PDF-1.2p=2Withxi+1=1xi+2xi1+i+1;startbyformingtheover-determinedsystem

Author : myesha-ticknor | Published Date : 2015-12-11

z b0BBBBBBx2x1x3x2xN1xN21CCCCCCA z A0121A z Unlikethepreviousp1casetryingtoexpressthesolutionATA1ATbanalyticallyisnottrivialWestartwithATA1266640x2x3xN1x1x2

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "1.2p=2Withxi+1=1xi+2xi1+i+1;startbyf..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

1.2p=2Withxi+1=1xi+2xi1+i+1;startbyformingtheover-determinedsystem: Transcript


z b0BBBBBBx2x1x3x2xN1xN21CCCCCCA z A0121A z Unlikethepreviousp1casetryingtoexpressthesolutionATA1ATbanalyticallyisnottrivialWestartwithATA1266640x2x3xN1x1x2. tXi=0g2iandkg(x)k1=maxi=0;:::;tjgij:Forapositivevaluer,wede netwocorrespondingtypesof\ball"centeredattheorigin:B2;N(r)=(N1Xi=0aixi:N1Xi=0a2ir2);B1;N(r)=(N1Xi=0aixi:rair):Wehavetheusualinclusion @2xiXjj@2ui @xi@xjjthenitsatisesRosen'sconditionsinTheorem3.1.Denition5.Asociallyconcavegameisstrictsociallyconcaveifanyoneofthefollowingissatised:1.Foralliui(xi;xi)isstrictlyconcaveinxi.2.Theree case:E[s2]=E[1 NNXi=1(xi x)2]=1 x+NXi=1 x2]WeknowPNi=1xi=N xandPNi=1 x2=N x2.Plugtheseintothederivation:E[s2]=1 NE[NXi=1x2i2N x2+N x2]=1 NE[NXi=1x2iN x2]=1 NE[NXi=1x2i]E[ x2]=E[x2]E[ x2]Acco Afteralittlealgebra,weobtainP3=1 1080@3922474816444524391A:Thensince =(1=3;1=3;1=3),wegetP(X3=j)=1Xi=0P(3)ij i=1 32Xi=0P(3)ij;forj=0;1;2:Inparticular,we ndthatP(X3=0)=132=324,P(X3=1)=62=324,andP(X3=2) @ 0=2Pni=11Yi( 0+ 1xi)]@S @ 1=2Pni=11Yi( 0+ 1xi)]xi(2.3)Whencomparedtozeroweobtainsocallednormalequations:8:Pni=1(b 0+b 1xi)=Pni=1YiPni=1(b 0+b 1xi)xi=Pni=1xiYi(2.4)Thissetofequationscanbewrittena Goldsman|ISyE673912.1SimpleLinearRegressionModelSupposewehaveadatasetwiththefollowingpairedobservations:(x1;y1);(x2;y2);:::;(xn;yn)Example:xi=heightofpersoniyi=weightofpersoniCanwemakeamodelexpressing E Thevalueof!0and!1minimizingQcanbederivedbydi!erentiatingQwithrespectto (Xi" y�b1 x(Note: y=1 nPni=1yiand x=1 nPni=1xi.)Proof:Ignoringthesecondnormalequation,startbydividingthe rstnormalequationbyn:1 nnXi=1yi=b0+b1 nnXi=1xi:Rearrangingthisequation,andnotingthat y=1 nPni (8)Pni=1(xi� x)(yi� x y: Proof:Expand.e.g.,Pni=1xi(yi� y)intherighthandsideof(7),use(2)andthede nitionof x.(9)Pni=1(xi� x)2=Pni=1x2i�n x2: Proof:By(5)wegetthatPni=1(xi� x)2=P variancebutstillveryslightlybiasedintermsofstandarddeviation,writtenasfollows:~]=vuut 1 Ns�1NsXi=1(xi�~ps)2(8)Thismethodofestimatingprobabilisticquantitiesbystatisticsoveralargesampleofda EThevalueof0and1minimizingQcanbederivedbydierentiatingQwithrespecttoXiX2b01niYiiXib1Yb1Xiib1andb0areunbiasedestimatorsfor0Eb1iciEYiici01Xi0ici1iciXi00111Thereforeb1isanunbiasedXiei0andib0b1XiYib0ni1Xi Overview12ClassicalrigorousworkIThesecondmomentmethodIQuietplanting3Aphysics-inspiredrigorousapproachITheKauzmanntransitionIThefreeentropyinthe1RSBphase4Randomk-SATIArigorousBeliefPropagation-basedapp 16231618162416221627161716261625162016191614161616211615CorrespondingauthorJingTangThisworkislicensedundertheCreativeCommonsAttributionNonCommercialNoDerivatives40InternationalLicenseToviewacopyofthis 2fermions.Associatedwiththeelectronsisaconservedquantity,expressedasthequantumnumberknownastheleptonnumber.Theleptonnumberofthenegatronis,byconvention+1.Theleptonnumberofthepositron,alsotheanti-partic

Download Document

Here is the link to download the presentation.
"1.2p=2Withxi+1=1xi+2xi1+i+1;startbyformingtheover-determinedsystem"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents