PDF-Forpart(a),wehad:u(x;t)=1Xn=1sinnx
Author : celsa-spraggs | Published Date : 2015-10-15
LhAncosnc LtBnsinnc LtiThereforethenaturalfrequenciesintimearencLforn123Forpartbweshowedinclassthatthewaveequationwithoneend xedandoneendfreeyieldedthefollowingsolutionSeethec
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Forpart(a),wehad:u(x;t)=1Xn=1sinnx" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Forpart(a),wehad:u(x;t)=1Xn=1sinnx: Transcript
LhAncosnc LtBnsinnc LtiThereforethenaturalfrequenciesintimearencLforn123ForpartbweshowedinclassthatthewaveequationwithoneendxedandoneendfreeyieldedthefollowingsolutionSeethec. page40110SOR201(2002)(ii)Bernoullir.v.{ifp1=p;p0=1 p=q;pk=0;k6=0or1,thenGX(s)=E(sX)=q+ps:(3:4)(iii)Geometricr.v.{ifpk=pqk 1;k=1;2;:::;q=1 p;thenGX(s)=ps1 qsifjsjq 1(seeHWSheet4.):(3:5)(iv)Binomialr.v. x2e R2x=(1+x2)dxdx=xZ1 x2 1 1+x2dx= (1+xtan 1x)Thus,twoLIsolutionsareY1=xandY2=1+xtan 1x)Herep(x)=2x=(1+x2)andq(x)= 2=(1+x2)areanalyticatx=0withcommonradiusofconvergenceR=1.Lety(x)=1Xn=0cnxn:Nowusin 2ntana 2nwhereaisnotanintegermultipleof.7.Prove:1Xn=13n 1sin3a 3n=1 4(a sina):2NoTrig(notentirelystolenfromTitu97)1.GetaniceformulaforPnk=1k!(k2+k+1).Solution:Summandis(k+1)(k+1)! (k)(k)!.Soweget(n+1 {z }b=0BBBBBB@x2x1x3x2......xN 1xN 21CCCCCCA| {z }A0@121A| {z }:Unlikethepreviousp=1case,tryingtoexpressthesolution^=ATA 1ATbanalyticallyisnottrivial.WestartwithATA 1=266640@x2x3xN 1x1x2 andthemapF:`2(ZNZN)!`2(ZNZN)givenbyF(I(n;m))0n;m=bI(n;m)0n;misthesocalleddiscreteFouriertransform(DFT).ThismapisrealizedbytheformulabI(k;l)=hI;Expk;li kExpk;lk2=1 N2N 1Xn=0N 1Xm=0I(n;m)e 2i(k 5.Sincejrj 1,thisseriesdiverges.6.nn! (n+2)!oWerstsimplify:n! (n+2)!=1 (n+1)(n+2)sothelimitasn!1is0.7.1Xn=1lnn n+1Alittletricky...First,notethatthiscanbewrittenasln(n) ln(n+1).Now,let'swriteoutthen 5.(Thecomplexexponential.)Denef:C!Cbyf(z)=ez=1Xn=0zn n!:Here,ifz=x+iy,thenez=exeiy=ex(cosy+isiny):Thefactthatfisahomomorphismfollowsfromtheidentityez1+z2=ez1ez2:Thecomplexexponentialissurjective:eve u(32;t)t642320Figure2:Sketchofu(32;t)for0t6.Notethatuiscontinuous,bututisnot.Forpart(a)x=,y= ,f()=e 2Forpart(b)x=,y= ,f()=1.Integrateupw.r.tsusingtheI.C.'swheres=0istheinitialcurve:Inbo Mechanisms to Mitigate Unfairness. Krishna P. . Gummadi. Joint work with . Muhammad . Bilal . Zafar. , Isabel Valera, . Manuel . Gomez-Rodriguez. Max Planck Institute for Software Systems. Context: Machine decision . The Epistles of John. Prepared by Bro. Ted Hodge Jr.. (Shippensburg Bible School 2017). Class 2 Agenda. “God is light. . and in him is no darkness. . at all”. The message of light and darkness. 2+1 3 1 4+1 5 1 6:::=1Xn=1( 1)n+11 n=ln2;(8.1)convergeveryslowly.Thesameistrueforabsolutelyconvergentseries,suchas1Xn=11 n2=(2)=2 6:(8.2)IfwecallthepartialsumforthelatterNXn=11 n2=SN;(8.3)thedieren 1 2FIRSTTHINGSFIRST(5)Duringclasstheinstructorhasthenaldecisionondeterminingwhetheranar-gumentmaystandornot.Hisverdictmaystillbechallengedafteraproofis\published"(seerule(6)).(6)Ifsomeoneothertha ngettinglargewhenngettinggreater.So,limx!1sin(2n) 1+p n=0.Thesequenceconvergeto0.2.Accordingtothequestion,wegetlimx!1p x21=Landlimx!1p x21=L.Thenwecansolvethem.Wegetlimx!1p x21=xandlim f2xn0xn01f3xnfioforder204Invariant110K111x2n1x2n120K121xn1xnxn1xn0K1x2n1x2n150K151xn1xn160K161xn1xn220K2210KintegrationconstantSolutionuptohomographyellipticfunctionssampledoverequidistantpoints2xnxn1
Download Document
Here is the link to download the presentation.
"Forpart(a),wehad:u(x;t)=1Xn=1sinnx"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents