PDF-IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007LPDecodingC

Author : calandra-battersby | Published Date : 2016-03-09

repeat

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "IEEETRANSACTIONSONINFORMATIONTHEORY,VOL...." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007LPDecodingC: Transcript


repeat. withthefollowingstructuralproperties:1)eachrowconsistsof “ones”;2)eachcolumnconsistsof “ones”;3)thenumberof“ones”incommonbetweenanytwocolumns, ,isnogreaterthan ;4)both an loglog log(5)istheshiftoperator,(,foreach.Theactionofonthefunctionisgivenby):=denotesshift-invariantprobabilitymeasures.Forwede -qubitquantumstatecouldbecommunicatedtoareceiverbyphysicallytransmittingonly + ( qubitsinadditiontoconsuming ebitsofentanglementandsomesharedrandomness.Whenthestatestobepreparedareentangled,we (thetotalnumberofusers)andlength .Wepresentbinaryfingerprintingcodessecureagainstsize- tionswhichenablethedistributor(decoder)torecoveratleastoneoftheusersfromthecoalitionwithprobabilityoferrorexp( fo concatenatedzigzagcodewithfourconstituentencoderswithinterleaverlength65536,yieldsabiterrorrate(BER)of at0.9dBand1.4dBawayfromtheShannonlimitbyoptimal(APP)andlow-costsuboptimal(MLA)decoders,respective single-antennareceiversand antennasatthetransmitteriscon-sidered.Bothtransmitterandreceivershaveperfectknowledgeofthechannel.Despiteitsapparentsimplicity,thismodelis,ingeneral,anondegradedbroadcastcha VOL. XXXIV—NO. 2 2013 VOL. XXXIV—NO. 2 2013 VOL. XXXIV—NO. 2 2013 VOL. XXXIV—NO. 2 2013 LETTERS CONSCIENCE VOL. XXXIV—NO. 2 2013 LETTERS CONSCIENCE VOL. XXXIV—NO. 2 ;inthissimplesetuptheTCis (1)where isthexeddistancebetweeneachtransmitterreceiverpairand isthepath-lossexponent.Notethat unitsofexpectednumberofsuccessfultransmissionsperunitRelationshiptoTransportCap Fig.1.Sensornodesdeployedtomeasureambienttemperature.sensornetworks,thecomputationalpowerandenergyresourcesmaybeverylimited.Theseconstraintsmotivatethedesignofsimpledecentralizedalgorithmsforcomputati right-handsideof(44) jDj (p2)n+p2 l rrArrr(p) r h(l) )=(+1) s=0rs s(p+1) =1 jDj (p2)n+p2 l=0 rrrArrr(p)n =1 1)(andtheassertionofthelemmafollows. [1]A.AshikhminandS.Litsyn,“Upperboundsofthesi -regularLDPCcode,forexample,thecomplexityofencodingisessentiallyquadraticintheblocklength.However,we 100000isstillquitepractical.Moreimportantly,wewillshowthat“optimized”codesactuallyadmitli Fig.1.Sensornodesdeployedtomeasureambienttemperature.sensornetworks,thecomputationalpowerandenergyresourcesmaybeverylimited.Theseconstraintsmotivatethedesignofsimpledecentralizedalgorithmsforcomputati =min( transmitantennas,where isthenumberofreceiveantennasand isthelengthofthecoherenceinterval,whereasatlowSNR,themutualinformationismaximizedbyallocatingalltransmitpowertoasingleantenna.IndexTerms oftherandom matrix .Theprobabilityofarandomrotation(andscaling) of beingcollinearwith iszero.Usingasimilarargument,wecanshowthatmatrices and haveafullrankof almostsurelyandthereforereceivers2and3cande

Download Document

Here is the link to download the presentation.
"IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007LPDecodingC"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents