PDF-PROBLEM5.LetX1;X2;:::beiidwithEXk=0andEX2k=2.ShowthatPnk=1Xk

Author : bitechmu | Published Date : 2020-11-19

16Pnk1X2k1712 indistributionwhere isthestandardnormaldistributionPROBLEM6SupposeX1X2arerandomvariablessuchthatthecentrallimittheoremp n22Xn0c 27 indistributionwhere isas

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "PROBLEM5.LetX1;X2;:::beiidwithEXk=0andEX..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

PROBLEM5.LetX1;X2;:::beiidwithEXk=0andEX2k=2.ShowthatPnk=1Xk: Transcript


16Pnk1X2k1712 indistributionwhere isthestandardnormaldistributionPROBLEM6SupposeX1X2arerandomvariablessuchthatthecentrallimittheoremp n22Xn0c 27 indistributionwhere isas. b+c+1+b c+a+1+c a+b+1+(1a)(1b)(1c)1:Problem4(USAMO1999).Leta1;a2;:::;an(n3)berealnumberssuchthata1+a2++annanda21+a22++a2nn2:Provethatmax(a1;a2;:::;an)2.Problem5(USAMO1998).Leta1;:::;anbe page40110SOR201(2002)(ii)Bernoullir.v.{ifp1=p;p0=1p=q;pk=0;k6=0or1,thenGX(s)=E(sX)=q+ps:(3:4)(iii)Geometricr.v.{ifpk=pqk1;k=1;2;:::;q=1p;thenGX(s)=ps1qsifjsjq1(seeHWSheet4.):(3:5)(iv)Binomialr.v. De nition Lemma LetCRnbeaconvexset.Ifx1;:::;xk2C,andzisaconvexcombinationofthexi,thenz2C. LeovanIersel(TUE) PolyhedraandPolytopes ORN42/22 De nition LetXRn.TheconvexhullofXisthesetofallconvexcombina 2REMCOVANDERHOFSTAD,NINAGANTERTANDWOLFGANGKONIGspace,letY=(Yz)z2Zdbeani.i.d.sequenceofrandomvariables,independentofthewalk.WerefertoYastherandomscenery.Thentheprocess(Zn)n2Nde nedbyZn=n1Xk=0YSk;n2N; Problem5.35 Solution: FromEq.(5.2),1=B1 m1=1 m1( copy.jpg 2 (1+at)n+1;n=1;2;:::at 1+at;n=09=;(i)E[X(t)]=1X0nP(X(t)=n)=1X1n(at)n1 (1+at)n+1=1 (1+at)21X1nat 1+atn1=1 (1+at)2(1+at)2=1(ii)E[X2(t)]=Xn2(at)n1 (1+at)n+1=1 (1+at)21X1n2at 1+atn1=1 Problem5.25 r[1(4r+1)e4r] Solution: Wecanfolloweitheroftwopossibleapproaches.TherstinvolvestheuseofAmp Approach1:Ampere'slaw ApplyingAmpere'slawatr=anZCdjr=a=IZ2 r[1(4r+1)e4r] (~ )makinguseoftheno-tationin[14]where(~x)=Qdim~xk=1(xk) (Pdim~xk=1xk)andwetreat~ asavectorofsizeKjwitheachvalueequalto .Notethatbecauseeachlabelhasitsowndistinctsubsetoftopics,thetopicassignmenta Problem5.27 (a) DetermineB (b) UseEq.(5.66)tocalculatethemagneticuxpassingthroughasquareloopwith0.25-m-longedgesiftheloopisinthex RGKing,BostonUniversityEC541Session24HouseholdsRepresentativehouseholdsolvesmaxE01Xt=0 tU(Ct;Nt)(1)subjecttoPtCt+QtBtBt�1+WtNt+Dt(2)fort=0;1;2;:::plusasolvencyconstraint(tobediscussedfurth 1�pforjpj1;wewouldget1Xk=0kpk�1=1 (1�p)2;1 and1Xk=0k2pk�1=p (1�p)20=1+p (1�p)3forjpj1.Finally,wehave1Xk=0k2pk=p(1+p) q3:Plugginginthisexpression,itfollowsthata0=�1&# 1 2FIRSTTHINGSFIRST(5)Duringclasstheinstructorhasthe naldecisionondeterminingwhetheranar-gumentmaystandornot.Hisverdictmaystillbechallengedafteraproofis\published"(seerule(6)).(6)Ifsomeoneothertha 22n16XntLXnt17klItsl1normisupperboundedbykJk1maxpqXkljJklpqj122nmaxpqXkl1212121212300dntkl2XntLXntklXntpq12121212122022nmaxpqXkl12121212122XntLXntklXntpq121212121222n12121212122XntLXntklXntpq121212121 ToeplitzandCirculantMatrices:Areview RobertM.GrayDeptartmentofElectricalEngineeringStanfordUniversityStanford94305,USArmgray@stanford.edu Contents Chapter1Introduction11.1ToeplitzandCirculantMatrices1

Download Document

Here is the link to download the presentation.
"PROBLEM5.LetX1;X2;:::beiidwithEXk=0andEX2k=2.ShowthatPnk=1Xk"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents