PPT-Subject Name: Machine Learning

Author : barbara | Published Date : 2023-10-04

Subject Code MCA4014 Subject Topic Linear Regression Analysis Abhishek Dwivedi Assistant Professor Department of Computer Application UIET CSJM University Kanpur

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Subject Name: Machine Learning" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Subject Name: Machine Learning: Transcript


Subject Code MCA4014 Subject Topic Linear Regression Analysis Abhishek Dwivedi Assistant Professor Department of Computer Application UIET CSJM University Kanpur Linear Regression in Machine Learning. Lecture 5. Bayesian Learning. G53MLE | Machine Learning | Dr Guoping Qiu. 1. Probability. G53MLE | Machine Learning | Dr Guoping Qiu. 2. . Spring . 2013. Rong. Jin. 2. CSE847 Machine Learning. Instructor: . Rong. Jin. Office Hour: . Tuesday 4:00pm-5:00pm. TA, . Qiaozi. . Gao. , . Thursday 4:00pm-5:00pm. Textbook. Machine Learning. The Elements of Statistical Learning. COS 518: Advanced Computer Systems. Lecture . 13. Daniel Suo. Outline. 2. What is machine learning?. Why is machine learning hard in parallel / distributed systems?. A brief history of what people have done. By Namita Dave. Overview. What are compiler optimizations?. Challenges with optimizations. Current Solutions. Machine learning techniques. Structure of Adaptive compilers. Introduction. O. ptimization . Corey . Pentasuglia. Masters Project. 5/11/2016. Examiners. Dr. Scott . Spetka. Dr. . Bruno . Andriamanalimanana. Dr. Roger . Cavallo. Masters Project Objectives. Research DML (Distributed Machine Learning). Bahrudin Hrnjica, MVP. Agenda. Intro to ML. Types of ML. dotNET and ML-tools and libraries. Demo01: ANN with C#. Demo02: GP with C#. .NET Tools – Acord.NET, GPdotNET. Summary. Machine Learning?. method of teaching computers to make predictions based on data.. UNC Collaborative Core Center for Clinical Research Speaker Series. August 14, 2020. Jamie E. Collins, PhD. Orthopaedic. and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital. Department of . The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand Yonggang Cui. 1. , Zoe N. Gastelum. 2. , Ray Ren. 1. , Michael R. Smith. 2. , . Yuewei. Lin. 1. , Maikael A. Thomas. 2. , . Shinjae. Yoo. 1. , Warren Stern. 1. 1 . Brookhaven National Laboratory, Upton, USA. Nicolas . Borisov. . 1,. *, Victor . Tkachev. . 2,3. , Maxim Sorokin . 2,3. , and Anton . Buzdin. . 2,3,4. . 1. Moscow . Institute of Physics and Technology, 141701 Moscow Oblast, Russia. 2. OmicsWayCorp. Berrin Yanikoglu. Slides are expanded from the . Machine Learning-Mitchell book slides. Some of the extra slides thanks to T. Jaakkola, MIT and others. 2. CS512-Machine Learning. Please refer to . http. Gihyuk Ko. PhD Student, Department of Electrical and Computer Engineering. Carnegie Mellon University. November. 14, 2016. *some slides were borrowed from . Anupam. . Datta’s. MIT Big . Data@CSAIL. Ryan Ma . Background and Purpose of the Project. Aerodynamic analysis is one of the most crucial traits of a vehicle. It affects the fuel consumption of a car. . The shape of the car significantly affects the aerodynamic performances, which includes the lift and the drag. . Er. . . Mohd. . Shah . Alam. Assistant Professor. Department of Computer Science & Engineering,. UIET, CSJM University, Kanpur. Agenda. What is Machine Learning?. How Machine learning . is differ from Traditional Programming?.

Download Document

Here is the link to download the presentation.
"Subject Name: Machine Learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents