/
Probability Generating Functions Probability Generating Functions

Probability Generating Functions - PDF document

sherrill-nordquist
sherrill-nordquist . @sherrill-nordquist
Follow
363 views
Uploaded On 2018-07-20

Probability Generating Functions - PPT Presentation

page40110SOR2012002iiBernoullirvifp1pp01pqpk0k60or1thenGXsEsXqps34iiiGeometricrvifpkpqk1k12q1pthenGXsps1qsifjsjq1seeHWSheet435ivBinomialrv ID: 94786

thengx 2002 example3 1xk 2002 thengx 1xk example3 poisson 1xn note ifx var soe nxi pqk andg asapowerseriesins 1ifandonlyif itfollowsthate drdsr iii

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Probability Generating Functions" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

page39110SOR201(2002)Chapter3ProbabilityGeneratingFunctions3.1Preamble:GeneratingFunctionsGeneratingfunctionsarewidelyusedinmathematics,andplayanimportantroleinprobabilitytheory.Considerasequencefai:i=0;1;2;:::gofrealnumbers:thenumberscanbe`parcelledup'inseveralkindsof`generatingfunctions'.The`ordinary'generatingfunctionofthesequenceisde nedasG(s)=1Xi=0aisiforthosevaluesoftheparametersforwhichthesumconverges.Foragivensequence,thereexistsaradiusofconvergenceR(0)suchthatthesumconvergesabsolutelyifjsjRanddivergesifjsj�R.G(s)maybedi erentiatedorintegratedtermbytermanynumberoftimeswhenjsjR.Formanywell-de nedsequences,G(s)canbewritteninclosedform,andtheindividualnumbersinthesequencecanberecoveredeitherbyseriesexpansionorbytakingderivatives.3.2De nitionsandPropertiesConsideracountr.v.X,i.e.adiscreter.v.takingnon-negativevalues.Writepk=P(X=k);k=0;1;2;:::(3:1)(ifXtakesa nitenumberofvalues,wesimplyattachzeroprobabilitiestothosevalueswhichcannotoccur).Theprobabilitygeneratingfunction(PGF)ofXisde nedasGX(s)=1Xk=0pksk=E(sX):(3:2)NotethatGX(1)=1,sotheseriesconvergesabsolutelyforjsj1.AlsoGX(0)=p0.Forsomeofthemorecommondistributions,thePGFsareasfollows:(i)Constantr.v.{ifpc=1;pk=0;k6=c,thenGX(s)=E(sX)=sc:(3:3) page40110SOR201(2002)(ii)Bernoullir.v.{ifp1=p;p0=1p=q;pk=0;k6=0or1,thenGX(s)=E(sX)=q+ps:(3:4)(iii)Geometricr.v.{ifpk=pqk1;k=1;2;:::;q=1p;thenGX(s)=ps1qsifjsjq1(seeHWSheet4.):(3:5)(iv)Binomialr.v.{ifXBin(n;p);thenGX(s)=(q+ps)n;(q=1p)(seeHWSheet4.):(3:6)(v)Poissonr.v.{ifXPoisson();thenGX(s)=1Xk=01k!kesk=e(s1):(3:7)(vi)Negativebinomialr.v.{ifXNegBin(n;p),thenGX(s)=1Xk=0 k1n1!pnqknsk=ps1qsnifjsjq1andp+q=1:(3:8)UniquenessTheoremIfXandYhavePGFsGXandGYrespectively,thenGX(s)=GY(s)foralls(a)i P(X=k)=P(Y=k)fork=0;1;:::(b)i.e.ifandonlyifXandYhavethesameprobabilitydistribution.ProofWeneedonlyprovethat(a)implies(b).TheradiiofconvergenceofGXandGYare1,sotheyhaveuniquepowerseriesexpansionsabouttheorigin:GX(s)=1Xk=0skP(X=k)GY(s)=1Xk=0skP(Y=k):IfGX=GY,thesetwopowerserieshaveidenticalcoecients.}Example:IfXhasPGFps(1qs)withq=1p,thenwecanconcludethatXGeometric(p):GivenafunctionA(s)whichisknowntobeaPGFofacountr.v.X,wecanobtainpk=P(X=k)eitherbyexpandingA(s)inapowerseriesinsandsettingpk=coecientofsk;orbydi erentiatingA(s)ktimeswithrespecttosandsettings=0. page41110SOR201(2002)Wecanextendthede nitionofPGFtofunctionsofX.ThePGFofY=H(X)isGY(s)=GH(X)(s)=EsH(X)=XkP(X=k)sH(k):(3:9)IfHisfairlysimple,itmaybepossibletoexpressGY(s)intermsofGX(s).Example:LetY=a+bX.ThenGY(s)=E(sY)=E(sa+bX)=saE[(sb)X]=saGX(sb):(3:10)3.3MomentsTheoremXbeacountr.v.andG(r)X(1)therthderivativeofitsPGFGX(s)ats=1.ThenG(r)X(1)=E[X(X1):::(Xr+1)](3:11)Proof(informal)G(r)X(s)=drdsr[GX(s)]=drdsr"Xkpksk#=Xkpkk(k1):::(kr+1)skr(assumingtheinterchangeofdrdsrandXkisjusti ed).Thisseriesisconvergentforjsj1,soG(r)X(1)=E[X(X1):::(Xr+1)];r1:tuInparticular:G(1)(1)(orG0(1))=E(X)(3:12)andG(2)(1)(orG00(1))=E[X(X1)]=E(X2)E(X)=Var(X)+[E(X)]2E(X)soVar(X)=G(2)(1)hG(1)X(1)i2+G(1)X(1):(3:13)Example:IfXPoisson(),thenGX(s)=e(s1);G(1)X(s)=e(s1)soE(X)=G(1)(1)=e0=:G(2)X(s)=2e(s1)soVar(X)=22+=: page42110SOR201(2002)3.4SumsofindependentrandomvariablesTheoremXandYbeindependentcountr.v.swithPGFsGX(s)andGY(s)respectively,andletZ=X+Y.ThenGZ(s)=GX+Y(s)=GX(s)GY(s):(3:14)ProofGZ(s)=E(sZ)=E(sX+Y)=E(sX)E(sY)(independence)=GX(s)GY(s):}CorollaryX1;:::;Xnareindependentcountr.v.swithPGFsGX1(s);:::;GXn(s)respectively(andnisaknowninteger),thenGX1+:::+Xn(s)=GX1(s)::::GXn(s):(3:15)Example3.1Findthedistributionofthesumofnindependentr.v.sXi;i=1;:::n;whereXiPoisson(i).SolutionGXi(s)=ei(s1):SoGX1+X2++Xn(s)=nYi=1ei(s1)=e(1++n)(s1):ThisisthePGFofaPoissonr.v.,i.e.nXi=1XiPoisson(nXi=1i):(3:16)Example3.2InasequenceofnindependentBernoullitrials.LetIi=1;iftheithtrialyieldsasuccess(probabilityp)0;iftheithtrialyieldsafailure(probabilityq=1p).LetX=nXi=1Ii=numberofsuccessesinntrials.WhatistheprobabilitydistributionofX?SolutionSincethetrialsareindependent,ther.v.sI1;:::Inareindependent.SoGX(s)=GI1GI2:::GIn(s):ButGIi(s)=q+ps;i=1;:::n:SoGX(s)=(q+ps)n=nXx=0 nx!(ps)xqnx:ThenP(X=x)=coecientofsxinGX(s)=nxpxqnx;x=0;:::;ni.e.XBin(n;p):} page43110SOR201(2002)3.5Sumofarandomnumberofindependentr.v.sTheoremN;X1;X2;:::beindependentcountr.v.s.IfthefXigareidenticallydistributed,eachwithPGFGX,thenSN=X1++XN(3:17a)hasPGFGSN=GN(GX(s)):(3:17b)(Note:WeadopttheconventionthatX1++XN=0forN=0.)Thisisanexampleoftheprocessknownascompoundingwithrespecttoaparameter.ProofWehaveGSN(s)=EsSN=1Xn=0EsSNjN=nP(N=n)(conditioningonN)=1Xn=0EsSnP(N=n)=1Xn=0GX1++Xn(s)P(N=n)=1Xn=0[GX(s)]nP(N=n)(usingCorollaryinprevioussection)=GN(GX(s))byde nitionofGN:}CorollariesE(SN)=E(N):E(X):(3.18)Proofdds[GSN(s)]=dds[GN(GX(s))]=dGN(u)du:dudswhereu=GX(s):Settings=1;(sothatu=GX(1)=1),wegetE(SN)=hG(1)(1)i:hG(1)X(1)i=E(N):E(X):tuSimilarlyitcanbededucedthat2.Var(SN)=E(N)Var(X)+Var(N)[E(X)]2:(3.19)(prove!). page44110SOR201(2002)Example3.3ThePoissonHenAhenlaysNeggs,whereNPoisson():Eachegghatcheswithprobabilityp,independentlyoftheothereggs.Findtheprobabilitydistributionofthenumberofchicks,Z.SolutionWehaveZ=X1++XN;whereX1;:::areindependentBernoullir.v.swithparameterp.ThenGN(s)=e(s1);GX(s)=q+ps:SoGZ(s)=GN(GX(s))=ep(s1){thePGFofaPoissonr.v.,i.e.ZPoisson(p):}3.6*UsingGFstosolverecurrencerelations[NOTE:Notrequiredforexaminationpurposes.]Insteadofappealingtothetheoryofdi erencerelationswhenattemptingtosolvetherecurrencerelationswhichariseinthecourseofsolvingproblemsbyconditioning,onecanoftenconverttherecurrencerelationintoalineardi erentialequationforageneratingfunction,tobesolvedsubjecttoappropriateboundaryconditions.Example3.4TheMatchingProblem(yetagain).AttheendofChapter1[Example(1.10)],therecurrencerelationpn=n1npn1+1npn2;n3wasderivedfortheprobabilitypnthatnomatchesoccurinann-cardmatchingproblem.Solvethisusinganappropriategeneratingfunction.SolutionMultiplythroughbynsn1andsumoverallsuitablevaluesofntoobtain1Xn=3nsn1pn=s1Xn=3(n1)sn2pn1+s1Xn=3sn2pn2:IntroducingtheGFG(s)=1Xn=1pnsn(N.B.:thisisnotaPGF,sincefpn:n1gisnotaprobabilitydistribution),wecanrewritethisasG0(s)p12p2s=s[G0(s)p1]+sG(s)i.e.(1s)G0(s)=sG(s)+s(sincep1=0;p2=12):This rstorderdi erentialequationnowhastobesolvedsubjecttotheboundaryconditionG(0)=0:TheresultisG(s)=(1s)1es1:NowexpandG(s)asapowerseriesins,andextractthecoecientofsn:thisyieldspn=1+(1)1!+(1)n1(n1)!+(1)nn!;n1{theresultobtainedpreviously.} page45110SOR201(2002)3.7BranchingProcesses3.7.1De nitionsConsiderahypotheticalorganismwhichlivesforexactlyonetimeunitandthendiesintheprocessofgivingbirthtoafamilyofsimilarorganisms.Weassumethat:(i)thefamilysizesareindependentr.v.s,eachtakingthevalues0,1,2,...;(ii)thefamilysizesareidenticallydistributedr.v.s,thenumberof`children'inafamily,C,havingthedistributionP(C=k)=pk;k=0;1;2;:::(3:20)Theevolutionofthetotalpopulationastimeproceedsistermedabranchingprocess:thisprovidesasimplemodelforbacterialgrowth,spreadoffamilynames,etc.LetXn=numberoforganismsbornattimen(i.e.,thesizeofthenthgeneration):(3:21)Theevolutionofthepopulationisdescribedbythesequenceofr.v.sX0;X1;X2;:::(anexampleofastochasticprocess{ofwhichmorelater).WeassumethatX0=1,i.e.westartwithpreciselyoneorganism.Atypicalexamplecanbeshownasafamilytree:Generation0X0=1123:::X1=3:::X2=6:::X3=9WecanusePGFstoinvestigatethisprocess.3.7.2EvolutionofthepopulationLetG(s)bethePGFofC:G(s)=1Xk=0P(C=k)sk;(3:22)andGn(s)thePGFofXn:Gn(s)=1Xx=0P(Xn=x)sx:(3:23)NowG0(s)=s;sinceP(X0=1)=1;P(X0=x)=0forx6=1;andG1(s)=G(s).AlsoXn=C1+C2++CXn1;(3:24)whereCiisthesizeofthefamilyproducedbytheithmemberofthe(n1)thgeneration. page46110SOR201(2002)So,sinceXnisthesumofarandomnumberofindependentandidenticallydistributed(i.i.d.)r.v.s,wehaveGn(s)=Gn1(G(s))forn=2;3;:::(3:25)andthisisalsotrueforn=1.Iteratingthisresult,wehaveGn(s)=Gn1(G(s))=Gn2(G(G(s)))=::::=G1(G(G(::::(s)::::)))=G(G(G(::::(s)::::)));n=0;1;2;:::i.e.,GnisthenthiterateofG.NowE(Xn)=G0(1)=G0n1(G(1))G0(1)=G0n1(1)G0(1)[sinceG(1)=1]i.e.E(Xn)=E(Xn1)(3:26)where=E(C)isthemeanfamilysize.HenceE(Xn)=E(Xn1)=2E(Xn2)=::::=nE(X0)=n:ItfollowsthatE(Xn)!80;if11;if=1(criticalvalue)1;if�1:(3:27)ItcanbeshownsimilarlythatVar(Xn)=8n2;if=12n1n11;if6=1:(3:28)Example3.5InvestigateabranchingprocessinwhichChasthemodi edgeometricdistributionpk=pqk;k=0;1;2;:::;0p=1q1;withp6=q[N.B.]SolutionThePGFofCisG(s)=1Xk=0pqksk=p1qsifjsjq1:WenowneedtosolvethefunctionalequationsGn(s)=Gn1(G(s)): page47110SOR201(2002)First,ifjsj1,G1(s)=G(s)=p1qs=p(qp)(q2p2)qs(qp)(rememberwehaveassumedthatp6=q).ThenG2(s)=G(G(s))=p1qp1qs=p(1qs)1qpqs=p(q2p2)qs(qp)(q3p3)qs(q2p2):WethereforeconjecturethatGn(s)=p(qnpn)qs(qn1pn1)(qn+1pn+1)qs(qnpn)forn=1;2;:::andjsj1;andthisresultcanbeprovedbyinductiononn.WecouldderivetheentireprobabilitydistributionofXnbyexpandingther.h.s.asapowerseriesins,buttheresultisrathercomplicated.Inparticular,however,P(Xn=0)=Gn(0)=pqnpnqn+1pn+1=n1n+11;where=q=pisthemeanfamilysize.Itfollowsthatultimateextinctioniscertainif1andlessthancertainif�1.Separateconsiderationofthecasep=q=12(seehomework)showsthatultimateextinctionisalsocertainwhen=1.}Wenowproceedtoshowthattheseconclusionsarevalidforallfamilysizedistributions.3.7.3TheProbabilityofExtinctionTheprobabilitythattheprocessisextinctbythenthgenerationisen=P(Xn=0):(3:29)Nowen1,andenen+1(sinceXn=0impliesthatXn+1=0)-i.e.fengisaboundedmonotonicsequence.Soe=limn!1en(3:30)existsandiscalledtheprobabilityofultimateextinction.Theorem1eisthesmallestnon-negativerootoftheequationx=G(x):ProofNotethaten=P(Xn=0)=Gn(0).NowGn(s)=Gn1(G(s))=::::=G(G::::(s)::::))=G(Gn1(s)): page48110SOR201(2002)Sets=0.Thenen=Gn(0)=G(en1);n=1;2;:::withboundaryconditione0=0.Inthelimitn!1wehavee=G(e):Nowletbeanynon-negativerootoftheequationx=G(x).Gisnon-decreasingontheinterval[0;1](sinceithasnon-negativecoecients),andsoe1=G(e0)=G(0)G()=;e2=G(e1)G()=[usingpreviousline]andbyinductionen;n=1;2;:::Soe=limn!1en:Itfollowsthateisthesmallestnon-negativeroot.}Theorem2e=1ifandonlyif1.[Note:weruleoutthespecialcasep1=1;pk=0fork6=1,when=1bute=0]ProofWecansupposethatp0�0(sinceotherwisee=0and�1).Nowontheinterval[0;1],Gis(i)continuous(sinceradiusofconvergence1);(ii)non-decreasing(sinceG0(x)=Pkkpkxk10);(iii)convex(sinceG00(x)=Pkk(k1)pkxk20).Itfollowsthatin[0;1]theliney=xhaseither1or2intersectionswiththecurvey=G(x),asshownbelow:11yxeey=G(x)y=x(a)11yxy=xy=G(x)(b)Thecurvey=G(x)andtheliney=x,inthetwocaseswhen(a)G0(1)�1and(b)G0(1)ยท1.SinceG0(1)=,itfollowsthate=1ifandonlyif1:tu page49110SOR201(2002)Example3.6FindtheprobabilityofultimateextinctionwhenChasthemodi edgeometricdistributionpk=pqk;k=0;1;2;:::;0p=1q1(thecasep=qisnowpermitted-cf.Example3.5).SolutionThePGFofCisG(s)=p1qs;jsjq1;andeisthesmallestnon-negativerootofG(x)=p1qx=x:Therootsare1(2p1)2(1p):Soifp12(i.e.=q=p�1);e=p=q(=1);ifp12(i.e.1);e=1:{inagreementwithourearlierdiscussioninExample3.5.}[Note:intheabovediscussion,thecontinuityofprobabilitymeasures(seeNotesbeloweqn.(1.10))hasbeeninvokedmorethanoncewithoutcomment.]