/
DEVELOPMENT OF A PHOTO-POLYMERIC MICROFLUIDIC SCINTILLATION DETECTOR DEVELOPMENT OF A PHOTO-POLYMERIC MICROFLUIDIC SCINTILLATION DETECTOR

DEVELOPMENT OF A PHOTO-POLYMERIC MICROFLUIDIC SCINTILLATION DETECTOR - PowerPoint Presentation

boyplay
boyplay . @boyplay
Follow
344 views
Uploaded On 2020-08-06

DEVELOPMENT OF A PHOTO-POLYMERIC MICROFLUIDIC SCINTILLATION DETECTOR - PPT Presentation

Authors Luca Müller Supervision by Alessandro Mapelli EPDTDD Yves Leterrier LTCEPFL The PMMA microScint Polymeric single layer of optical waveguides produced by in situ polymerization ID: 800244

ller process cern tests process ller tests cern curing polymerization shrinkage photo definition chapter bonding pmma index determination refractive

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "DEVELOPMENT OF A PHOTO-POLYMERIC MICROFL..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

DEVELOPMENT OF A PHOTO-POLYMERIC MICROFLUIDIC SCINTILLATION DETECTOR

Authors:

Luca Müller

Supervision by:

Alessandro

Mapelli

(EP-DT-DD)

Yves

Leterrier

(LTC-EPFL)

Slide2

The PMMA microScint

Polymeric single layer of optical waveguides produced by in situ polymerization

moulding

.It exploits total internal reflection (TIR) as working principle to guide the photons.Potential application: beam monitoring for hadron therapy

L. Müller EP-DT-DD (CERN)

2

Introduction: the context

Process: in situ polymerization molding.

Issues:Important thermal stressesThe polymerization process is time expensive (about 24h)

Material PMMA

I

ssues:

Important

chemical shrinkage

(

total 20%)

PMMA has a moderate radiation resistance

Slide3

The UV photo-polymerization process (UV curing)L. Müller EP-DT-DD (CERN)

3

Introduction:

the UC curing process

Advantages:

High processing speed.

Low heat generation.

High product durability.

Low processing costs.Low energy process.Low organic emissions.

Disadvantages

Cure thickness limited.

Oxygen and moisture sensitivity.

Expensive initial investment.

Room temperature process: reaction activated with UV light

Process widely used for industrial applications (adhesives, coating, inks, photolithography, 3D printing, dental implants…) due to its high speed.

Slide4

ObjectivesL. Müller EP-DT-DD (CERN)

4

Objectives

To

create a UV curing process for the PMMA.

To exploit the UV curing process for the production of two other polymers.To characterize the radiation resistance of these materials.To select the more suitable material for the production of the

microScint device.

Slide5

The candidate materials

PMMA

L. Müller EP-DT-DD (CERN)

5

UV curing process determination

Sigma Aldrich catalogue

Acrylate resin

Epoxy siloxane resin

Sigma Aldrich catalogue

Marina A. Gonzalez

Lazo

, EPFL, 2015

Radical system

Linear polymer

Shrinkage: 20%

Refractive index=1.49

Transmittance=92%

Radical system

Crosslinked

polymer

Shrinkage: 4%

Refractive index=1.48

Transmittance=89%

Cationic

system

Crosslinked

polymer

Shrinkage: 2%

Refractive index=1.50

Transmittance=95%

Photo-acid generator

Slide6

UV Curing: how does it work?L. Müller EP-DT-DD (CERN)

UV curing process determination

Cationic (e.g. epoxies)

Radical (e.g. acrylates)

A.Vitale

et al. 2014

UV curing technologies doctoral course, EPFL, 2016

6

Slide7

Photo-initiator concentration:It controls the conversion degree, hence the physical properties (stiffness, density, transmittance…)

Dependence of the cure depth:

the molar absorptivity of the PI, c the PI concentration, d the light

pathlength

 

Polymerization parameters

L. Müller EP-DT-DD (CERN)

7

UV curing process determination

Slide8

Light intensity:It controls the conversion rate, hence the reaction time.It controls the internal stress build up.

Polymerization parameters(2)

L. Müller EP-DT-DD (CERN)

8

UV curing process determination

Slide9

Working schedule (1)

Definition of PI concentration:

Solution to tests:

MMA + 0.1 / 0.2 / 0.5 / 1%wt PIHBP CN2305 + 0.5 / 1 / 1.5 / 2%wt PIEpoxy-Siloxane oligomer + 0.5 / 1 / 1.5 / 2%wt PI

Definition of light intensity steps.Measurement techniques to employ:

Photo-rheology (mechanical properties evolution)Photo- Differential Scanning Calorimetry (Conversion degree and rate evolution)

Fourier Transform InfraRed spectroscopy (Conversion degree)Mickelson interferometry (shrinkage evolution)

Beam bending (internal stresses)

L. Müller EP-DT-DD (CERN)9UV curing process determination

Slide10

Working schedule(2)

Irradiation at the PS (IRRAD) with 24GeV protons.

Dose calculated according to the radiative environment of CNAO (Centro

Nazionale di Adroterapia Oncologica):10^3

Gy ≈ 1 day10^4 Gy

≈ 30 days10^5 Gy

≈ 6 months10^6 Gy ≈ 1 year10^7

Gy ≈ 10 yearsCharacterization of:Refractive index -> Exploitation of TIRTransmittance -> Exportation of the photons

Tensile strength -> Structural performance L. Müller EP-DT-DD (CERN)10Irradiation tests

Slide11

Thank you for your attentionAre there any questions?

L. Müller EP-DT-DD (CERN)

11

Slide12

L. Müller EP-DT-DD (CERN)12

Work

Activity

Start week

End week

Timetable

 

 

 

 

Month

Feb.

March

April

May

June

July

Aug.

 

 

 

 

week

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Theory

Choice of materials

1

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of radiation damage tests

1

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of shrinkage tests

1

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of scintillators compatibility tests

1

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of bonding and bonding strength tests

1

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Practical

Polymerization of samples

4

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scintillators compatibility tests

5

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shrinkage measurements

5

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optical characterization (transmittance and ref. index)

5

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Irradiation tests

10

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polymerization of samples for bonding tests

15

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bonding

17

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bonding strength tests

18

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

options

Microchannels samples production

17

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bonding of microchannels

17

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detector characterization

17

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis

Introduction

1

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: State of the art

1

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2:Structural material polymerization

7

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3: Materials characterizations

12

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: Radiation damage tests

4

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Option

Chapter 5: Device characterization

18

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6: Conclusions and outlooks

22

26