/
Lipschitzstrati12cationinpowerboundedominimal12eldsYimuYinjointworkw Lipschitzstrati12cationinpowerboundedominimal12eldsYimuYinjointworkw

Lipschitzstrati12cationinpowerboundedominimal12eldsYimuYinjointworkw - PDF document

bency
bency . @bency
Follow
344 views
Uploaded On 2021-08-25

Lipschitzstrati12cationinpowerboundedominimal12eldsYimuYinjointworkw - PPT Presentation

15Strati12cationLetX18RnbeasubsetAstrati12cationofXisafamilyXX018X11811118XdXofsubsetsofXsuchthat15dimXi20ifor020i20d1523XiXinXi01calledtheithskeletoniseitheremptyoradi11erentiablesubmanifoldofRnofdi ID: 871164

val x0000 dist theorem x0000 val theorem dist definition valdist c00 chain lipschitzstrati xem note cationofx boundedo minimal verdier

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Lipschitzstrati12cationinpowerboundedomi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 Lipschitzstrati cationinpower-bounde
Lipschitzstrati cationinpower-boundedo-minimal eldsYimuYin(jointworkwithImmiHalupczok)SingularLandscape:aconferenceinhonorofBernardTeissier1 Strati cationLetXRnbeasubset.Astrati cationofXisafamilyX=(X0X1Xd=X)ofsubsetsofXsuchthatdimXiifor0id,Xi:=XinXi�1,calledthei-thskeleton,iseitheremptyoradi erentiablesubmanifoldofRnofdim

2 ensioni(notnecessarilycon-nected),andeac
ensioni(notnecessarilycon-nected),andeachconnectedcomponentofXiiscalledastratum,ForeachstratumS,clSS[Xi�1isaunionofstrata. ProjectionstotangentspacesForeachpointa2Xi,letPa:Rn�!TaXiandP?a:=id�Pa:Rn�!T?aXibetheorthogonalprojectionsontothetangentandthenormalspacesofXiata. Verdier'sconditionLetX=(Xi)beastrati cationofX.Foreveryiandeverya2Xithereare&#

3 15;an(open)neighborhoodUaXofa,
15;an(open)neighborhoodUaXofa,aconstantCasuchthat,foreveryji,everyb2Xi\Ua,everyc2Xj\UawehavekP?cPbkCakc�bk: Intermsofvector eldsLetX=(Xi)beastrati cationofX.Avector eldvonanopensubsetUXisX-rugoseifvistangenttothestrataofX(X-compatibleforshort),visdi erentiableoneachstratumofX,foreverya2Xi\UthereisaconstantCasuchthat,fo

4 reveryji,allb2Xi\Uandc2Xj
reveryji,allb2Xi\Uandc2Xj\Uthataresucientlyclosetoasatisfykv(b)�v(c)kCakb�ck: ConcerningVerdier'sconditionTheorem.(Verdier)Everysubanalyticsetadmitsastrati -cationthatsatis esVerdier'scondition.(Loi)Theaboveholdsinallo-minimalstructures.Theorem(Brodersen{Trotman).XisVerdierifandonlyifeachrugosevector eldonU\Xicanbeextendedtoarugosevector eldonaneighb

5 orhoodofU\XiinX.IngeneralVerdier'scondit
orhoodofU\XiinX.IngeneralVerdier'sconditionisstrictlystrongerthanWhitney'scondi-tion(b).Butwedohave:Theorem(Teissier).Forcomplexanalyticstrati cations,Verdier'sconditionisequivalenttoWhitney'scondition(b). ConcerningMostowski'sconditionMostowski'sconditionisa(much)strongerconditionthanVerdier'scon-dition.Theorem(Parusinski).XisLipschitzifandonlyifthereisacon-stantCsuchthat,foreveryXi�1WXi,

6 ifvisanX-compatibleLipschitzvector e
ifvisanX-compatibleLipschitzvector eldonWwithconstantLandisboundedonthelaststratumofXbyaconstantK,thenvcanbeextendedtoaLipschitzvector eldonXwithconstantC(K+L).Theorem(Parusinski).Lipschitzstrati cationsexistforcompactsubanalyticsubsetsinR.Mainingredientsoftheproof:local atteningtheorem,Weierstrasspreparationforsubanalyticfunctions,andmore. Theorem(Nguyen{Valette).Lipschitzstrati cationsexistfor

7 allde- nablecompactsetsinallpolynomi
allde- nablecompactsetsinallpolynomial-boundedo-minimalstructuresonthereal eldR.TheirprooffollowscloselyandimprovesuponParusinski'sproofstrat-egy;inparticular,itre nesaversionoftheWeierstrasspreparationforsubanalyticfunctions(vandenDries{Speissegger).Ontheotherhand,ourresultstates:Theorem.Lipschitzstrati cationsexistforallde nableclosedsetsinallpower-boundedo-minimalstructures(forinstance,in

8 theHahn eldR((tQ))).Ourproofbypasses
theHahn eldR((tQ))).Ourproofbypassesallofthemachineriesmentionedaboveandgoesthroughanalysisofde nablesetsinnon-archimedeano-minimalstructuresinstead. o-minimalityDefinition.LetLbealanguagethatcontainsabinaryrelation.AnL-structureMissaidtobeo-minimalifisatotalorderingonM,everyde nablesubsetoftheanelineisa niteunionofintervals(includingpoints).AnL-theoryTiso-minimalifeveryoneof

9 itsmodelsiso-minimal. Twofundamenta
itsmodelsiso-minimal. Twofundamentalo-minimalstructuresTheorem(Tarski).ThetheoryRCFoftherealclosed eld(essen-tiallythetheoryofsemialgebraicsets)R=(R;+;;0;1)iso-minimal.Theorem(Wilkie).ThetheoryRCFexpoftherealclosed eldwiththeexponentialfunctionRexp=(R;+;;0;1;exp)iso-minimal. Polynomial/powerboundedstructuresLetRbeano-minimalstructurethatexpandsarealclosed eld.Definition.Apower

10 functioninRisade nableendomorphismof
functioninRisade nableendomorphismofthemultiplicativegroupofR.(Notethatsuchapowerfunctionfisuniquelydeterminedbyitsexponentf0(1).)WesaythatRispower-boundedifeveryde nablefunctioninonevariableiseventuallydominatedbyapowerfunction.Theorem(Miller).EitherMispowerboundedorthereisade n-ableexponentialfunctioninM(meaningahomomorphismfromtheadditivegrouptothemultiplicativegroup).Note:InR,power-boundedbecome

11 spolynomial-bounded. Examplesofpoly
spolynomial-bounded. Examplesofpolynomial-boundedo-minimalstructuresonRRCF.(Semialgebraicsets).RCFan:Thetheoryofrealclosed eldswithrestrictedanalyticfunctionsfj[�1;1]n.(Subanalyticsets).RCFan;powers:RCFanplusallthepowers(xrforeachr2R).FurtherexpansionsofRCFanbycertainquasi-analyticfunctions{certainDenjoy-Carlemanclasses,{Gevreysummablefunctions,{certainsolutionsofsystemsofdi

12 erentialequations. Mostowski'scondi
erentialequations. Mostowski'scondition(quantitativeversion)Fixa(complete)o-minimaltheoryT(notnecessarilypowerbounded).LetRbeamodelofT,forexample,R;R((tQ));R((tQ1))((tR2));etc.TheMostowskiconditionisimposedoncertain nitesequencesofpointscalledchains.Thenotionofachaindependsonseveralconstants,whichhavetosatisfyfurtherconditionsonadditionalconstants.InR,letXbeade nablesetandX=(Xi)ade nablestrati&

13 #12;cationofX. Definition.Letc;c0;C0;C00
#12;cationofX. Definition.Letc;c0;C0;C002Rbegiven.A(c;c0;C0;C00)-chainisasequenceofpointsa0;a1;:::;aminXwitha`2Xe`ande0�e1��emsuchthatthefollowingholds.For`=1;:::;m,wehave:ka0�a`kcdist(a;Xe`)Foreachiwithemie0,(exactly)oneofthetwofollowingconditionsholds:(dist(a0;Xi�1)C0dist(a0;Xi)ifi2fe0;:::;emgdist(a0;Xi�1)c0dist(a0;Xi)ifi=2fe0

14 ;:::;emg: Anaugmented(c;c0;C0;C00)-chain
;:::;emg: Anaugmented(c;c0;C0;C00)-chainisa(c;c0;C0;C00)-chaintogetherwithanadditionalpointa002Xe0satisfyingC00ka0�a00kdist(a0;Xe0�1): Definition.Wesaythatthestrati cationX=(Xi)satis estheMostowskiconditionforthequintuple(c;c0;C0;C00;C000)ifthefollowingholds.Forevery(c;c0;C0;C00)-chain(ai),kP?a0Pa1:::PamkC000ka0�a1k dist(a0;Xem�1):Foreveryaugmented(c;c0;C0;C00)-chain((ai);a00),k(Pa

15 0�Pa00)Pa1:::PamkC000ka0�a00k dist
0�Pa00)Pa1:::PamkC000ka0�a00k dist(a0;Xem�1):Mostowski'soriginalde nition(?):Definition.Thestrati cationXisaLipschitzstrati cationifforevery1c2RthereexistsC2RsuchthatXsatis estheMostowskiconditionfor(c;2c2;2c2;2c;C). PlayingwiththeconstantsProposition.ThefollowingconditionsonXareequivalent:(1)XisaLipschitzstrati cation(inthesenseofMostowski).(2)Foreveryc2R,thereexistsaC2Rsuchth

16 atXsatis estheMostowskiconditionsfor
atXsatis estheMostowskiconditionsfor(c;c;C;C;C).(3)Foreveryc2R,thereexistsaC2RsuchthatXsatis estheMostowskiconditionsfor(c;c;1 c;1 c;C).Note:(1))(2)and(3))(1)areeasy.But,at rstglance,(2))(3)ishardlyplausible,because(3)considersmuchmorechains.Toshowthat,wewill(already)need\nonarchimedeanextrapolation"oftheMostowskicondition. Nonarchimedean/nonstandardmodelsLetVRbeaproperconvexsubring.Fact.T

17 hesubringVisavaluationringofR.Definition
hesubringVisavaluationringofR.Definition.ThesubringViscalledT-convexifforallde nable(noparametersallowed)continuousfunctionf:R�!R,f(V)V:LetTconvexbethetheoryofsuchpairs(R;V),whereVisanadditionalsymbolinthelanguage.Example.SupposethatTispowerbounded.LetRbetheHahn eldR((tQ)).LetVbetheconvexhullofRinR,i.e.,V=R[[tQ]].ThenVisT-convex.Ourproofisactuallycarriedoutinasuitablemodel(R;V)ofTconvex,usingami

18 xtureoftechniquesino-minimalityandvaluat
xtureoftechniquesino-minimalityandvaluationtheories. ValuativechainsLetvalbethevaluationmapassociatedwiththevaluationringV.Definition.Aval-chainisasequenceofpointsa0;:::;amwitha`2Xe`ande0�e1��emsuchthat,forall1`m,val(a0�a`)=valdist(a0;Xe`�1�1)=valdist(a0;Xe`)�valdist(a0;Xe`�1):Anaugmentedval-chainisaval-chaina0;:::;amtogetherwithonemorepoin

19 ta002Xe0suchthatval(a0�a00)�
ta002Xe0suchthatval(a0�a00)�valdist(a0;Xe0�1):Definition.Ifwereplace�withinthetwoconditionsabovethentheresultingsequenceiscalledaweakval-chain.Notethata\segment"ofa(weak)val-chainisa(weak)val-chain. ThevaluativeMostowskiconditionDefinition.ThevaluativeMostowskiconditionstates:forallval-chain(ai),if(ai)isnotaugmentedthenval(P?a0Pa1Pam)val(a0�a1)�vald

20 ist(a0;Xem�1);if(ai)isaugmentedt
ist(a0;Xem�1);if(ai)isaugmentedthenval((Pa0�Pa00)Pa1Pam)val(a0�a00)�valdist(a0;Xem�1):Note:weshouldusetheoperatornormabove,butval(M)=val(kMk)foramatrixM. ValuativeLipschitzstrati cationDefinition.Thestrati cationXisavaluativeLipschitzstrati- cationifeveryval-chainsatis es(thecorrespondingclauseof)theval-uativeMostowskicondition.Proposition.Thefollowingar

21 eequivalent:(1)XisaLipschitzstrati c
eequivalent:(1)XisaLipschitzstrati cationinthesenseofMostwoski.(2)XisavaluativeLipschitzstrati cation.(3)Everyweakval-chainsatis esthevaluativeMostowskicondi-tion.Note:Thevaluative\(2))(3)"hereimpliesthequantitative\(2))(3)"statedbefore. Strategy/mainingredientsoftheconstructionLetXbeade nableclosedsetinR.Weshallconstructastrati cationYofXsuchthatYisde nableinR,Yisavaluati

22 veLipschitzstrati cationin(R;V).West
veLipschitzstrati cationin(R;V).Westartwithanystrati cationX=(Xi)ofXinR.Thedesiredstrati cationisobtainedbyre ningtheskeletonsXsoneaftertheother,startingwithXdimX.Inductively,supposethatXs+1;:::;XdimXhavealreadybeenconstructed.Were neXs:=Xn[�isXibyremovingclosedsubsetsofdimensionlessthansinthreesteps. ThethreestepsStepR1:WepartitionXsinto\specia

23 lcells"andremoveallsuchcellsofdimensionl
lcells"andremoveallsuchcellsofdimensionlessthans.Suchacellisessentiallyafunctionf:A�!Rn�sof\slowgrowth",moreprecisely,val(f(a)�f(a0))val(a�a0);foralla;a02A:Actually,wecannotcutXsintosuchcellsdirectly;butwecanachievesuchadecompositionmodulocertain\uniformrotation"chosenfroma xed nitesetOoforthogonalmatrices,usingaresultofKurdyka/Parusinski/Pawlucki. StepR2(themainstep):Considerasequ

24 enceS=(S`)0`m,whereS`
enceS=(S`)0`m,whereS`Xe`forsomee0e1�e2��em=sandeveryS`isa\specialcell"(afterasinglerotationinO).ThereisasubsetZSSmofdimensionlessthanssuchthat,onceZSSmisremoved,certainfunctionsassociatedwithSsatisfycertainestimates.Thereareonly nitelymanysuchZS.Theseestimatesarealloftheformval(@if(x))val(f(x))�val(`(x))+correctionterms;where&#

25 16;`(x)isthedistancebetweenthetuplepr
16;`(x)isthedistancebetweenthetuplepre`(x)andthesubsetRe`npre`(X). StepR3:Thissteponlyperformscertaincosmeticadjustment.WekeepthenotationfromStepR2andremoveonemoresetfromSm(again,foreachchoiceofSandeachrotationinO)sothatestimatesforthefunctionsassociatedwithSinStepR2holdontheentireSm.This nishestheconstructionofXs.Theorem.Theresultingstrati cationisavaluativeLipschitzstrat-i cationofX

Related Contents


Next Show more