/
IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X3II.Definitio IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X3II.Definitio

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X3II.Definitio - PDF document

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
389 views
Uploaded On 2015-08-02

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X3II.Definitio - PPT Presentation

loglog log5istheshiftoperatorforeachTheactionofonthefunctionisgivenbydenotesshiftinvariantprobabilitymeasuresForwede ID: 98863

loglog log(5)istheshiftoperator foreach.Theactionofonthefunctionisgivenby):=denotesshift-invariantprobabilitymeasures.Forwede

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEETRANSACTIONSONINFORMATIONTHEORY,VOL...." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X3II.Definitions,notationandmainresultsA.NotationThecardinalityofany“nitesetisdenotedby.Let,...,r(withthediscretetopology)and:=betheproductspace.indicatesthemapping,...,).Note[w]denotesthespaceofBorelprobabilitymeasureson.Weusetodenotetheprobabilitymeasureonwhichistheproductoftheequiprobabledistributiononeachfactor.Given,therestrictionofisdenoted,sothatfor loglog log(5)istheshiftoperator,(,foreach.Theactionofonthefunctionisgivenby):=denotesshift-invariantprobabilitymeasures.Forwede“netheshiftspacebyyn1)�0},:=nXŠ1n(n).(6)Thusifandonlyiff1,...,n]n1)�0forall:=supdenotesthe-algebrageneratedby.Wewritetomeanthefunctionmeasurable.localifthereexistssothat.Weusetheweaktopologyon(see[2]).Thereexistsasequenceoflocalfunctionswhichdeterminesthistopology.Infactonecouldtaketobethesetofindicatorfunctionsofeachwordinforeach.Theintegralofwithrespecttoisdenotedbyf,actsonmeasuresbyf,SSf,Weuse)todenotestheempiricalmeasure,):= (7)wheredenotesthemeasureconcentratedonthepoint).Thisisconvenientnotation,butitsconcealstherealsigni“cance.Measuresconcentratedatsinglepointsofthespaceareunimportant.However,thegiveseasyaccesstothestatisticsof).For):=1if0otherwise.givesthefractionoftimesthecharacterappearsinthe“rstentriesof.Byusingfunctionsofwhichdependonlyon,wecanusetoobtainpairprobabilitydistributions;functionswhichdependonyielddistributionson.Forthesetobeusefulweneedtobemuchlargerthan.Acomplicationisthefactthattheprobabilitydistributionsonresultingfrom)dependon,...,.Intheanalysisbelowwehavetoprovethat,inthelimitsweconsider,thedependenceof)onfor�knisnegligible.Shannonentropy):=lim )(8)):==n1)loggn1).(9)Wehave)=log,sincespeciÞcI-divergencewithrespecttoisgivenby):=lim n1)log n1),(10)whenthelimitexists.Forall)existsandequals)+logB.Mainresultsbeagivenstationaryprobabilitymeasure.istheshiftspacede“nedby(6).denotesthesetofBorelprobabilitymeasureson,andtheshift-invariantprobabilitymeasureson.Ourmainhypothesesareformulatedforconvenienceasfollows.H1Foranyneighbourhood,andforany0,thereexistsanergodicsuchthat IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X51and:=2.Letwbethewordconsistingof0sfollowedby1s.If)=w,thenandonlyif=1,sown,Bn,B.However,lemmaIV.1showsthat,if,whereisclosedandopen,thenforsucientlylargen,Fn,GTheoremII.2:Foreachclosedsubsetlimsup logn,F(18)Ifsatis“eshypothesisH1,thenforeachopensubsetliminf logn,G(19)TheoremII.1isformulatedforthefullshiftspace.FortheslightlystrongertheoremII.2,theupperboundwillbeshowntofollowfromthatfor;thelowerbounddoesnotobtainingeneral,butisvalidunderH1.ThenextresultsrelatetothelargedeviationprinciplefortheempiricalmeasurerelativetoPropositionII.1:satisfyH2.Thenforeach):=lim n1)log n1)(20)existsandequalsPropositionII.2:satisfyH2.Letbeaclosedsubsetof.Thenlimsup log(21)PropositionII.3:satisfyH1andH2.Letbeanopensubsetof.Thenliminf log(22)iscompact,theabovepropositionsshowthatsatis“esalargedeviationprinciplewithratefunction),whenH1andH2obtain.Thesametechniquesallowustocomputespeci“cR´enyientropiesandguesssworkmoments.Note,however,thatasetwhichsupportsthespeci“cguessworkmomentofcanbedistinctfromonewhichsupports.ForexampleintheBernoulli casewith,forlargethemeasureisconcentratedonwhichhave3,whilethedominantterminthe=1guessworkmomentcomesfromwhichhave 1/3/( 1/ TheoremII.3:satisfyH1andH2.If=1,then log (23)TheoremII.4:satisfyH1andH2.If1,then loggn1)rankkn1))=(1+)sup (24)III.ApplicationtodecodingProofsoftheaboveresultsaregiveninasectionbelow.Firstwediscusstheimplicationsandgiveanapplication.andletbeaclosedneighbourhoodofsuchthat,thenthesamplestatisticsofapproximatethedistributionof.Thenatureoftheapproximationdependsonthechoiceofneighbourhood.TheoremII.2meansthatthenumberofwordsoflengthwiththese IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X7ŠPG0156118612192244226732851036TABLEIIProbabilityandexpectedguesses,=2000Thedicultyisthatthisconditionaldistributionmaynothaveasimplemathematicalform.Acasewhichdoeshavearelativelysimpleformisasfollows.Thedistributionofisthedoubleevenshift:eachrunŽof1sor0smusthaveevenlength,andallallowedwordsoflengthhaveequalprobability.Thedistributionofisobtainedfrombyrequiringthattheeventsareindependentwithprobability.Wetaketobeeven.Foralongsequence,byshiftingtheindexby1ifnecessary,wecanarrangeforonlywheniseven.We,...,v2adjacento-pairs:()withodd.Wesaythatadefectoccursatisoddand,whichmeansthatexactlyoneofandobtains.Theprobabilitythatthereareexactlydefectsandexactlyo-pairsbothofwhichhavebeenchangedisGivendefects,thereare2choicesforwhichmemberofeachofthesepairswhichhaschanged;thisiscombinedwiththeprobabilitiescorrespondingtoo-pairsbothofwhichhavechanged.Onecanshowthatinthiscaseis2fortheprobabilitydistributionofthenon-defecto-pairs(thecorrespondingresultalsoholdsfor).Thuswecomputeforthedistribution+(1,...n,whichwedenoten,k.ItiseasytocomputethecorrespondingR´enyientropy:n,k+(1Theexpectednumberofguessesisn,k+(1n,kn,k,weobtain(1+4TableIIshowstheresidualprobabilityandexpectednumberofguessesfortruncatedguessingallowingforuptochangedo-pairsanddefects.IV.ProofsForaproofoftheoremII.1see[2],section6.2.WeprovetheoremII.2usingtheoremII.1,notingthatisaclosedsubsetofandisaclosedsubsetofLemmaIV.1:closedandopen.Thenthereexistssuchthatforalln,Fn,GProof:Iftherewerenosuch,thenwecould“ndasequence)suchthatF,T(28)M\(29) IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X9Theabovecorollaryandthewell-knownlimit(8)provepropositionII.1.LemmaIV.4:For0andasinlemmaIV.3,thereexistaninteger,numbers0,...,Kandsets,...,Ksothateachisopenandeachclosedand(41)| ,(42)| (43)Proof:and  (44)(45)(46) ProofofpropositionII.2:Usingthenotationof(15)from(18)wehavelimsup logn,F(47)Also log logn,F+maxn,F loggn1).(48)FromlemmaIV.3wededucethatforandwn,F loggn1) Šaj+2, e, aj+2.(49)FrompropositionII.1wededuce(50)Nowlimsup log)(51)equalsthemaximumoverthecorrespondinglimsupswithreplacedby.Wethenhavelimsup logmax)+4(52)0isarbitrary,thepropositionfollows. ProofofpropositionII.3:beopenandlet.Thenthereexistssothat.From(19)given0,forallsucientlylarge logn,G(53)ByanargumentsimilartothatintheproofofpropositionII.2,(54) IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X11maxn,FFn1).(65)Using(49)andthebound (66)wededucelimsup logmaxn,FFn1) maxlimsup (loglog((67):=limsup log(68)andthenchoosesothat(1+(1+,...,N(69),wehavemaxlimsup (loglog(max+max=(1+(70)becauseif,sothatif,wehave(1+(1+(71)Usingthesametechniquesasinthepreviousproof,wededucelimsup loggn1)rankkn1)) supMS(1+(72)Nextweusethesecondinequalityin(66)todeducen,FFn1)rank n,FFn1)(73)foreachn,Gn,F,wehaveliminf loggn1)rankkn1))supMS(1+(74)Thiscoversthe0case.The0issimilar,using (75) IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.XX,NO.Y,MONTH200X13 CharlesEd.PÞsterreceivedthePh.D.degreefromtheSwissFederalInstituteofTechnologyinZ¬urich,Switzerland.HehasheldresearchpositionsattheZentrumf¬urinterdisziplin¬areForschunginBielefeld,Germany;atCNRSinMarseille,France;andatRutgersUniversityinNewBrunswick,N.J.USA.Since1979,hehasaresearchandteachingpositionattheSwissFederalInstituteofTechnologyinLausanne,Switzerland.Hehasworkedinstatisticalmechanics,quantumtheory,andappliedprobability,inparticularonGibbsrandomÞelds.Hiscurrentresearchinterestsareinapplicationoflargedeviationstheorytoinformationtheoryandergodictheory. WayneG.SullivanreceivedaD.Phil.inMathematicsfromOxfordUniversityin1968afterreceivinganundergrad-uatedegreeinChemistryfromGeorgiaInstituteofTechnology.OnthecompletionofhisD.Phil.,hereturnedtotheGeorgiaInstituteofTechnologyasanAssistantProfessorinMathematics.In1973hemovedtoDublin,initiallytotheDublinInstituteforAdvancedStudiesandthentotheDepartmentofMathematics,UniversityCollegeDublin.HeiscurrentlyonleaveofabsencefromUCD,workingasSeniorResearcherattheCommunicationsNetworkResearchInstituteoftheDublinInstituteofTechnology.Hiscurrentinterestistheapplicationoflargedeviationtechniquestoproblemsininformationtheory,symbolicdynamicsandnetworks.