/
Chapter 9 Confounding If the number of factors or levels increase in a Chapter 9 Confounding If the number of factors or levels increase in a

Chapter 9 Confounding If the number of factors or levels increase in a - PDF document

celsa-spraggs
celsa-spraggs . @celsa-spraggs
Follow
441 views
Uploaded On 2016-03-08

Chapter 9 Confounding If the number of factors or levels increase in a - PPT Presentation

is said to be estimable if there exist a linear function of the observations on random variable such that Now there arise two questions Firstly what does confounding means and secondly ID: 247184

said

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter 9 Confounding If the number of f..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Analysis of Variance Shalabh, IIT Kanpur CKaper  If Ke uer of facor or OeveO Lcreae L a facorLaO e[perLe Ke Ke uer of reae NoZ Kere arLe Zo queLo. FLrO\ ZKa doe cofoudLJ ea ad ecodO\ KoZ doe L Ke A Babab | CKaper  | CofoudLJ | Suppoe Ke foOOoZLJ OocN arraJee L oped BOocN 1 BOocN 2 TKe OocN effec of OocN 1 ad 2 are ad  repecLveO\ Ke Ke averaJe repoe correpodLJ o reae coLaLo abab    1 1 EyaaEybb yababrepecLveO\. +ere    1 yaybyaby ad    1 abab  deoe Ke repoe ad reae correpodLJ o  abab ad 1  repecLveO\. IJorLJ Ke facor 1/2 L BAB     1  yaEybEyabEy L e[preLOe a foOOoZ  1221    1  1 .AababababSo Ke OocN effec L o pree L ad L L o L[ed up ZLK Kee Ze a\ Ka Ke aL effec L o cofouded. SLLOarO\ for Ke aL effec B 1221    1  1 .BabbaabbaSo Kere L o OocN effec pree L ad Ku L o cofouded. For Ke LeracLo effec 1122  1   2 1 .ABabababab +ere Ke OocN effec are pree L . I fac Ke OocN effec are ad are L[ed up ZLK Ke reae effec ad cao e eparaed LdLvLduaOO\ fro Ke reae effec L . So L[ed up ZLK Ke OocN. a b | CKaper  | CofoudLJ | AOeraLveO\ Lf Ke arraJee of reae L OocN are a foOOoZ BOocN 1 BOocN 2 Ke Ke aL effec L e[preLOe a 1122    1 2 1 Aabababab Oerve Ka Ke OocN effec ad are pree L KL e[preLo. So Ke aL effec L  arraJee of reae. So Ke aL effec KL arraJee of reaeWe oLce Ka L L L our coroO o decLde ZKLcK of Ke effec L o e cofouded. TKe order L ZKLcK reae are ru L a OocN L deerLed radoO\. TKe cKoLce of Ke OocN o e ru fLr L aOo radoO\ decLded. TKe foOOoZLJ oervaLo eerJe fro Ke aOOocaLo of reaFor a given effect, when two treatment combinations with the same signs are assigned to one eatment combinations with the same but opposite signs are assigned to For e[apOe L Ke cae L cofouded Ke ZLK – LJ are aLJed o OocN 2. SLLOarO\ ZKe ZLK  LJ are aLJed o OocN 1 ZKerea TKe reao eKLd KL oervaLo L Ka Lf ever\ OocN Ka reae coLaLo L Ke for of OLear cora Ke effec are eLaOe ad Ku ucofouded. TKL L aOo evLde fro Ke Keor\ of OLear eLaLo Ka a OLear paraerLc fucLo L eLaOe Lf L L L Ke for of a OLear cora. TKe cora ZKLcK are o eLaOe are aLd o e cofouded ZLK Ke dLfferece eZee or OocN effec . TKe cora ZKLcK are eLaOe are aLd o e ucofouded ZLK OocN or free fro OocN effec. a b | CKaper  | CofoudLJ | e BOocN deLJ BIBD veru facNoZ Ze e[pOaL KoZ cofoudLJ ad BIBD copare oJeKer. CoLder a 2 facorLaO e[perLe ZKLcK eed Ke OocN L]e o e . Suppoe Ke raZ aerLaO avaLOaOe o coduc Ke e[perLe L uffLcLe oO\ for a OocN of L]e 4. Oe ca ue BIBD L KL cae ZLK paraeer 144bkr  BIBD Ke effLcLec\ facor L vE .jjBIBDVarjjCoLder oZ a ucoeced deLJ L ZKLcK  ou of 14 OocN Je reae coLaLo L abcabcad reaLLJ  OocN Je reae coLaLo L OocN 2 a 1 abbcacI KL cae aOO Ke effec    BCABBC ad are eLaOe u L o eLaOe ecaue Ke reae coLaLo ZLK aOO  ad aOO – LJ LLOocN1LOocN2 1 1 1 1 ABCabcabcabcabbcac    are coaLed L Ke ae OocN. I KL cae Ke varLace of eLae of ucofouded aL effec ad LeracLo L /. jjRBDVarjjad Kere are four OLear cora o Ke oaO varLace L 4 2/ ZKLcK JLve Ke facor / ad ZKLcK L aOOer Ka Ke varLace uder BIBD. We oerve Ka a Ke co of o eLJ aOe o eLae A Ze Kave eer eLae of   BCABBC ad ZLK Ke ae uer of repOLcae a L BIBD. SLce KLJKeroLeracLo are dLffLcuO o Lerpre ad are uuaOO\ o OarJe o L L ucK eer o ue cofoudLJ arraJee ZKLcK provLde eer eLae of Ke LeracLo L ZKLcK Ze are ore Lereed. Noe Ka KL e[apOe L for uderadLJ oO\. A ucK Ke cocep eKLd LcopOee OocN | CKaper  | CofoudLJ | TKe arraJee of reae coLaLo L dLffere OocN ZKere\ oe predeerLed effec eLKer aL or Lerac caOOed a cofoudLJ arraJee. For e[apOe ZKe Ke LeracLo L cofouded L a 2 facorLaO e[perLe Ke Ke cofoudLJ arraJee coL of dLvLdLJ Ke eLJK reae coLaLo Lo Ke foOOoZLJ Zo e abcabc 1 abbcacWLK Ke reae of eacK e eLJ aLJed o Ke ae OocN ad eacK of Kee e eLJ repOLcaed Ke ae uer of Le L Ke e[perLe Ze a\ Ka Ze Kave a cofoudLJ arraJee of a 2 facorLaO L Zo OocN. I a\ e oed Ka a\ cofoudLJ arraJee Ka o e ucK Ka oO\ predeerLed LeracLo are cofouded ad Ke eLae of LeracLo TKe LeracLo ZKLcK are cofouded are caOOed Ke defLLJ cora of Ke cofoudLJ arraJee. A cofouded cora ZLOO Kave reae coLaLo ZLK Ke ae LJ L eacK OocN of Ke cofoudLJ arraJee. For e[apOe Lf Ke effec 1 1 1 ABabc  L o e cofouded Ke pu aOO facor coLaLo ZLK  LJ L.e. 1   abc ad L oe OocN ad aOO oKer facor coLaLo ZLK – LJ L.e. abac ad L aoKer OocN. So Ke OocN L]e reduce o 2 facorLaO e[perLe. Suppoe Lf aOoJ ZLK cofouded Ze Za o cofoud aOo. To oaL ucK OocN coLder Ke OocN ZKere L cofouded ad dLvLde Ke L abcabcL dLvLded Lo foOOoZLJ Zo OocN cabcad Ke OocN 1 abbcacL dLvLded Lo foOOoZLJ Zo OocN bcac | CKaper  | CofoudLJ | TKee OocN of 4 reae are dLvLded Lo 2 OocN ZLK eacK KavLJ 2 reae ad Ke\ are oaLed L Ke foOOoZLJ Za\. If oO\ L cofouded Ke Ke OocN ZLK  LJ of reae coLaLo L cacbcabcreae coLaLo L abab 1 1 1 ABCabc  abcabc LL foOOoZLJ OocN ZLK  LJ ZKe 1 1 1 Cabc  cabacabc2 facorLaO e[perLe. IdeLf\ Ke reae coLaLo KavLJ coo  LJ L Kee Zo OocN L L ad LL . TKee reae coLaLo are ad So aLJ Ke Lo oe OocN. TKe reaLLJ reae coLaLo ou of   SLLOarO\ OooN Lo Ke a foOOoZLJ OocN ZLK – LJ ZKe 1 abbcac  foOOoZLJ OocN ZLK – LJ ZKe 1 abab facorLaO e[perLe. IdeLf\ Ke reae coLaLo KavLJ coo – LJ L Kee Zo OocN L a ad  . TKee reae coLaLo are 1 ad ZKLcK Jo Lo oe OocN ad Ke reaLLJ Zo reae coLaLo ad ou of cacbc ad Jo Lo aoKer OocN. So Ke OocN 1 adababacbccabcWKLOe aNLJ Kee aLJe of reae coLaLo Lo four OocN eacK of L]e Zo Ze oLce Ka aoKer effec vL]. aOo Je cofouded auoaLcaOO\. TKu Ze ee Ka ZKe Ze cofoud Zo facor a KLrd facor L auoaLcaOO\ JeLJ cofouded. TKL LuaLo L quLe JeeraO. TKe defLLJ cora for a cofoudLJ arraJee cao e cKoe arLrarLO\. If oe defLLJ cora are eOeced Ke oe oKer ZLOO aOo | CKaper  | CofoudLJ | NoZ Ze pree oe defLLLo ZKLcK are uefuO L decrLLJ Ke cofoudLJ arraJee. GeeraOL]ed LeracLo GLve a\ Zo LeracLo Ke JeeraOL]ed LeracLo L oaLed \ uOLpO\LJ Ke facor L OO Ke er ZLK a eve e[poe. For e[apOe Ke JeeraOL]ed LeracLo of Ke facor ad L BCBCDABCDAD ad Ke JeeraOL]ed LeracLo of Ke facor A BBC ad L 232 A BBCABCABCBA e of aL effec ad LeracLo cora L caOOed Ldepede Lf o eer of Ke e ca e oaLed a a JeeraOL]ed LeracLo of Ke oKer eer of For e[apOe Ke e of facor A BBC ad L a Ldepede e u Ke e of facor BBCCD ad L o a Ldepede e ecaue BBCCDABCDAD ZKLcK L TKe reae coLaLo pqrabc… L aLd o e orKoJoaO o Ke LeracLo xyzABC Lf .... pxqyrz L dLvLLOe \ 2. SLce ......pqrxyz are eLKer 0 or 1 o a reae coLaLo L orKoJoaO o a LeracLo Lf Ke\ Kave a eve uer of Oeer L coo. Treae coLaLo 1 L orIf 1112212....ad...pqrpqrabcabc are oK orKoJoaO o ...xyzABC Ke Ke produc 121212ppqqrrabcL aOo orKoJoaO o ...xyz SLLOarO\ Lf Zo LeracLo are orKoJoaO o a reae coLaLo Ke KeLr JeeraOLaO o L. NoZ Ze JLve oe JeeraO reuO for a cofoudLJ arraJee. Suppoe Ze ZLK o Kave a cofoudLJ arraJee L 2 OocN of a 2 facorLaO e[perLe. TKe Ze Kave Ke foOOoZLJ | CKaper  | CofoudLJ | TKe L]e of eacK OocN L TKe uer of eOee L defLLJ cora L 21 .. 21 LeracLo Kave If facor are o e cofouded Ke Ke uer of K order LeracLo ZLK facor L  12... . So Ke oaO uer of facor o e If a\ Zo LeracLo are cofouded Ke KeLr JeeraOL]ed LeracLo are aOo TKe uer of Ldepede cora ou of 21 defLLJ cora L ad re are oaLed a JeeraOL]ed LeracLo. Nuer of effec JeLJ cofouded auoaLcaOO\ L 21 . To LOOurae KL coLder a 2 facorLaO 5 ZLK 5 facor vL].  BCD ad . TKe facor are o e cofouded L 2 OocN 3 . So Ke L]e of eacK OocN L 24. TKe uer of defLLJ cora L 21. TKe uer of Ldepede cora ZKLcK ca e cKoe arLrarLO\ L 3 L.e. ou of  defLLJ cora. Suppoe Ze cKooe foOOoZLJ CDE ad Ke Ke reaLLJ 4 ou of ed a ACECDEACDEAD ACEABDEABCDEBCD CDEABDEABCDEABC2223 .ACECDEABDEABCDEBE | CKaper  | CofoudLJ | p ACDE A BCDEKe Ke defLLJ cora are oaLed a 222 ABCDACDEABCDEBE2222 ABCDABCDEABCDEE2222 ACDEABCDEABCDEB32332 .ABCDACDEABCDEABCDEACDI KL cae Ke aL effec A a ruOe r\ o cofoud a far a poLOe KLJKerorder LeracLo oO\ ecaue Ke\ are Afer eOecLJ Ldepede defLLJ cora dLvLde Ke 2 reae coLaLo Lo 2Jroup of 2 coLaLo eacK ad eacK Jroup JoLJ Lo oe OocN. PrLcLpaO Ne\ OocN TKe Jroup coaLLJ Ke coLaLo 1 L caOOed Ke prLcLpaO OocN or Ne\ OocN. I coaL aOO Ke reae coLaLo ZKLIf Kere are Ldepede defLLJ cora Ke a\ reae coLaLo L Ke prLcLpaO aO OocN ZrLe Ke reae coLacKecN eacK oe of Ke for orKoJoaOL\. If Zo reae coLaLo eOoJ o Ke prLcLpaO OocN KeLr produc aOo eOoJ o WKe a feZ reae coLaLo of Ke prLcLpaO OocN Kave ee deerLed oKer reae coLaLo ca e oaLed \ uOLpOLcaLo ruOe. NoZ Ze LOOurae Kee ep L Ke foOOoZLJ e[apOe. | CKaper  | CofoudLJ | CoLder Ke e up of a 2 facorLaO e[perLe L ZKLcK Ze Za o dLvLde Ke oaO reae effec Lo 2 Jroup \ cofoudLJ Kree effec ad DBEABC. TKe JeeraOL]ed LeracLo L KL cae are DBEBCDACECDEI order o fLd Ke prLcLpaO OocN fLr ZrLe Ke reae coLaLo L a adard order a foOOoZ 1 bcdbceabcecdeacdeabcdePOace a reae coLaLo L Ke prLcLpaO OocN Lf L Ka a eve uer of Oeer L coo ZLK Ke cofoudLJ effec A DBE ad TKe prLcLpaO OocN Ka 1 acdbce ad abdeacdbce. OaL oKer OocN of cofoudLJ arraJee fro Ke prLcLpaO OocN \ uOLpO\LJ Ke reae coLaLo of Ke prLcLpaO OocN \ a reae coLaLo o occurrLJ L L or L a\ oKer OocN aOread\ oaLed. I oKer Zord cKooe reae coLaLo o occurrLJ L L ad uOLpO\ ZLK Ke L Ke prLcLpaO OocN. CKooe oO\ dLLc OocN. I KL cae oaL oKer OocN \ uOLpO\LJ ababcacbcabc OLNe a L Ke ArraJee of Ke reae L OocN ZKe A DBE are cofouded PrLcLpaO BOocN 1 BOocN 2 BOocN 3 BOocN 4 BOocN 5 BOocN 6 BOocN  BOocN  bc bceabceaceacdecde For e[apOe OocN 2 L oaLed \ uOLpO\LJ ZLK eacK facor coLaLo L Ke prLcLpaO OocN a 1 aaacdaacdcdbceaabceabdeaabdebdeOocN 3 L oaLed \ uOLpO\LJ ZLK 1  acdbce ad ad LLOarO\ oKer OocN are oaLed. If a\ oKer reae coLaLo L cKoe o e uOLpOLed ZLK Ke reae L Ke prLcLpaO OocN Ke Ze Je a OocN ZKLcK ZLOO e oe aoJ Ke OocN 1 o . For e[apOe Lf L uOLpOLed ZLK Ke reae L Ke prLcLpaO OocN Ke Ke OocN oaLed coL of 1 aeaeacdaecdebceaeabcabdeaebd ZKLcK L ae a Ke OocN . | CKaper  | CofoudLJ | AOeraLveO\ Lf A CDABCD ad ABCDE are o e cofouded Ke Ldepede defLLJ cora are   CDABCDABCDEacad .cdacadWKe a effec L cofouded L ea Ka L L o eLaOe. TKe foOOoZLJ ep are foOOoZed o rLe ZLK cofouded effec OaL Ke u of quare due o aL ad LeracLo effec L Ke uuaO Za\ a Lf o Drop Ke u of quare correpodLJ o cofoudLJ effec ad reaL oO\ Ke u of FLd Ke oaO u of quare. OaL Ke u of quare due o error ad aocLaed deJree o