocalenvironment.Noorderingofvehiclesisnecessaryandthisprovidesrobustnesstovehiclefailuresorotherchangesinthenumberofoperatingvehicles.Toaccomplishthedecouplingoftheformationstabilizationproblemfromtheoverallperformanceofthenetworkmission,weintroducetothegroupavirtualbody.Thevirtualbodyisacollectionoflinked,movingreferencepoints.Thevehiclegroupmoves(andrecongures)withthevirtualbodybymeansofforcesthatderivefromarticialpotentialsbetweenthevehiclesandthereferencepointsonthevirtualbody.Thevirtualbodycantranslateandrotateinthree-dimensionalspace,expandandcontract.Thedynamicsofthevirtualbodyaredesignedintwosteps.Inonestep,extending[21],weregulatetheofthevirtualbodyusingafeedbackformationerrorfunctiontoen-surestabilityandconvergencepropertiesoftheformation.Intheotherstep,weprescribethedirectionofmotionofthevirtualbodytoaccomplishthedesiredmission,e.g.,adaptivegradientclimbinginadistributedenvironment.Thedevelopmentof[21]concernscoordinationalongprespeciedtrajectories.Theprescriptionofvirtualbodydynamicsrequiressomecentralizedcomputationandcommunication.Eachvehicleinthegroupcommunicatesitsstateandeldmeasurementstoacentralcomputerwheretheupdatedstateofthevirtualbodyiscomputed.Thecongurationofthevirtualbodyiscommunicatedbacktoeachvehicleforuseinitsownlocal(decentralized)controllaw.ThisscenariowasmostpracticalintheAOSN-IIexperimentbecausethegliderssurfacedregularlyandestablishedtwo-waycommunicationwiththeshorestation.Forgradientclimbingtasks,thegradientofthemeasuredeldisapproximatedatthevirtualbodyspositionusingthe(noisy)dataavailablefromallvehicles.Centralizedcomputa-tionisused.Wepresentaleast-squaresapproximationofthegradientandstudytheproblemoftheoptimalformationthatminimizesestimationerror.WealsodesignaKalmanlterandusemeasurementhistorytosmoothouttheestimate.Ourframeworkmakesitpossibletopreservesymmetrywhenthereislimitedcontrolauthorityinadynamicenvironment.Forexample,inthecaseofunderwaterglidersinastrongthegroupcanbeinstructedtomaintainauniformdistributionasneeded,butbefreetospin,andpossiblywiggle,withtheOfequalimportancearetheconsequencesofdelays,asyn-chronicity,andotherreliabilityissuesincommunications.In[17],forexample,stabilityofchain-likeswarmsisconsid-eredinthepresenceofsensingdelaysandasynchronism.Weassumeinthispaperthatthecommunicationissynchronizedandcontinuous(theimplementationintheMontereyBayex-perimentwasmodiedtoaddressthesekindsofrealities[9]).Wenotethatcentralizedcomputationmaybecomeburden-someforlargegroupsofvehicles,e.g.,whenaddressingthenonconvexoptimizationofformationsforminimizationofes-timationerror.cialpotentialswereintroducedtoroboticsforobstacleavoidanceandnavigation[13],[29].Inthemodelingofanimalaggregations,forcesthatderivefrompotentialsareusedtonelocalinteractionsbetweenindividuals(see[23]andthereferencestherein).Inrecentworkalongtheselines,theauthorsof[10]and[20]investigateswarmstabilityundervariouspotentialfunctionproles.Articialpotentialshavealsorecentlybeenexploitedtoderivecontrollawsforautonomous,multiagent,roboticsystemswhereconvergenceproofstodesiredgurationsareexplicitlyprovided(see,forexample,[19],[16],[24],and[31]).Translation,rotationandexpansionofagroupistreatedin[33]usingasimilarnotionofavirtualrigidbodycalledavirtualstructurewhichhasdynamicsdependentonaformationerrorfunction.However,theformationcontrollawsandthedynamicsofthevirtualstructuredifferfromthosepresentedhere,andanorderingofvehiclesisimposedin[33].Gradientclimbingwithavehiclenetworkisalsoatopicofgrowinginterestintheliterature(see,forexample,[2]and[10]).In[18],gradientclimbingisperformedinthecontextofdistributingvehiclenetworksaboutenvironmentalboundaries.In[6],theauthorsuseVoronoidiagramsandaprioritionaboutanenvironmenttodesigncontrollawsforavehiclenetworktooptimizesensorcoveragein,e.g.,surveillanceThepaperisorganizedasfollows.InSectionII,wereviewtheformationframeworkof[16]basedonarticialpotentialsandvirtualleaders.FormationmotionisintroducedinSectionIIIandthepartiallydecoupledproblemsofformationstabilizationandmissioncontrolaredescribed.Themaintheoremforforma-tionstabilizationispresentedinSectionIV.AdaptivegradientclimbingmissionsaretreatedinSectionV.Weprovidenalre-marksinSectionVI.Anearlierversionofpartsofthispaperappearedin[22].II.ARTIFICIALOTENTIALSIRTUALODIESANDYMMETRYInthissection,wedescribetheunderlyingframeworkfordis-tributedformationcontrolbasedonarticialpotentialsandavir-tualbody.Theframeworkfollowsthatpresentedin[16](withsomevariationinnotation).Eachvehicleinthegroupismod-eledasapointmasswithfullyactuateddynamics.Extensiontounderactuatedsystemsispossible.In[14],theauthorsusefeed-backlinearizationtotransformthedynamicsofanoff-axispointonanonholonomicrobotintofullyactuateddoubleintegratorequationsofmotion.Letthepositionofthe thvehicleinagroupof vehicles,withrespecttoaninertialframe,begivenbyavector , asshowninFig.1.Thecontrolforceonthe vehicleisgivenby .Thedynamicsare for Weintroduceawebof referencepointscalledleadersanddenethepositionofthe thvirtualleaderwithre-specttotheinertialframetobe ,for Assumethatthevirtualleadersarelinked,i.e.,letthemformvirtualbody.Thepositionvectorfromtheoriginoftheiner-tialframetothecenterofmassofthevirtualbodyisdenoted ,asshowninFig.1.In[16],thevirtualleadersmove IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.49,NO.8,AUGUST2004 Fig.1.Notationforframework.Solidcirclesarevehiclesandshadedcirclesarevirtualleaders.withconstantvelocity.Inthissectionwespecializetothecaseinwhichallvirtualleadersareatrest.MotionofthevirtualbodywillbeintroducedinSectionIII. and .Betweeneverypairofvehicles and wedeneanarticialpotential whichdependsonthedistancebetweenthe thand vehicles.Similarly,betweeneveryvehicle andeveryvirtual wedeneanarticialpotential whichdependsonthedistancebetweenthe thvehicleand thvirtualleader.Thecontrollaw isdenedasminusthegradientofthesumofthesepotentialsplusalineardampingterm (II.1)where isapositivenitematrix.Weconsidertheformofpotential thatyieldsaforcethatisrepellingwhenapairofvehiclesistooclose,i.e.,when ,attractingwhenthevehiclesaretoofar,i.e.,when andzerowhenthevehiclesareveryfarapart ,where and areconstantdesignparameters.Thepo- isdesignedsimilarlywithpossiblydifferentdesign and (amongothers),seeFig.2.Eachvehicleusesexactlythesamecontrollawandisinencedonlybynearneighborvehicles,i.e.,thosewithinaballof ,andnearbyvirtualleaders,i.e.,thosewithinaballof .Theglobalminimumofthesumofalltheartipotentialsconsistsofacongurationinwhichneighboringve-hiclesarespacedadistance fromoneanotherandadistance fromneighboringvirtualleaders.In[16],wediscussfurtherhowtodeneavirtualbodyforcertainvehicleformations.Forexample,thehexagonallatticeformationshowninFig.3isanequilibriumfor ,and Theglobalminimumwillexistforappropriatechoiceof and ,butitwillnotingeneralbeunique.FortheexampleofFig.3,thelatticeisattheglobalminimum;however,itisnotuniquesincethereisrotationalandtranslationalsymmetryoftheformationanddiscretesymmetries(suchaspermutationsofthevehicles).Translationalsymmetryofthegroupresultsbecausethepotentialsonlydependuponrelativedistance.The Fig.2.Representativecontrolforcesderivedfromarticialpotentials. Fig.3.Hexagonallatticeformationwithtenvehiclesandonevirtualleader. Fig.4.Equilibriumsolutionsforaformationintwodimensionswithtwovehicles.(a)Withonevirtualleaderthereis symmetryandafamilyofsolutions(twoareshown).(b)Withtwovirtualleadersthe symmetrycanbebrokenandtheorientationofthegroupxed.rotationalsymmetrycan,ifdesired,bebrokenwithadditionalvirtualleadersasshowninFig.4.Itissometimesofinteresttohavetheoptionofbreakingsym-metryornot.Breakingsymmetrybyintroducingadditionalvir-tualleaderscanbeusefulforenforcinganorientation,butitmaymeanincreasedinputenergyfortheindividualvehicles.Undercertaincircumstances,itmaynotbefeasibletoprovidesuchinputenergyandinsteadmorepracticaltosettleforagroupshapeandspacingwithoutaprescribedgrouporientation.Wedenethestateofthevehiclegroupas .In[16],localasymptoticstability correspondingtothevehiclesatrestattheglobalminimumofthesumofthearticialpotentialsisprovedwiththeLyapunovfunction III.FORMATIONOTIONRANSLATIONOTATIONXPANSIONInthissection,weintroducemotionoftheformationbypre-scribingmotionofthevirtualbody.Thismotioncanincludetranslation,rotation,expansionandcontractionofthevirtualbodyand,therefore,thevehicleformation.Byparameterizingthevirtualbodymotionbythescalarvariable ,weenableadecouplingoftheproblemofformationstabilizationfromthe etal.:COOPERATIVECONTROLOFMOBILESENSORNETWORKSproblemofformationmaneuveringandmissioncontrol.InSec-tionIV,weprescribethevirtualbodyspeed whichde-pendsonafeedbackofaformationerror(seealso[21]),andweproveconvergencepropertiesoftheformation.InSectionIV,weprescribethedirectionofthevirtualbodymotion,e.g., forgradientclimbinginadistributedenvironmentandproveconvergencepropertiesofthevirtualbody,andthusthevehiclenetwork,toamaximumorminimumoftheenvironmentalA.TranslationandRotationThestabilityproofof[16]isinvariantwithrespectto actiononthevirtualbody.Thissimplymeansthattheframe-workdescribedinSectionIIisindependentofthepositionandorientationofthevirtualbody.Giventhepositions ofthevir-tualleaders,theSE(3)actionproducesanothersetofvirtualleaderpositions where .Thisactioncanbeviewedasxingthepositionsofthevirtualleaderswithrespecttoavirtualbodyframeandthenmovingthevirtualbodytoanyarbitrarycongurationin Weexploitthissymmetrybyprescribingatrajectoryofthevirtualbodyin ,whichweparameterizeby suchthat with the3 3identitymatrix.Here, ,istheinitialpositionofthe thvirtualleaderwithrespecttoavirtualbodyframeorientedastheinertialframebutwithoriginatthevirtualbodycenterofmass.B.ExpansionandContractionWesimilarlyobservethattheframeworkofSectionIIisin-varianttoascalingofalldistancesbetweenthevirtualleadersandalldistanceparameters ,byafactor .Wedenethecongurationspaceofthevirtualbodytobe andexploitthisadditionalsymmetrybyintroducingaprescribedtrajectoryofthevirtualbodyin ,againparameterizedby ,whichnowincludesexpansion/contraction: suchthat (III.3)with and C.RetainedSymmetriesAsdiscussedinSectionII,itmaybedesirabletokeepcer-tainsymmetrieswhilecontrollingtheformation.Inthespecialcasewherethevirtualbodyisapointmass,rotationalsymmetrywouldbepreservedwhiletranslationalsymmetriesarebroken.Moregenerally,certainsymmetriescanbekeptbyallowingthevehiclestoinuencethevirtualleaderdynamics;see[22]forD.Sensor-DrivenTasksandMissionTrajectoriesAthirdmaneuvercontroloption,distinctfromprescribedtrajectoriesandfreevariables,istolettranslation,rotation,ex-pansion,andcontractionevolvewithfeedbackfromsensorsonthevehiclestocarryoutamissionsuchasgradientclimbing.Thisresultsinanaugmentedstatespaceforthesystemgiven .However,itisonlythedirectionsandnotthemagnitudeofthevirtualbodyvectoreldsthatwecanin isprescribedtoenforceformationstability.Toseethisdecouplingofthemissioncontrolproblemfromthefor-mationstabilizationproblem,notethatthetotalvectoreldsforthevirtualbodymotioncanbeexpressedas Theprescriptionof ,giveninSectionIV,controlsthespeedofthevirtualbodyinordertoguaranteeformationstabilityandconvergenceproperties.ForthemissioncontrolproblemSec-tionV,wedesignthedirections and IV.SPEEDOFRAVERSALANDORMATIONTABILIZATIONWenowexplorehowfastthesystemcanmovealongatrajec-torywhileremaininginsidesomeuserdenedsubsetofthere-gionofattraction.InTheorem4.1,weprovethatthevirtualbodytraversingthetrajectory from to withspeedprescribedby(IV.4)willguaranteetheformationtoconvergetothenaldestinationwhilealwaysremaininginsidetheregionofattraction,formulatedasanupperbound theLyapunovfunction .Here,wewillbeinterestedintheLyapunovfunction ,[21],thatextendstheLyapunov givenby(II.2)where and arereplaced and accordingto(III.3).A.ConvergenceandBoundednessTheorem4.1(ConvergenceandBoundedness): beaLyapunovfunctionforeveryxedchoiceof with .Let beadesiredupperboundonthevalueofthisLyapunovfunctionsuchthattheset isbounded.Let beanominaldesiredformationspeedand asmallpositivescalar.Let beacontinuousfunc-tionwithcompactsupportin and Iftheendpointisnotreached, ,let begivenby (IV.4)withinitialcondition .Attheendpointandbeyond, ,set .Then,thesystemisstableandasymptoticallyconvergesto .Furthermore,ifatinitial ,then forall Proof::Wedirectlyhave IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.49,NO.8,AUGUST2004 weget .If,ontheother ,weget (IV.5)Now,assumethat .Thisgives and .Thus Therefore,if then alongtrajecto-riesinbothcases.Thus, forall if AsymptoticStability:Lettheextendedstateofthesystem ,and Since and ,thelimit exists.Bytheboundednesspropertyof , isinvariantandbounded.Thus,on the -limitset exists,isinvariant .For ,wemusthave and,therefore, .Wewillnowshowthat isthelargestinvariantsetin and,therefore, . impliesthat isaLyapunovfunctionwithre-spectto (since xed).Thus,everytrajectorycandidate ,where .Thisimplies(bythechoiceof in(IV.4))that (duetothe term,un- wherethetrajectoryiscompletedandwelet halt).Therefore, istheonlyinvariantsetin .Thus, andthesystemisasymptotically Simulationofatwo-vehicleplanarrotationusingavirtualbodyconsistingoftwovirtualleaders[asshowninFig.4(b)]ispresentedin[22].Remark4.2:Atypicalchoiceof is if if Here, guaranteeingasymptoticstabilityandgiving at . becauseofthemin-operatorin(IV.4).Itssupportislimitedto ,thusnotaffecting property.Remark4.2:IftheLyapunovfunction islocallypositiveniteanddecresentand islocallypositivedenite,thenonecanndaclass function suchthat Inthiscase,strongerresultscanbeproved,asin[21].V.GLIMBINGINAISTRIBUTEDNVIRONMENTInthissection,wepresentourstrategyforenablingthevehiclegrouptoclimb(ordescend)thegradientofanoisy,distributedenvironment.WeassumethattheÞeldisunknownapriori,butcanbemeasuredbythevehiclesalongtheirpaths.Inourframework,thevirtualbodyisdirectedtoclimbthegradientestimatedfromallthe(noisy)measurements.Thevehiclesmovewiththevirtualbodytoclimbthegradient.Wecomputealeast-squaresapproximationofthegradientof usingnoisymeasurements fromasinglesensorpervehicle.Wealsostudytheoptimalformationproblemtomini-mizeerrorinthegradientestimate.Inthecaseofgradientde-scent,wherethegradientisestimatedtobe ,weprescribe sothatthevirtualbodymovesinthedirectionofsteepestde-scent.(Forgradientclimbing,weuse .)Usingthissetupandourleast-squaresestimatewithKalmanltering,weproveconvergencetoasetwherethemagnitudeofthegradientisclosetozero,thuscontainingallsmoothlocalminima.Givenacomputedoptimalintervehiclespacing,wecanalsoadapttheresolutionofourgrouptobestsortoutthesignalfromthenoise.Forinstance,onewouldexpecttowantatighterformation,forincreasedmeasurementresolution,wherethescalar variesgreatly.Givenadesiredintervehicle ,wecouldlet evolveaccordingto ,with ascalarconstantand theinitialinter-vehicleequilibriumdistance,seeFig.2.The canbetakeneitherfromtheclosed-formanalysisinLemma5.3orfromanumericalsolutionoftheoptimizationproblem(V.7)inLemma5.2.Wedescribeanalternateapproachtogradientestimationusingthegradientoftheaveragevalueoftheeldcontainedwithinaclosedregion.Asshownin[32],thisaveragecanbeexpressedasafunctionoftheeldvaluesalongonlytheboundaryoftheclosedregion.Wepresentacaseinwhichthisapproachisequivalenttotheleast-squaresapproach;thiselucidateswhenwecanviewtheleast-squaresestimateasanaveragingprocess.A.LeastSquaresandOptimalDistancesFixacoordinateframetotheformationatthecenterofmass ofthevirtualbodydepictedinFig.1,andletthepositionofthe thvehiclebethevector or ,inthisframe.Givenisasetofmeasurements where isasingle,possiblynoisymeasurement,taken etal.:COOPERATIVECONTROLOFMOBILESENSORNETWORKSbythe thvehicleatitscurrentposition .Weseektoesti- ,i.e.,thetruegradientandvalue ofthescalar .(Notethat iscompletelydifferentfromthe usedabovetorepresentthevehiclegroupstate.)Tondtheestimatewemakeanaf oftheeld,andthenuse .Wecalculate and usingaleast-squaresfor-mulaandcalltheestimate Lemma5.1(Least-SquaresEstimate):Thebest,inaleast-squaressense,approximation ofacontinuouslydifferentiablescalar fromasetofmeasurements atpositions givenby ...... Itisassumedthatthe saresuchthat hasfullrank.Fur-thermore,theerrorduetosecond-ordertermsandmeasurementnoisecanbewritten where ... ... .. ... ismeasurementnoiseand istheHessianoftheProof:ATaylorexpansionaroundtheorigintogetherwithanassumedmeasurementnoise ateachpointgivesthemea-suredquantity Ignoringthehigherordertermsandwritingtheequationsinma-trixformweget .Applyingtheleastsquaresestimate[30],minimizing ,weget yieldingtheestimationerror Remark5.1:Notethatifthemeasurements aretobeusefulforestimating ,thenthedistances besmallenoughtomakethelowerordertermsintheTaylorexpansiondominate.Toformulatetheoptimalformationproblem,wemovetoastochasticframeworkanddenethestochasticvariables ,and correspondingtothedeterministic (measurementerror)and (combinedmeasurementandhigherordertermserror).Let ,i.e., Gaussianwithzeromeanandvariance .Sincethesecondderivativeoftheeldingeneralisunknownandhardtoestimatewell(fromnoisymeasurements),wereplaceitwithastochasticscalarvariabletimesamatrix, ,where and isaveryroughestimateoftheHessian .Welet beafunctionof and Lemma5.2(OptimalFormationProblem):Viewtheesti-mateerrorasastochasticvariable ... . . ... Let ,where pendson asinLemma5.1.Theexpectedvalueofthesquareerrornormis (V.6)Anoptimalformationgeometryproblemcannowbeformulated (V.7)Proof:FromLemma5.1,wedirectlyhave Further, giving since and areuncorrelated. Remark5.2:Onecanarguethat .Thisgivesaslightlydifferentexpression,butthenumericalresultsaresim-ilar. canbearguedtoincorporateuncertainhigherorderterms.Inthiscase, isnotsomucharoughHessianestimateasanestimateofwhichdirectionshavelargehigherordertermsingeneral.Remark5.3:Ifthesymmetryisbrokenbythedemandsonsensing,i.e.,anirregularformationshapeisrequired,thenthecontrollawmustbreakthesymmetryaswell.Forexample,anorderingofvehiclescouldbeimposedandthedifferentvaluesoftheparameters ,etc.,communicatedtothedifferentvehicles.Theaforementionedoptimizationproblemisnonconvexandthereforenumericallynontrivial,i.e.,standardalgorithmsonlyachievelocalresults.Examinationofthoseresults,however,re-vealsaclearpatternofregularpolyhedra(deformedif aroundtheoriginwithsizedependenton and .Resultsforthetwo-dimensionalcasewiththreetoeightvehiclescanbefoundinTableI.Forlargernumbersofvehiclestheminimiza-tionalgorithmterminatesinlocalminimadifferentfromregularInthethree-dimensional,four-vehicle,casewegetanequilat-eraltetrahedron.Thescalinganddeformationeffectsof IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.49,NO.8,AUGUST2004TABLEIESULTSFORI;  areinvestigatedinclosedformforanonsymmetricspe-cialcaseinLemma5.3.Toillustratenonconvexityofproblem(V.7)welookatthelocalminimumcorrespondingtoanequilateraltriangle.Fixingthepositionsoftwoofthevehiclesandplottingtheobjectivefunctionasthepositionofthethirdoneisvaried,wegetthesurfaceofFig.5.Notehowtheerrorincreaseswhenallthreevehiclesarealigned.Forabetterunderstandingof dependence,wecon-sideraspecialcasewithrestrictedtwo-dimensionalgeometryandinvestigatetheclosed-formgradientapproximationerrorandoptimaldistancesindetail.Lemma5.3(OptimalFormation:Three-VehicleCase):Inthetwo-dimensionalcasewiththreevehiclesat and ,wegetthefamiliar,nite-differenceapproximationestimate Theestimationerrorvarianceisfurthermore (V.8)whichisminimizedbychoosing (V.9)Proof:For Wenowhave Lookingattheerrors,weget Evaluating accordingto(V.6)gives(V.8).Settingthepartialderivativesof(V.8)withrespect and tozeroweget(V.9). Remark5.4:Theexpressionsfortheoptimalchoiceof and impliesthefollowingreasonableruleofthumbfordifferentnumbersofvehicles:whenthenoise,i.e., ,increasesthenthedistancebetweenvehicles shouldincreaseandwhenthesecondderivative,i.e., ,increasesthen shoulddecrease.B.KalmanFilterToadditionallyimprovethequalityofthegradientestimates,weuseaKalmanlterandthustakethetimehistoryofmea-surementsintoaccount.Usingthesimplestpossiblemodelofthetimeevolutionofthetruequantities, ,wegetanobserverdrivingtheestimationtowardthemomentaryleastsquaresesti- Lemma5.4(KalmanFilterEstimate):Letthetimeevolutionofthetruegradientandscalar ,andthe ,begivenbythelinearsystem where and arewhitenoisevectors, isascalarand isgiveninLemma5.1. sothat and .Then,thetimeevolutionoftheoptimalestimate is (V.10)If,ontheotherhand,weusethesimplernoisemodel where istheidentitymatrixand .Then,(V.10)simpliesto (V.11)Proof:Foragenerallinearsystem, ,thesteady-stateKalmanlter[28]is Letting and weget(V.10).Plugging intothismakes whichisequivalentto(V.11). Remark5.5: theKalmanlterestimateisdriventowardthemomentaryLeastSquaresestimate, .Thespeedofthismotionisproportionalto (since );fasterif changesfast,i.e.,large ,andslowerifthereisalotofmea-surementnoise,i.e.,large . etal.:COOPERATIVECONTROLOFMOBILESENSORNETWORKS Fig.5.Nonconvexity.Thepositionsoftwovehicles, andp ,arexedintheoptimaltriangularformationat (0:9;0:p ,andthepositionofthethirdvehicle isvariedwhileevaluating .Notehowhaving closetothelinethrough andp givesalargeerrorduetothelossofrankof .Duetothissingularity,log(isplotted.C.ConvergenceToinvestigatehowclosetheformationdescendingthegra-dientwillgettothetruelocalminimuminthemeasuredrsttranslatethequanticationoftheestimationerrorbacktoadeterministicframeworkandtheninvestigatethesizeoftheestimationerror.nition5.1:Letthefunction beimplicitlydenedbytheequation where istheprobabilitydensityfunction[4]for Theintegrationisin and isthe partofthecovariancematrix ,i.e., Remark5.6:Notethat andthatitismonoton-icallyincreasingin .Italsoincreaseswithascalarresizingof . shouldbeinterpretedasacondencelevelinthegradientestimate.Forexample,ifonesets ,thenwith99.9% Assumption1(StochastictoDeterministic):Inordertomovebacktoaframework,welettheupper onthegradientestimationerrorbegivenbythe nedpreviouslyintermsofthecovariance andthecondencelevel .Thatis,weassumethat hasbeenchosenlargeenoughsothatitisreasonabletoignore %worstcaseswhenstudyingthelongtermevolutionofthedynamics.Weproceedundertheassumption Theorem5.1(Convergence):Lettheformationbegivenbyasetofvectors .Furthermore,usetheeldmeasurementsatthesepoints tocalculateanestimate ,fromLemma5.4.IfAssumption1holds, iscontinuouslydiffer-entiableandboundedbelowandthedirectionofmotionofthevirtualbodyissetto ,thenthevirtualbodyposition willconvergetoaset Here, denotesthematrixsquarerootand isanarbitrarysmallpositivescalar.Remark5.7: iscontinuouslydifferentiable,the containsalllocalminima. growswithincreasednoiselevel andincreasedcondencelevel .Larger alsoimpliesalargerset butasshownlateryieldsfasterconvergenceto ProofofTheorem:Weusethenotation ,where iscalculatedfrom .Since wecanuse asaLyapunovfunction.Thismakes IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.49,NO.8,AUGUST2004InTheorem4.1itwasshownthat convergestotheusernedendpoint .Therefore,ifwecan suchthat (V.12)outsidetheregion andchoose bigenough,thenthetrajec-torymustconvergeto .Toseethiswechoose ,where isalowerboundon and . convergingto nowimpliesthat convergesto ,(since ),orenters wheretheboundisnotvalid.Converging howeverimpliesconvergingtoaglobalminimum,whichbythepreviousremarkmustbein .Thus,weneedtoshowthatthebound(V.12)isindeedvalidoutside .Letting withthebound weget Outsideof ,weget implying andwecanchoose .Asarguedabovethismakesthevehiclesconvergeto . Remark5.8:Inthis,wehaveassumedthe stobeconstant.Thisis,however,notthecaseinmanyapplications.Dependingonthemagnitudeofthedeviationsonecaneitherletthembeac-countedforbythesensornoise, ,ormakethe matrixtimedependent.Thelastoptionrequiresanonsteady-stateKalmanltermakingtheequationsabitlonger.The usedinAssump-tion1mustfurthermorebereplacedbyanupperboundon D.Gradient-of-the-AveApproximationMotivatedbytheproblemofgradientclimbinginanoisyenvironment,weexamineinthissubsectionanalternativeapproachtogradientestimation:wecomputethegradientofanaverageofthescalarenvironmentaleldvalues(measurements)overaclosedregion.Thisgradientisformulatedasanintegraloveracontinuoussetofmeasurementsandisapproximatedusingthenitesetofmeasurementsprovidedbythevehiclegroup.Wefocusonshowingthatforaparticularchoiceofdiscretization,i.e.,numericalquadrature,andforcertaindistributionsofvehiclesoveracirclein andasphere ,thisgradient-of-the-averageestimateisequivalenttotheleast-squaresestimate.TheclassofvehicleformationsforwhichthisequivalenceholdsincludestheoptimalformationscomputedinSectionV-A.Theaverageofascalar ,insideadiscofradius givenby where isthediscofradius centeredat Foragradientclimbing(ordescent)problem,weseekthegradientof withrespectto .Inviewofourdiscex-ample,wecanview asspecifyingthebestdirectiontomovethecenterofthediscsoastomaximize(minimize)theaverageof over .AsshownbyUryasev[32],thisgradientcanbewrittenas where istheboundaryof Supposewearegivenonly noisymeasurements of atpoints ,i.e.,onefromeachvehicle.Wecanap-proximatetheaforementionedintegralusingnumericalquadra-ture.Considerthecaseinwhichthe vehiclesareuniformlydistributedovertheboundary.Usingthecompositetrapezoidal,weobtain where ,i.e.,themeasurementlocationrelativeto ,and .Changingcoordinatessuchthattheorigincoincideswith (V.13)Similarly,tocomputethegradientoftheaveragevalueof withinaballofradius in ,weobtain (V.14)forvehicledistributionsthatpermit equalareapartitionsofthespherewitheachvehiclelocatedatacentroidofapartition,andwhereallvehiclesdonotlieonthesamegreatcircle.Lemma5.5(LeastSquaresEquivalence): vehi-clesin .Supposefor thatthevehiclesareuniformlydistributedaroundacircleofradius .Supposeinthecase thatthevehiclesaredistributedoverasphereofradius suchthattheformationpartitionsthesphereintoequal-areasphericalpolygons,whereeachvehicleislocatedatacentroid,andallvehiclesdonotlieonthesamegreatcircle. ,thepositionvectorofthe thvehiclerelativetothecenterofthecircleorsphere.Eachvehicletakesanoisymeasurement .De where isthe thcoordinateof Assumethatthegroupgeometrysatis and where and for for and isthestandardinnerproducton .Then,theleastsquaresgradientestimateisequivalenttothegradient-of-the-averageestimateasgivenin(V.13)and(V.14).Proof:Aproofisonlypresentedforformationsin ;theresultin followsanalogously. etal.:COOPERATIVECONTROLOFMOBILESENSORNETWORKSIntermsof Itfollowsfromthehypothesesongroupgeometrythat .Furthermore ... .. Thus,theleastsquaresestimate isgivenby whichisequivalentto (V.13). Remark5.9:For vehiclesin ,theassumptionsonthegroupgeometryaresatisedforequallyspacedvehiclesonthecircle.Theseformationsare -sided,regularpolyhedrathatco-incidewiththeoptimalformationsfor Remark5.10:Forvehiclesin ,thegroupgeometryas-sumptionsarenotsoeasilysatised;indeed,thespecimaynotbeachievableforarbitrary .ExamplesofformationsmeetingtheassumptionsincludevehiclesplacedattheverticesofoneofthevePlatonicsolids,i.e.,tetrahedron ,oc- ,cube ,icosahedron ,and .Recallthatthetetrahedronwasfoundtobeanoptimalformation inSectionV-A.Remark5.11:Whennumericallyintegratingperiodicfunc-tions,compositetrapezoidalquadraturetypicallyoutperformsothermethodssuchasthestandardSimpsonsRule,high-orderNewtonCotes,andGaussianquadratures[8].Inournumer-icalexperimentswithgradientestimationinquadraticandGaussiantemperatureelds,thetrapezoidalruleconsistentlyoutperformedthehigh-orderNewtonCotesmethodsbyex-hibitingsmallergradientestimationerror.Whenequivalencyholds,theaveragingmethodmayprovideinsightintowhentheleast-squareslinearapproximationisappropriateforthesekindsofVI.FINALWehaveshownhowtocontrolamobilesensornetworktoperformagradientclimbingtaskinanunknown,noisy,dis-tributedenvironment.Akeyresultisthepartialdecouplingoftheformationstabilizationproblemfromthegradientclimbingmission.Anapproachtogradientestimationandoptimalfor-mationgeometrydesignandadaptationwerepresented.Thelatterallowsforthevehiclenetworkassensorarraytoadaptitssensingresolutioninordertobestrespondtothesignalinthepresenceofnoise.Analtheoremwasprovedthatguaranteesconvergenceoftheformationtoaregioncontainingalllocalminimaintheenvironmentaleld.In[9],wedescribeapplica-tionoftheseresultstoanautonomousoceansamplingglidernetwork,includingformationandgradientclimbingexamplesanddetailedsimulations.[1]AOSNCharter(2003).[Online].Available:http://www.princeton.edu/~dcsl/aosn/documents/AOSN_Charter.doc[2]R.BachmayerandN.E.Leonard,Vehiclenetworksforgradientde-scentinasampledenvironment,Proc.41stIEEEConf.DecisionControl,2002,pp.113[3]H.C.Berg,RandomWalksinBiology.Princeton,NJ:PrincetonUniv.Press,1983.[4]P.J.BrockwellandR.A.Davis,TimeSeries:TheoryandMethods,2nded.NewYork:Springer-Verlag,1991.[5]E.Burian,D.Yoerger,A.Bradley,andH.Singh,Gradientsearchwithautonomousunderwatervehicleusingscalarmeasurements,Proc.IEEEOESAUVConf.,1996.[6]J.Corts,S.Martnez,T.Karatas,andF.Bullo,Coveragecontrolformobilesensingnetworks:Variationsonatheme,Proc.MediterraneanConf.ControlandAutomation,Lisbon,Portugal,2002,pp.1[7]T.B.Curtin,J.G.Bellingham,J.Catipovic,andD.Webb,oceanographicsamplingnetworks,Oceanogr.,vol.6,pp.8694,1989.[8]P.J.DavisandP.Rabinowitz,MethodsofNumericalIntegration.Or-lando,FL:Academic,1984.[9]E.Fiorelli,P.Bhatta,N.E.Leonard,andI.Shulman,AdaptivesamplingusingfeedbackcontrolofanautonomousunderwatergliderProc.Symp.UnmannedUntetheredSubmersibleTechnology,2003,pp.[10]V.GaziandK.Passino,Stabilityanalysisofsocialforagingswarms,Proc.41stIEEEConf.DecisionandControl,2002,pp.2848[11]D.GrSchoolingasastrategyfortaxisinanoisyenvironment,Evol.Ecol.,vol.12,no.5,pp.503522,1998.[12]D.A.Hoskins,Aleastactionapproachtocollectivebehavior,Proc.SPIE,MicroroboticsandMicromechanicalSystems,vol.2593,L.E.Parker,Ed.,1995,pp.108[13]O.Khatib,RealtimeobstacleavoidanceformanipulatorsandmobileInt.J.Robot.Res.,vol.5,pp.9099,1986.[14]J.Lawton,B.Young,andR.Beard,Adecentralizedapproachtoele-mentaryformationmaneuvers,IEEETrans.Robot.Automat.,vol.19,pp.933941,Aug.2003.[15]N.LeonardandA.Robinson.(2003)AdaptiveSamplingandForecasting[Online].Available:http://www.princeton.edu/~dcsl/aosn/docu-ments/ASFP.pdf[16]N.E.LeonardandE.Fiorelli,Virtualleaders,articialpotentialsandcoordinatedcontrolofgroups,Proc.40thIEEEConf.DecisionandControl,2001,pp.2968[17]Y.Liu,K.Passino,andM.M.Polycarpou,Stabilityanalysisofm-di-mensionalasynchronousswarmswithxedcommunicationtopology,IEEETrans.Automat.Contr.,vol.48,pp.7695,Jan.2003.[18]D.MarthalerandA.L.Bertozzi,Trackingenvironmentallevelsetswithautonomousvehicles,RecentDevelopmentsinCooperativeCon-trolandOptimization,S.Butenko,R.Murphey,andP.M.Pardalos,Eds.Norwell,MA:Kluwer,2003.[19]C.R.McInnes,Potentialfunctionmethodsforautonomousspacecraftguidanceandcontrol,Adv.Astronaut.Sci.,vol.90,pp.2093[20]A.Mogilner,L.Edelstein-Keshet,L.Bent,andA.Spiros,Mutualin-teractions,potentials,andindividualdistanceinasocialaggregation,Math.Biol.,vol.47,pp.353389,2003.[21]P.gren,M.Egerstedt,andX.Hu,AcontrolLyapunovfunctionap-proachtomulti-agentcoordination,IEEETrans.Robot.Automat.,vol.18,pp.847851,May2002.[22]P.gren,E.Fiorelli,andN.E.Leonard,Formationswithamission:Stablecoordinationofvehiclegroupmaneuvers,Proc.Symp.Math-ematicalTheoryofNetworksandSystems,2002,pp.1[23]A.Okubo,Dynamicalaspectsofanimalgrouping:Swarms,schools,ocksandherds,Adv.Biophys.,vol.22,pp.194,1986.[24]R.Olfati-SaberandR.M.Murray,Distributedcooperativecontrolofmultiplevehicleformationsusingstructuralpotentialfunctions,Proc.15thIFACWorldCongr.,2002,pp.1[25]J.K.ParrishandL.Edelstein-Keshet,Fromindividualstoemergentproperties:Complexity,pattern,evolutionarytrade-offsinanimalaggre-gation,,vol.284,pp.99101,Apr.2,1999.[26]J.K.ParrishandW.H.Hamner,Eds.,AnimalGroupsinThreeDimen-.Cambridge,U.K.:CambridgeUniv.Press,1997.[27]C.Reynolds,Flocks,herds,andschools:AdistributedbehavioralProc.ACMSIGGRAPH,Anaheim,CA,1987.[28]I.B.Rhodes,AtutorialintroductiontoestimationandTrans.Automat.Contr.,vol.AC-16,pp.688706,June1971. IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.49,NO.8,AUGUST2004[29]E.RimonandD.E.Koditschek,Exactrobotnavigationusingartipotentialfunctions,IEEETrans.Robot.Automat.,vol.8,pp.501Apr.1992.[30]G.Strang,LinearAlgebraandItsApplications.Florence,KY:Brooks/Cole,1988.[31]H.Tanner,A.Jadbabaie,andG.J.Pappas,ockingofmobileagents,partI:Fixedtopology,Proc.42ndIEEEConf.DecisionCon-trol,2003,pp.2010[32]S.Uryasev,Derivativesofprobabilityfunctionsandsomeapplica-Ann.Oper.Res.,vol.56,pp.287311,1995.[33]B.J.Young,R.W.Beard,andJ.M.Kelsey,Acontrolschemeforimprovingmulti-vehicleformationmaneuvers,Proc.Amer.ControlConf.,2001,pp.704 Pettergren04)wasborninStockholm,Sweden,in1974.HereceivedtheM.S.degreeinengineeringphysicsandthePh.D.degreeinappliedmathematicsfromtheRoyalInstituteofTechnology(KTH),Stockholm,Sweden,in1998and2003,respectively.Forfourmonthsin2001,hevisitedtheMechanicalandAerospaceEngineeringDepartment,PrincetonUniversity,Princeton,NJ.Heiscurrentlyworkingasafull-timeResearcherattheSwedishDefenceResearchAgency(FOI).Hisresearchinterestsincludemultirobotsystems,formations,navigation,andobstacleavoidance. EdwardFiorelli04)receivedtheB.S.degreefromtheCooperUnionfortheAdvancementofScienceandArt,NewYork,in1997.HeiscurrentlyworkingtowardthePh.D.degreeintheDepart-mentofMechanicalandAerospaceEngineering,PrincetonUniversity,Princeton,NJ.Heiscurrentlyafth-yeargraduatestudentintheDynamicalControlSystemsLaboratory,underthedirectionofDr.NaomiLeonard.From19971999,heworkedasaMechanicalEn-gineeratMarconiAerospace,Greenlawn,NYwherehedesignedradarandtelecommunicationequipmentenclosuresformilitaryaerospaceapplications.Hisresearchinterestsincludemultiagentcontroldesignanditsapplicationtodistributedsensornetworks. NaomiEhrichLeonard02)re-ceivedtheB.S.E.degreeinmechanicalengineeringfromPrincetonUniversity,Princeton,NJ,in1985andtheM.S.andPh.D.degreesinelectricalengi-neeringfromtheUniversityofMaryland,CollegePark,in1991and1994,respectively.SheiscurrentlyaProfessorofMechanicalandAerospaceEngineeringatPrincetonUniversityandanAssociatedFacultyMemberofthePrograminAppliedandComputationalMathematicsatPrinceton.Herresearchfocusesonthedynamicsandcontrolofmechanicalsystemsusingnonlinearandgeometricmethods.Currentinterestsincludeunderwatervehicles,mobilesensornetworks,adaptivesamplingwithapplicationtoobservingandpredictingphysicalprocesses,andbiologicaldynamicsintheocean.From1985to1989,sheworkedasanEngineerintheelectricpowerindustryforMPRAssociates,Inc.,Alexandria,VA.