PDF-IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.51,NO.5,MAY2005ConcatenatedCod

Author : giovanna-bartolotta | Published Date : 2016-03-08

ontheminimumdistanceForthesecodesasoftdecisionreliabilitybasedlineartimedecodingalgorithmisintroducedthatcorrectsanyfractionoferrorsuptoalmost Forthebinarysymmetricchannelthisalgorithm

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "IEEETRANSACTIONSONINFORMATIONTHEORY,VOL...." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.51,NO.5,MAY2005ConcatenatedCod: Transcript


ontheminimumdistanceForthesecodesasoftdecisionreliabilitybasedlineartimedecodingalgorithmisintroducedthatcorrectsanyfractionoferrorsuptoalmost Forthebinarysymmetricchannelthisalgorithm. D.N.Ku,S.Glagov,J.E.MoorewPAbdominalAortaExperimencularSur,Vol.9,No.2,pp.309-315(1989).(1989).M.Lei,C.KleinstreuerandJ.P.Archie,\Hemo-dynamicSimulationsand,Vol.119,pp.343-348(1997).(1997).D.P.Giddens, concatenatedzigzagcodewithfourconstituentencoderswithinterleaverlength65536,yieldsabiterrorrate(BER)of at0.9dBand1.4dBawayfromtheShannonlimitbyoptimal(APP)andlow-costsuboptimal(MLA)decoders,respective repeat Fig.1.Sensornodesdeployedtomeasureambienttemperature.sensornetworks,thecomputationalpowerandenergyresourcesmaybeverylimited.Theseconstraintsmotivatethedesignofsimpledecentralizedalgorithmsforcomputati right-handsideof(44) jDj (p2)n+p2 l rrArrr(p) r h(l) )=(+1) s=0rs s(p+1) =1 jDj (p2)n+p2 l=0 rrrArrr(p)n =1 1)(andtheassertionofthelemmafollows. [1]A.AshikhminandS.Litsyn,“Upperboundsofthesi Foranyoddprime,similarconditionssuchthat-arybentweregivenin[7],[12],andsomeresultswere 2i=1cix1+2iZ2 etal.:NEWCONSTRUCTIONSOFQUADRATICBENTFUNCTIONSINPOLYNOMIALFORM5761Further,byvirtueofthelinksbetw -regularLDPCcode,forexample,thecomplexityofencodingisessentiallyquadraticintheblocklength.However,we 100000isstillquitepractical.Moreimportantly,wewillshowthat“optimized”codesactuallyadmitli TROPPetal.:DESIGNINGSTRUCTUREDTIGHTFRAMESVIAANALTERNATINGPROJECTIONMETHOD189Notethatthereisamajorconceptualdifferencebetweentheuseofnitemodelsinthenumericalcalculationofinmensionalframesandthedesignof Fig.1.Two-userGaussianinterferencechannel.basicinformationtheorymodeltostudythisquestionisthetwo-userGaussianinterferencechannel,wheretwopoint-to-point Authorized licensed use limited to: Hewlett-Pack =min( transmitantennas,where isthenumberofreceiveantennasand isthelengthofthecoherenceinterval,whereasatlowSNR,themutualinformationismaximizedbyallocatingalltransmitpowertoasingleantenna.IndexTerms GAFAGeometricAndFunctionalAnalysisISOPERIMETRYOFWAISTSANDCONCENTRATIONOFMAPSM.Gromov1WaistoftheSphereTheoremLetbeacontinuousmapwhereistheunit Vol()).Then( Vol.13,2003ISOPERIMETRYOFWAISTSANDCONCENTRATI oftherandom matrix .Theprobabilityofarandomrotation(andscaling) of beingcollinearwith iszero.Usingasimilarargument,wecanshowthatmatrices and haveafullrankof almostsurelyandthereforereceivers2and3cande InterestsIambroadlyinterestedinTheoreticalComputerScienceandspeci28callyinCodingTheoryPseudo-randomnessComplexityTheoryandAdditiveCombinatoricsWork2018-2020PostdoctoralResearcherTheorygroupMicrosoftRe Vol.6(2009)1{33ISSN:1549-5787DOI: 10.1214/08-PS141 Asurveyofresultsfordeletionchannelsandrelatedsynchronizationchannels  MichaelMitzenmacher y HarvardUniversity,SchoolofEngineeringandAppliedSciencese

Download Document

Here is the link to download the presentation.
"IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.51,NO.5,MAY2005ConcatenatedCod"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents