/
IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007LPDecodingC IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007LPDecodingC

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007LPDecodingC - PDF document

calandra-battersby
calandra-battersby . @calandra-battersby
Follow
377 views
Uploaded On 2016-03-09

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007LPDecodingC - PPT Presentation

repeat ID: 248511

repeat

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEETRANSACTIONSONINFORMATIONTHEORY,VOL...." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007LPDecodingCorrectsaConstantFractionofErrorsJonFeldman,TalMalkin,RoccoA.Servedio,CliffStein,andMartinJ.Wainwright,Member,IEEEWeshowthatforlow-densityparity-check(LDPC)codeswhoseTannergraphshavesufÞcientexpansion,thelinearprogramming(LP)decoderofFeldman,Karger,andWainwrightcancorrectaconstantfractionoferrors.ArandomgraphwillhavesufÞcientexpansionwithhighprobability,andrecentworkshowsthatsuchgraphscanbeconstructedefÞciently.Akeyelementofourmethodistheuseofadualwitness:azero-valueddualsolu-tiontothedecodinglinearprogramwhoseexistenceprovesde- repeatÐaccumulatecodes[17],[21],[22],andaproofthatatleast errorscanbecorrectedingeneralLDPCcodesunderbit-ßippingchan-nels.Inthispaper,weshowthatLPdecoderscancorrectup underthebinary-symmetricchannel(BSC).Thisresultconsti-tutestheÞrstproofthatLPdecodinghasaninverse-exponen-tialWERonaconstant-ratecode.Furthermore,nosuchWERboundisknownformessage-passingdecoderssuchasmin-sumandsum-product(beliefpropagation)onÞnite-lengthLDPCOurresultisbasedontheexpansionoftheTannergraph,ratherthanitsgirth.MorespeciÞcally,aTannergraph isa0018-9448/$25.00©2007IEEE etal.:LPDECODINGCORRECTSACONSTANTFRACTIONOFERRORS expanderifforallsets ofvariablenodeswhere ,atleast checknodesareincidentto .Withthisdetion,ourmaintheoremisgivenexplicitlyasfollows.Theorem1: beanLDPCcodewithlength andrateatleast describedbyaTannergraph with variable checknodes,andregularleftdegree .Suppose isa -expander,where and isaninteger.ThentheLPdecodersucceeds,aslongasatmost bitsareippedbythechannel.RandomTannergraphswillmeettheconditionsofthisthe-oremwithhighprobability,andrecentworkbyCapalboetal.[4]givesefcientdeterministicconstructionsofsuchgraphs.TheproofofTheorem1isbasedonshowingthatwheneverthenumberoferrorsinthechannelisbounded,andthegraphex-pandssufciently,wecanndadualwitness:azero-valueddualsolutiontothedecodingLP.ThisdualsolutionimpliesthatthetransmittedcodewordisoptimalfortheprimalLP,andsoLPdecodingsucceeds.ApreliminaryversionofthispaperwaspresentedattheISIT2004symposium[23].Wealsonotethatsometechniquesde-velopedinthispaperhavesincebeenusedtoobtainresultsformoregeneralexpandercodes[24].A.RelatedWork:LDPCCodesThebit-ippingalgorithmforexpandercodesdevelopedbySipserandSpielman[25]hasatheoreticalperformanceguar-anteesimilartoTheorem1.Infact,whentheexpansionparam- equals ,theerror-correctionguaranteegiveninThe-orem1forLPdecodingmatchestheSipserSpielmanboundexactly.BurshteinandMiller[26]alsousegraphexpansiontoanalyzetheperformanceofvariousrelatediterativealgorithms.Withrespecttothefractionoferrorscorrectedonregulargraphs,ourresultsareroughlythesameastheirs;specically,for closeto ,bothresultsshowtheabilitytocorrect(closeto) er-rors,where istheexpansionparameter.Lentmaieretal.al.analyzeiterativecodingforLDPCcodes(aswellasotheren-sembles),andestablishthatundersuitabletechnicalconditions,theerrorprobabilitydecaysas forsomeconstant TheLPdecoderaswellasiterativealgorithmssuchassum-productandmin-sumhavetheadvantagethattheyapplyinmoregeneralsettingssuchastheadditivewhiteGaussiannoise(AWGN)channel,andexploitsoftinformationthechannel.Althoughthisentailsanincreaseinrunningtime,ourpreliminaryexperimentsindicatethatevenforthebinary-symmetriccase,LPdecoding(andotheralgorithmsthatexploitsoftinformation)performsignicantlybetterthantheippingalgorithmofSipserandSpielman[25].B.RelatedWork:OtherCodesBuiltFromExpandersExpandersalsoplayaroleingeneralizedLDPCconstruc-tions.Zmor[28]andBargandZmor[29][31]haveaseriesofpapersanalyzingexpandercodeswherethechecknodesareallowedtorepresentarbitrarylinearsubcodes(asopposedtosingleparitychecksinthecaseofastandardLDPCcode).Theyshowthatsuchcodes,togetherwithefcientmessage-passingalgorithms,canachievethecapacityoftheBSC,aswellascor-rectadversarialerrorsupto(andbeyond)theZyablovbound.GuruswamiandIndyk[32](aswellasRothandSkatchek[33])codesusingexpanders.Inlaterwork[34],theyachievetheGilbertVarsharmov(GV)boundforlowThenaturalLPdecoderforthesecodesisstrongerthantheoneobtainedbyreducingthecodetoanLDPCcodeandap-plyingthetree-basedLP[1],[2]totheassociatedfactorgraph;therefore,theresultsinthispapershouldnotbecomparedtothesemorepowerfulcodes.Furthermore,sincethepreliminaryversionofthiswork[23],wehaveshownthatLPdecodingcanachievechannelcapacity[24],usingafamilyofexpandercodesalongthelinesof[29].Whilethesemoresophisticatedexpander-basedconstructionsyieldstrongertheoreticalboundsonerrorcorrectionthanthoseknownforLDPCcodes,thecodesthemselvesaremostlyimpracticalforuseincommunicationsystems,duetotheirdependenceonlargesubcodes.(Thesizeofthesesubcodesisoftenexponentiallylargein ,where isthegapbetweenthecoderateandthedesiredbound.)There-fore,thestudyofLDPCcodesisofindependentinterest.C.OutlineTheremainderofthispaperisorganizedasfollows.InSec-tionII,weprovidebackgroundonLDPCcodes,andtheassoci-atedLPdecoderfrom[2].InSectionIII,weshowhowtoproveanerrorboundusingadualwitness;itisworthnotingthatthismethodappliestoanyLPdecoder,notjusttheoneforLDPCcodes.SectionIVisdevotedtotheproofofourmainresultusingtheexpansionoftheTannergraph.WeconcludewithsomeremarksandopenquestionsinSectionV.IntheAppendix,weshowthatgraphswithsufcientexpansionexistandcanbecon-structedefII.BACKGROUNDWebeginbyprovidingbackgroundonLDPCcodes,aswellasLPdecodingappliedtothem[2].A.LDPCCodes and beindicesforthecolumns(respectively,rows)ofthe parity-checkmatrix ofabinarylinearcode withrateatleast .TheTannergraphrepresentationofthecode isabipar-titegraph withnodesets and ,andedges variablenode andchecknode forall where .Iftheparity-checkmatrixhasaboundednumber(independentof )ofnonzeroentriesineachcolumn,wesaythatithas;thisconditiontranslatestoeachnodein havingboundeddegree.Inthispaper,wedonotrequirethatthechecknodeshaveboundeddegree.Thecodecanbevisualizeddirectlyfromthegraph .Imagineassigningtoeachvariablenode avaluein ,representingthevalueofaparticularcodebit.Aparity-checknode ifthebitsassignedtothevariablenodesinitsneighbor-hoodhaveevenparity(sumtozero ).The bitsassignedtothevariablenodesformacodewordifandonlyifallchecknodesaresatisWeassumethatthegraph isleft-regular;i.e.,thedegreeofeachvariablenode isexactlysomeconstant .Let IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007denotetheneighborsofanodeset .Forasinglenode ,welet .Foreachcheck ,let even representsalocalcodeword;inotherwords,ifweseteachbitin to ,andallotherbitsin to ,thenwesatisfycheck .Let betheofnode ,where isthelog-likelihoodratioforthe thcodebit.WhentransmittingovertheBSCwithcrossoverprobability ,wemayrescalethelog-like-lihoodratiossuchthat ifa isreceivedfromthechannelforbit ,and ifa isreceived.Weassumethatthecodeword issentoverthechannel;thisassump-tionisvalidsincethepolytopeforLDPCcodes[2]is foranybinary-inputoutput-symmetric(BIOS)channel;seeFeldmanetal.[3]forfurtherdetails.Therefore,fortheBSCwithcrossoverprobability ,wehave withprobability ,and otherwise.Foraparticularsettingofthecostvector ,let bethesetofnegative-costvariablenodes.B.TheLPDecoderforLDPCCodesrst-orderLPdecoderforLDPCcodes[2]hasanLPvariable foreachnode ,indicatingthevalueofthe codebit.Inaddition,foreachparitycheck andeachset thereisanLPvariable ,whichservesasanindicatorforusingthelocalcodeword tosatisfy .Notethatthevariable isalsopresentforeachparitycheck,andrepresentssettingallbitsin tozero.WenowgivethedecodingLPalongwithitsdual,whichweuseinthenextsection: minimize suchthat (1a) edges (1b) (1c) maximize suchthat (2a) (2b) free edges free (2c) Notethattheconstraints and areimpliedbytheotherconstraints,assumingthateverybitisconnectedtoatleastonecheck.Let bethesettingofthe variablesappropriateforwhen ;i.e.,forall and ,wehave if ,and Thedecodingalgorithmworksasfollows.First,wesolvethedecodingLPtoobtainanoptimalsolution .If ,then mustrepresentthemaximum-likelihood(ML)codeword[3].Inthiscase,weoutput ;otherwise,ifsome hasafractionalvalue,wedeclareanerror.OurLPdecoderwillsucceedif istheuniqueoptimumsolutionoftheLP.(Weremindthereaderofourpreviousassumptionthatwearesendingtheall-zeroscodeword .)AnimportantfactisthatthedecodingLPissolvableinpolynomialtimeevenifsomeofthechecknodeshavelargedegree;wereferthereadertothepapers[2],[18]fordetails.III.PROVINGRRORSINGAUALInordertoprovethatLPdecodingsucceeds,wemustshow istheuniqueoptimumoftheLP.Tobeconser-vative,weassumefailureintheeventthattheLPhasmultipleoptima,sothattheLPdecodersucceedsifandonlyif theuniqueoptimumsolution.ConsiderthedualofthedecodingLPgivenabove.IfthereisafeasiblepointofthedualLPthathasthesamecost(i.e.,zero)asthepoint hasinthede-codingLP,then isalsoanoptimalpointofthedecodingLP.Therefore,usingstandardresultsonLPduality[35],inordertoprovethattheLPdecodersucceeds,itsufcestoexhibitazero-costpointinthedual.Actually,sincetheexistenceofthezero-costdualpointonlyprovesthat isoneofpossiblymanyprimaloptima,weneedtobeabitmorecareful;inpartic-ular,wegiveadualfeasiblepointthatisstrictlyboundedawayfromitscostconstraints(2b),whichimpliesusingcomplemen-taryslackness[35]that istheuniqueoptimalsolutiontotheLP.Wecallsuchadualpointadualwitness.Thisargu-mentismadepreciseintheupcomingproof.Werefertothevalues edgeweights.Thefollowingnitionunderliesasufcientconditionforauniquezero-costdualsolution:DeÞnition1:Asettingofedgeweights ifi)forallchecks anddistinct ,wehave ,andii)forallnodes ,wehave Proposition2:Ifthereisafeasiblesettingofedgeweights,thenthepoint istheoptimumofthedecodingProof: beafeasiblesettingofedgeweights.Taking forall givesazero-costdualsolution;itiseasilyveriedthatthissolutionsatisesthedualconstraints(2a)and(2b)byapplying,respectively,conditionsi)andii)fromDetion1.(For(2a),notethatwhen ,theconstraintdescribedby(2a)isredundantforall where .)Itfollowsfromtheprecedingdiscussionthat isoptimalforthecost inthedecodingLP.Wenowshowthat istheuniqueoptimum.Thestrictinequalityinpartii)ofDenition1impliesthat forsomepositivenumber ,fromwhichitfollowsthat isanoptimalpointofthedecodingLPunderthecost where forall Nowsuppose isnottheuniqueLPoptimumundertheoriginalcostfunction .Since istheonlyfeasiblesettingofthe variableswhen ,theremustbesomeother etal.:LPDECODINGCORRECTSACONSTANTFRACTIONOFERRORSfeasiblepoint where and .But ,wehave ,whichcontradictsthefact isoptimalunder . TheprecedingresultcaneasilybegeneralizedtoanyLPdecoder,wherethedualwitnesstakesonadifferentformde-pendingonthestructureofthecodeandtheLPrelaxation.Infact,avariantofthisideawasexploredinpreviouswork[36]inthecontextofturbocodes,andhasrecentlybeenexploredformoregeneralexpandercodes[24].Atonelevel,tryingtondadualwitnessissimplyareformu-lationoftheproblemoftryingtoprovethatthetransmittedcode-wordistheoptimalprimalLPsolution.Thevalueoflookingatthedualliesintheanalyticalexibilitythatitaffordsinpartic-ular,anabilitytotradeofferrorboundqualityforeaseofanal-ysis.Take,forexample,theextremecaseinwhichthechannelisnoiseless,sothat forall .Inthiscase,ndingadualwitnessreducestondingafeasiblesettingofedgeweights,andisveryeasy:simplysetall .Ingeneral,asthenoiseincreases(andhencemorebitsgetipped),itbecomesincreas-inglydifculttondadualwitness.IV.UXPANSIONTOINDAUALThissectionisdevotedtotheproofofourmainresult,pre-viouslystatedasTheorem1.Webeginbydeningaprocedureforassigningfeasibleedgeweights ,whichthenallowsustoapplyProposition2.Ourprocedureusesaspecialsubsetofedgescalleda matching,denedinSectionIV-A.The -matchingisafunctionoftheerrorpatternreceivedfromthechannel.InSectionIV-B,weshowthatifa exists,thenwecanndafeasibleassignmentofedgeweights.InSectionIV-C,weprovethata -matchingdoesindeedexistaslongasthenumberofbitsippedbythechannelisatmostaconstantfractionof ,wheretheconstantdependsontheexpansionpropertiesofthegraph.WenishtheproofofThe-orem1inSectionIV-D.A.DenitionandNotationFortheremainderofthissection,let beaTannergraph variablenodeseachofdegree ,andmoreoverlet bean -expander,where and isaninteger.Wealsoxthefollowingparametersandsets,whichareimplicitfunctionsof and/orthecostvector .Let Notethat ,andthat isaninteger.De ,andlet bethesetofpositive-costvariablenodesoutside thathavemorethan neighborsin (i.e., Finally,wede nition2: matching isasubset oftheedgesincidentto suchthati)everycheckin isinci-denttoatmostoneedgeof ,ii)everynodein isincidenttoatleast edgesof ,andiii)everynodein isincidenttoatleast edgesof B.AssigningWeightsUsinga -MatchingWegiveourweightassignmentschemeinthefollowingthe-orem(alsoinFig.1).Theexistenceofsuchanassignmentim-pliesdecodingsuccess,byProposition2. Fig.1.AweightingschemethatsatisestheLPdualconstraints.Givenanerrorset ,weletbethenodesnotinmorethanneighborsin,andlet _U.Thematching(solidedges)containsatmostoneedgeincidenttoeachchecknode,atleastedgesincidenttoeachnodein,andatleastedgesincidenttoeachnode.Forallsuchthat,weset ,and =xforalli .Forallother,wesetall Proposition3:Ifthereisa -matchingof ,thenthereisafeasibleedgeweightassignment.Proof:Callachecknode in activatedif isincidenttoanedge of ,and .Notethatanactivatedcheckisincidenttoexactlyoneedgeof ,bythedenitionof .Weassignedgeweightsasfollows(seealsoFig.1),usingapositive thatwedenelater.Forallactivatedchecks ,wehave forsome ,and forallother .Set ,andset forallother Forallotherchecks,setallincidentedgeweightstozero.Thisweightingclearlysatisesconditioni)ofafeasibleweightassignment.Forconditionii),wedistinguishthreecases.Forthefollowingargument,notethatalledgesin incidenttonodes receiveweight ,allotheredgesin receiveweight andalledgesnotin receiveweighteither or 1)Foravariablenode ,wehave .Also,atleast oftheedgesincidentto arein (andeachhasweight ).Allotherincidentedgeshaveweighteither or Ineithercase,eachhasweightatmost ,andsothetotalweightofincidentedgesisatmost .Thisislessthan aslongas 2)If ,then .Atleast of sincidentedgesarein ,but(trivially)notincidentto ;theseedgeshave .Allotherincidentedgeshaveweighteither or .Ineithercase,theyeachhaveweightatmost ,andsothetotalweightofincidentedgesisatmost whichislessthan aslongas 3)Theremainingcaseiswhen ,andinthiscase .Thedenitionof impliesthat hasatleast neighborsnotin ,andsoatmost incidentto havenonzeroweight.Wearethereforeinthesamesituationasinthepreviouscase:allnonzeroweightsareatmost ,andsothetotalweightofincidentedgesisatmost ,whichislessthan aslongas Summarizingourconditionson ,wehave IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007 Fig.2.Aninstanceofmax-owusedtoshowthatgraphexpansionimpliesa;-matching(Proposition4).Alledgeshaveunitcapacity,excepttheedgesleavingthesource,whichhavecapacityThereisafeasible satisfyingtheseconditionsaslongas ,whichistruebythedenitionof . C.ExpansionImpliesa -MatchingToconstructourfeasibleweightassignment,itremainstoshowthatwecanconstructa -matching.Todoso,weusetheexpansionofthegraph.Proposition4: isa -expanderwith ,and ,then hasa Proof:Weconstructthe -matching bysettingupaowinstance(seethebooks[37],[38]forbackgroundonow).Wewillconstructthisowinstanceusingthevari-ablenodes ,thechecknodes ,anddirectedversionsoftheedgesincidentto .Wewillalsointroducetwonewnodes(asourceandasink),aswellasedgesincidenttothosenodes.Weconstructtheowinstanceasfollows(seeFig.2),withallintegercapacities:Foreveryedge in where and ,makeadirectededge withcapacity Createasource ,andmakeanewedgewithcapacity from toeveryvariablenode.Createasink ,andmakeanewedgewithcapacity fromeachchecknode to Weclaimthatifthereexistsaowofvalue inthisinstance,thenthereisa -matching .Let beaowofvalue ;withoutlossofgenerality,wemayassume integral[38].Weset tobethesetoforiginaledges(from to )withunitowin .Since hasvalue ,everyedgeoutofthesource tothenodesof mustbesaturated.Itfollowsthatexactly edgesoutofeach haveaunitofowin .Thus, esconditionii)ofa andsince ,theset ismorethansufcienttosatisfyconditioniii)aswell.Theedgesfromeachcheck thesinkhavecapacity ,andsoatmostoneincomingedgetoeachcheckiscarryingowin .Itfollowsthatatmostoneedge isincidenttoeachcheckin ,andthus, conditioni)ofa Soitremainstoshowthatthereexistsaowofvalue orequivalently[38]thattheminimum - cutisatleast .Let describetheminimum - cutasfollows: and arethevariableandchecknodes,respectively,onthesamesideofthecutasthesource .Similarly, and arethevariableandchecknodes,respectively,onthethesamesideofthecutasthesink .Thisminimum - cutisdepictedinFig.3.Fornodesets and ,let denotethetotalcapacityofedgesgoingfrom to .Thevalueoftheminimum - cutis Fig.3.Aminimum C ;V ;C intheowgraphofFig.2.Oneofeachedgetypeisshown,andtheedgesthatcontributetothesizeofthecutareshownwithsolidlines.Everyedgehasunitcapacityexceptthoseleavingthesource,whichhavecapacityexactly .Notethat ,and Weclaimthatwithoutlossofgenerality,therearenoedgesintheminimum - cutfrom to ;i.e., .Toseethis,consideranedge ,where and .Ifwemove tothesourcesideofthecut,thenweaddatmost tothecutvalue,sincetheonlyedgeleaving istheonetothe .However,wealsosubtractatleast fromthecutvalue,becausetheedge isnolongerinthecut.So,wehavethattheminimum - cuthasvalue (3a) where(3a)followsfrom (sincetherearenoedges to ),and(3b)followsfromtheexpansionof . WenotethatwehaveessentiallytakentheLPdualtwice:onceinreasoningaboutadualwitness,andthenagainbyap-plyingthemax-owmin-cuttheorem.Itmightbeinterestingtoseeamoredirectconstructionofthematching.ProofofOurMainTheoremBeforeproceedingtotheproofofTheorem1,werequirethefollowing.Lemma5: ,where .Then,wehave Proof:Assumetothecontrarythat .Thenthereissomesubset where .Considerthe .Since wehave byourassumptionon .Therefore,thissetexpands,andwehavei): Furthermore,wehave etal.:LPDECODINGCORRECTSACONSTANTFRACTIONOFERRORSConsidertheset .Thesearetheedgesfrom arenotincidentto .Eachnodein hasatmost suchedges,bythedenitionof .Therefore, andwehaveii): Combiningtheinequalitiesi)andii)andusingthede ,weobtain whichisacontradiction. Wearenowreadytoproveourmaintheorem.Theorem1: beaLDPCcodewithlength andrateat describedbyaTannergraph with variable checknodes,andregularleftdegree .Suppose isa -expander,where and isaninteger.ThentheLPdecodersucceeds,aslongasatmost bitsareippedbythechannel.Proof:Byassumption, andso,byLemma5,wehave .Thisimplies .Therefore,byProposition4,thereexistsa -matchingof ,andsobyProposition3thereexistsafeasibleweightassignment.UsingProposition2,weconcludethat istheuniqueoptimumoftheLP,andsothedecodersucceeds. Foranyconstantratebetween and ,arandomgraphwillmeettheconditionsoftheabovetheoremforsome asrequiredandsomeconstant ;alsoexplicitfamiliesofsuchgraphscanbeconstructedefciently(wediscussthismoreintheAp-pendix).AsanexampleofTheorem1,letusset .Using -expander,Theorem1assertsthattheLPdecoderwillsucceediffewerthan bitsareippedbythechannel.Interestingly,thisresultmatchestheparametersofthestatementgivenbySipserandSpielman[25]intheoriginalpaperonex-pandercodes(i.e.,decodingsuccessiffewerthan usingan -expander).V.CWehavegiventherststrongWERboundforLPdecoding;furthermore,thisboundisbetterthananynite-lengthboundknownfortheconventionalmessage-passingdecoders.Thispaperraisesanumberofopenquestions.ItwouldbeinterestingtoseeanimprovementintheresultsforLDPCcodes.Thefractionoferrorprovedhere( ,seeAppendix)isquitefarfromtheperformanceofLDPCcodesobservedinpractice.Also,constraining tobeanintegercouldrequirearatherlargedegree.Bothoftheseproblemsarearesultoftheparticularmethodwefoundforconstructingadualwitness,andarenotnecessarilyadeciencyinLPdecodingitself.Onecouldimproveourresultsbyamorecarefulweightingscheme,perhapsusinggraphstructuresthataremorelocalizedthansetexpansion.Thenextlogicalstepistoadaptourtechniquestodifferentcodesandchannels.Theideaofconstructingadualsolutionwithvaluezerotoprovedecodingsuccessappliestoany [3]LPdecoderandmemorylesssymmetricchannel(suchastheAWGNchannel).Inafollow-uptothiswork,asubsetofthecurrentauthorshasshown[24],usingadualwitness,thatLPdecodingwithexpandercodescanachievethecapacityofanymemorylesssymmetricchannelinwhichthebitwiselog-likelihoodratioisboundedbysomeconstant.Additionally,aboundisprovedfortheadversarialchannelthatisstrongerthantheonegivenhere.Itshouldbenoted,however,thatexpandercodesaremuchlesspracticalthanLDPCcodes.Expandercodesmighthaveveryalbeitconstantvariabledegree,andthusarenotusefulforsmallnitelengths.Turbocodespresentanotherpromisingapplicationofthetechniquesdevelopedinthispaper.Sincethedistanceofturbocodesisingeneralsublinear[39],onecannotproveafractionoferrorresult.However,provingthattheWER(oftheturbocodeLPdecoderin[17],[18])goestozeroastheblocklengthincreases(forreasonablyhighrates)wouldbeasignicantresult.Asfarastheauthorsareaware,nosuchnite-lengtherrorboundisknownforturbocodesofanyconstantrate(otherthantheresultsin[17],[22],[21]forthe cyclecodeacodewithlogarithmicdistance).XISTENCEANDONSTRUCTIONOFXPANDERSInthisappendix,wegivetheoremsshowingthatthereexistfamiliesofexpandergraphs,andweciteresultsprovingthattheseexpanderscanbeconstructedefciently.Wegivethesere-sultssimplyforthesakeofcompletenessofourmainresultthatLDPCcodeswithLPdecodingcancorrectaconstantfractionoferrors.Theresultinggraphswillhavelargedegreerequirementsandsmallerror-correctingcapability,andsoimprovingthesere-sultsisanimportantsteptowardmakingthesecodespractical.A.ExpansionFromRandomGraphsUsingtheprobabilisticmethod,onecanshowthefollowing.Proposition6: and beanyxedconstants,andlet besuchthat isanintegerwhichisat .Thenforany suchthat thereisaTannergraphwith variablenodes, checknodes,andregularleftdegree whichisa -expander,where Proof:Weconsiderrandom -bipartitegraphswhichareformedasfollows.For thvariablenodeuniformlypicksa -elementsubsetof andformsedgestothesecheckAnygraphformedthiswayis -regularontheleft.Welet denote ,theaveragedegreeofthechecknodes.Wenoterstthateachsetconsistingofasinglevariablenodeclearlyexpandsbyafactorofexactly .Nowxavalue ,aset IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.1,JANUARY2007 ofleft-verticeswhere ,andaset ofright-verticesofsize (notethat isaninteger).Foreachindividualvertexin ,theprobabilitythatall ofitsneighborsliein is Sinceeachleft-vertexchoosesitsneighborsindependentlyoftheotherleft-vertices,theprobabilitythat isatmost .Sincethereare sets of left-verticesand sets of right-vertices,theprobabilitythatsetof left-verticeshasitsneighborhoodofsizeatmost isatmost (5)Let and ,so(5) .Itiseasilycheckedthatfor thequantity isatmost ,andthuswehave Thuswithprobabilityatleast ,wehavethatarandomgraph formedasdescribedaboveisa -expanderfor .Plugginginfor and andrecallingthat thepropositionisproved. TogetherwithTheorem1,Proposition6impliesthatthereareLDPCcodesofanyconstantrateforwhichLPdecodingcorrectsaconstantfractionoferror.Asaconcreteexample,ifwetake , ,and ,wehavethatthereisafamilyofLDPCcodesofrate forwhichLPdecodingcan fractionoferrors.WenotethatamorecarefulanalysisoftherandombipartitegraphsusedtoproveProposition6givesastrongerboundon butthisbounddoesnothaveaconvenientclosedform.UsingthisstrongerbounditcanbeshownthatforthespecicfamilyofLDPCcodesdescribedabove(with , ,and )LPdecodingcancorrect fractionoferrors.Toseethis,notethattheproofofProposition6impliesthattheprobability(overourchoiceofarandomgraph)thatanysetofsizeupto failstoexpandisatmost ,where isde-nedin(4).Usingadifferentboundonbinomialcoefwecanshowthatforsome tobedescribedbelow,allsetsofsize failtoexpandwithexponentiallylowprob-ability,where isanyxedconstantvalueintheopeninterval .Combiningthesefacts,wehavethatarandom isa -expanderwithprobabilityatleast Inordertoobtainthesharperresult,wenowapplythefol-lowingentropybound[40]onthebinomialcoef whichisatighterboundthanthepreviouslyused bound.Using , and thisgives Thus,if isanyconstantvaluesuchthat wethenhavethat,withprobability ,allsetsofsize satisfytherequiredexpansion.Inequality(6)doesnotseemtoyieldaniceclosed-formexpressionfor .However,onecanverifythat,e.g.,for , ,and ,anyvalue causes(6)tobenegative.ThisgivesthestrongerLPdecodingperformanceboundclaimedearlier.B.ExplicitConstructionsofExpandersRecently,Capalboetal.[4]gavetherstexplicitconstruc-tionofexpanders(namely,with arbitrarilycloseto ),usingthezig-zaggraphproduct[41]throughtheframeworkofrandomnessconductors.Theirworkimpliesthefollowing.Proposition7: and anyxedconstants.Thenforany suchthat thereisanefcientlyconstructibleTannergraphwith vari-ablenodes, checknodes,andregularleft-degree whichis -expander,where ,and Thus,thereareefcientlyconstructibleLDPCcodesofanyconstantrateforwhichLPdecodingcorrectsaconstantfractionoferrors.Notethatwhiletheabovepropositiondoesnotdirectly tobeaninteger,thisisnotaproblemsincegivenany thereissome suchthat and isaninteger(notethatany -expanderisclearlyalso -expanderforany ).Thus,inordertoapplyTheorem1,itissufcienttochoosesome fortheCapalboetal.CKNOWLEDGMENTWewouldliketothankG.DavidForney,Jr.,DavidKarger,RalfKoetter,andPascalVontobelforhelpfuldiscussions.Inad-dition,wethanktheanonymousreviewersfortheirconstructivesuggestionsthathelpedtoimprovethepaper.[1]J.Feldman,M.J.Wainwright,andD.R.Karger,Usinglinearpro-grammingtodecodelinearcodes,Proc.37thAnnu.Conf.Informa-tionSciencesandSystems(CISS,Baltimore,MD,Mar.2003.2003.ÑÑ,ÒUsinglinearprogrammingtodecodebinarylinearcodes,Trans.Inf.Theory,vol.51,no.3,pp.954972,Mar.2005.[3]J.Feldman,D.R.Karger,andM.J.Wainwright,LPdecoding,Proc.41stAnnu.AllertonConf.Communication,Control,andCom-,Monticello,IL,Oct.2003.[4]M.Capalbo,O.Reingold,S.Vadhan,andA.Wigderson,nessconductorsandconstant-degreeexpansionbeyondthedegree/2barrier,Proc.34thACMSymp.TheoryofComputing,Montreal,Canada,May2002,pp.659[5]R.Koetter,2002,personalcommunication. etal.:LPDECODINGCORRECTSACONSTANTFRACTIONOFERRORS[6]R.KoetterandP.O.Vontobel,Graph-coversanditerativedecodingofnitelengthcodes,Proc.3rdInt.Symp.TurboCodes,Brest,France,Sep.2003.[7]C.Berrou,A.Glavieux,andP.Thitimajshima,NearShannonlimiterror-correctingcodinganddecoding:Turbo-codes,Proc.IEEEInt.Conf.Communications,Geneva,Switzerland,May1993,pp.[8]R.Gallager,Low-densityparity-checkcodes,IRETrans.Inf.Theoryvol.IT-8,pp.2128,Jan.1962.[9]T.RichardsonandR.Urbanke,Thecapacityoflow-densityparity-checkcodesundermessage-passingdecoding,IEEETrans.Inf.Theory,vol.47,no.2,pp.599618,Feb.2001.[10]T.Richardson,A.Shokrollahi,andR.Urbanke,Designofcapacity-approachingirregularlow-densityparitycheckcodes,IEEETrans.Inf.Theory,vol.47,no.2,pp.619637,Feb.2001.[11]M.Luby,M.Mitzenmacher,A.Shokrollahi,andD.Spielman,provedlow-densityparity-checkcodesusingirregulargraphsandbe-liefpropagation,Proc.1998IEEEInt.Symp.InformationTheoryCambridge,MA,Oct.1998,p.117.[12]R.M.Tanner,Arecursiveapproachtolowcomplexitycodes,Trans.Inf.Theory,vol.IT-27,no.5,pp.533547,Sep.1981.[13]C.Di,D.Proietti,T.Richardson,E.Telatar,andR.Urbanke,lengthanalysisoflow-densityparitycheckcodes,IEEETrans.Inf.,vol.48,no.6,pp.15701579,Jun.2002.[14]N.Wiberg,CodesandDecodingonGeneralGraphs,Ph.D.disserta-tion,LinkpingUniv.,Linkping,Sweden,1996.[15]G.D.Forney,Jr.,R.Koetter,F.R.Kschischang,andA.Reznik,theeffectiveweightsofpseudocodewordsforcodesdenedongraphswithcycles,Codes,SystemsandGraphicalModels.NewYork:Springer,2001,pp.101[16]B.Frey,R.Koetter,andA.Vardy,Signal-spacecharacterizationofit-erativedecoding,IEEETrans.Inf.Theory,vol.47,no.2,pp.766Feb.2001.[17]J.FeldmanandD.R.Karger,Decodingturbo-likecodesvialinearProc.43rdAnnu.IEEESymp.FoundationsofCom-puterScience(FOCS),Vancouver,Canada,Nov.2002.[18]J.Feldman,DecodingError-CorrectingCodesviaLinearProgram-Ph.D.dissertation,MIT,Cambridge,MA,2003.[19]M.J.Wainwright,T.S.Jaakkola,andA.S.Willsky,MAPestimationviaagreementon(hyper)trees:Message-passingandlinearprogram-mingapproaches,Proc.40thAnnu.AllertonConf.Communication,ControlandComputing,Monticello,IL,Oct.2002.2002.ÑÑ,ÒExactMAPestimatesviaagreementon(hyper)trees:Linearprogrammingandmessage-passing,IEEETrans.Inf.Theory,vol.51,no.11,pp.36973717,Nov.2005.[21]N.HalabiandG.Even,Improvedboundsontheworderrorproba-bilityofRA(2)codeswithlinear-programming-baseddecoding,Trans.Inf.Theory,vol.51,no.1,pp.265280,Jan.2005.[22]G.EvenandN.Halabi,ImprovedboundsontheworderrorprobabilityofRA(2)codeswithlinearprogrammingbaseddecoding,Proc.41stAnnu.AllertonConf.Communication,Control,andComputingMonticello,IL,Oct.2003.[23]J.Feldman,T.Malkin,R.A.Servedio,C.Stein,andM.J.Wainwright,LPdecodingcorrectsaconstantfractionoferrors,Proc.IEEEInt.Symp.InformationTheory,Chicago,IL,Jun./Jul.2004,p.68.[24]J.FeldmanandC.Stein,LPdecodingachievescapacity,Proc.Symp.DiscreteAlgorithms(SODA,Vancouver,Canada,Jan.2005.[25]M.SipserandD.Spielman,Expandercodes,IEEETrans.Inf.,vol.42,no.6,pp.17101722,Nov.1996.[26]D.BurshteinandG.Miller,Expandergraphargumentsformes-sage-passingalgorithms,IEEETrans.Inf.Theory,vol.47,no.2,pp.790,Feb.2001.[27]M.Lentmaier,D.V.Truhachev,K.S.Zigangirov,andD.J.Costello,AnanalysisoftheblockerrorprobabilityperformanceofiterativeIEEETrans.Inf.Theory,vol.51,no.11,pp.3834Nov.2005.[28]G.Zmor,Onexpandercodes,IEEETrans.Inf.Theory,vol.47,no.2,pp.835837,Feb.2001.[29]A.BargandG.ZErrorexponentsofexpandercodes,Trans.Inf.Theory,vol.48,no.6,pp.17251729,Jun.2002.2002.ÑÑ,ÒErrorexponentsofexpandercodesunderlinear-complexityde-SIAMJ.Discr.Math.,vol.17,no.3,pp.426445,2004.2004.ÑÑ,ÒConcatenatedcodes:Serialandparallel,IEEETrans.Inf.,vol.51,no.5,pp.16251634,May2005.[32]V.GuruswamiandP.Indyk,Near-optimallinear-timecodesforuniquedecodingandnewlist-decodablecodesoversmalleralpha-Proc.34thAnnu.Symp.TheoryofComputing(STOC)Montreal,Canada,May2002.[33]R.M.RothandV.Skachek,Onnearly-MDSexpandercodes,Proc.IEEEInt.Symp.InformationTheory,Chicago,IL,Jun.2004,p.[34]V.GuruswamiandP.Indyk,cientlydecodablelow-ratecodesmeetingtheGilbertVarshamovbound,Proc.ACM-SIAMSymp.DiscreteAlgorithms(SODA),NewOrleans,LA,Jan.2004.[35]A.Schrijver,TheoryofLinearandIntegerProgramming.NewYork:Wiley,1987.[36]J.Feldman,D.R.Karger,andM.J.Wainwright,Linearprogram-mingbaseddecodingofturbo-likecodesanditsrelationtoiterativeProc.40thAnnu.AllertonConf.Communication,Con-trol,andComputing,Monticello,IL,Oct.2002.[37]T.Cormen,C.Leiserson,R.Rivest,andC.Stein,IntroductiontoAl-.Cambridge,MA:MITPress,2001.[38]R.K.Ahuja,T.L.Magnanti,andJ.B.Orlin,NetworkFlows.Engle-woodCliffs,NJ:Prentice-Hall,1993.[39]L.Bazzi,M.Mahdian,S.Mitter,andD.Spielman,Theminimumdistanceofturbo-likecodes,unpublishedmanuscript,2001.[40]T.CoverandJ.Thomas,ElementsofInformationTheory.NewYork:Wiley,1991.[41]O.Reingold,S.Vadhan,andA.Wigderson,Entropywaves,thezigzaggraphproduct,andnewconstant-degreeexpandersandextractors,Proc.41stIEEESymp.FoundationsofComputerScience(FOCS),Re-dondo,CA,Nov.2000,pp.3