PDF-Forpart(a),wehad:u(x;t)=1Xn=1sinnx

Author : celsa-spraggs | Published Date : 2015-10-15

LhAncosnc LtBnsinnc LtiThereforethenaturalfrequenciesintimearencLforn123Forpartbweshowedinclassthatthewaveequationwithoneend xedandoneendfreeyieldedthefollowingsolutionSeethec

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Forpart(a),wehad:u(x;t)=1Xn=1sinnx" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Forpart(a),wehad:u(x;t)=1Xn=1sinnx: Transcript


LhAncosnc LtBnsinnc LtiThereforethenaturalfrequenciesintimearencLforn123Forpartbweshowedinclassthatthewaveequationwithoneend xedandoneendfreeyieldedthefollowingsolutionSeethec. page40110SOR201(2002)(ii)Bernoullir.v.{ifp1=p;p0=1p=q;pk=0;k6=0or1,thenGX(s)=E(sX)=q+ps:(3:4)(iii)Geometricr.v.{ifpk=pqk1;k=1;2;:::;q=1p;thenGX(s)=ps1qsifjsjq1(seeHWSheet4.):(3:5)(iv)Binomialr.v. x2eR2x=(1+x2)dxdx=xZ1 x21 1+x2dx=(1+xtan1x)Thus,twoLIsolutionsareY1=xandY2=1+xtan1x)Herep(x)=2x=(1+x2)andq(x)=2=(1+x2)areanalyticatx=0withcommonradiusofconvergenceR=1.Lety(x)=1Xn=0cnxn:Nowusin 2ntana 2nwhereaisnotanintegermultipleof.7.Prove:1Xn=13n1sin3a 3n=1 4(asina):2NoTrig(notentirelystolenfromTitu97)1.GetaniceformulaforPnk=1k!(k2+k+1).Solution:Summandis(k+1)(k+1)!(k)(k)!.Soweget(n+1 {z }b=0BBBBBB@x2x1x3x2......xN1xN21CCCCCCA| {z }A0@121A| {z }:Unlikethepreviousp=1case,tryingtoexpressthesolution^=ATA1ATbanalyticallyisnottrivial.WestartwithATA1=266640@x2x3xN1x1x2 andthemapF:`2(ZNZN)!`2(ZNZN)givenbyF(I(n;m))0n;m=bI(n;m)0n;misthesocalleddiscreteFouriertransform(DFT).ThismapisrealizedbytheformulabI(k;l)=hI;Expk;li kExpk;lk2=1 N2N1Xn=0N1Xm=0I(n;m)e2i(k 5.Sincejrj1,thisseriesdiverges.6.nn! (n+2)!oWe rstsimplify:n! (n+2)!=1 (n+1)(n+2)sothelimitasn!1is0.7.1Xn=1lnn n+1Alittletricky...First,notethatthiscanbewrittenasln(n)ln(n+1).Now,let'swriteoutthen 5.(Thecomplexexponential.)De nef:C!Cbyf(z)=ez=1Xn=0zn n!:Here,ifz=x+iy,thenez=exeiy=ex(cosy+isiny):Thefactthatfisahomomorphismfollowsfromtheidentityez1+z2=ez1ez2:Thecomplexexponentialissurjective:eve u(32;t)t642320Figure2:Sketchofu(32;t)for0t6.Notethatuiscontinuous,bututisnot.Forpart(a)x=,y=,f()=e2Forpart(b)x=,y=,f()=1.Integrateupw.r.tsusingtheI.C.'swheres=0istheinitialcurve:Inbo Mechanisms to Mitigate Unfairness. Krishna P. . Gummadi. Joint work with . Muhammad . Bilal . Zafar. , Isabel Valera, . Manuel . Gomez-Rodriguez. Max Planck Institute for Software Systems. Context: Machine decision . The Epistles of John. Prepared by Bro. Ted Hodge Jr.. (Shippensburg Bible School 2017). Class 2 Agenda. “God is light. . and in him is no darkness. . at all”. The message of light and darkness. 2+1 31 4+1 51 6:::=1Xn=1(1)n+11 n=ln2;(8.1)convergeveryslowly.Thesameistrueforabsolutelyconvergentseries,suchas1Xn=11 n2=(2)=2 6:(8.2)IfwecallthepartialsumforthelatterNXn=11 n2=SN;(8.3)thedi eren 1 2FIRSTTHINGSFIRST(5)Duringclasstheinstructorhasthe naldecisionondeterminingwhetheranar-gumentmaystandornot.Hisverdictmaystillbechallengedafteraproofis\published"(seerule(6)).(6)Ifsomeoneothertha ngettinglargewhenngettinggreater.So,limx!1sin(2n) 1+p n=0.Thesequenceconvergeto0.2.Accordingtothequestion,wegetlimx!1p x2�1=Landlimx!�1p x2�1=L.Thenwecansolvethem.Wegetlimx!1p x2�1=xandlim f2xn0xn01f3xnfioforder204Invariant110K111x2n1x2n120K121xn1xnxn1xn0K1x2n1x2n150K151xn1xn160K161xn1xn220K2210KintegrationconstantSolutionuptohomographyellipticfunctionssampledoverequidistantpoints2xnxn1

Download Document

Here is the link to download the presentation.
"Forpart(a),wehad:u(x;t)=1Xn=1sinnx"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents