PDF-NE[NXi=1x2i2NXi=1xi

Author : giovanna-bartolotta | Published Date : 2016-05-04

caseEs2E1 NNXi1xi x21 xNXi1 x2WeknowPNi1xiN xandPNi1 x2N x2PlugtheseintothederivationEs21 NENXi1x2i2N x2N x21 NENXi1x2iN x21 NENXi1x2iE x2Ex2E x2Acco

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "NE[NXi=1x2i2NXi=1xi" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

NE[NXi=1x2i2NXi=1xi: Transcript


caseEs2E1 NNXi1xi x21 xNXi1 x2WeknowPNi1xiN xandPNi1 x2N x2PlugtheseintothederivationEs21 NENXi1x2i2N x2N x21 NENXi1x2iN x21 NENXi1x2iE x2Ex2E x2Acco. EveryvectorinS0canbewrittenasalinearcombinationofthebasisvectorsofS0:=nXi=1ii:(2)UsingEq.(1),weobtaing=nXj=1nXi=1Dji(g)ij:(3)Fromthisresult,weseethatwecanconsidergtooperateonthecoecientsirat @a=nXi=1(logyi�a�bexi)(�1)=0@L @a=nXi=1(logyi�a�bexi)(�exi)=07.Rewritethematrixrepresentationasequationsystem:8�&#x]TJ ;� -2;.51; Td;&#x [00;:n 0+n NNPi=1x2i�NPi=1xi2:(2)1.1ExampleSupposewe'regiventhefollowingdata,andwishtondthebest-tstraightlinethroughthepoints.i xi yi 1 �3 �152 1 13 5 174 8 295 12 45Webeginbycalculati y�b1 x(Note: y=1 nPni=1yiand x=1 nPni=1xi.)Proof:Ignoringthesecondnormalequation,startbydividingthe rstnormalequationbyn:1 nnXi=1yi=b0+b1 nnXi=1xi:Rearrangingthisequation,andnotingthat y=1 nPni MathematicsLearningCentre,UniversityofSydney1SigmaNotation1.1UnderstandingSigmaNotationThesymbol(capitalsigma)isoftenusedasshorthandnotationtoindicatethesumofanumberofsimilarterms.Sigmanotationisused Px2inx2=ssxy ssxx=0:842754^ =y^ x=99:204givingthettedregressionliney=^ +^ x=99:200:84x:Sincethecoefcientofxisnegative,wecanimmediatelyconcludethatthemodelpredictsthattheassessedstresslevel(y) span(f(X))!XsuchthatkTk=1andT(f(x))=xforeveryx2X.Thus,whenviewedasmetricspacesintheisometriccategory,Banachspacesarehighlyrigid:theirlinearstructureiscompletelypreservedunderisometries,and,infact,isom AaronDefazioAmbiataAustralianNationalUniversity,CanberraFrancisBachINRIA-SierraProject-Team´EcoleNormaleSup´erieure,Paris,FranceSimonLacoste-JulienINRIA-SierraProject-Team´EcoleNormaleSup´erie span(f(X))!XsuchthatkTk=1andT(f(x))=xforeveryx2X.Thus,whenviewedasmetricspacesintheisometriccategory,Banachspacesarehighlyrigid:theirlinearstructureiscompletelypreservedunderisometries,and,infact,isom nnXi=1(xiE)2(whereE=1 exii;exi+i]ofpossiblepolynomial-time n+j paper, ;:::;xpopulation population nnXi=1x2i;see,e.g.,[7].Inmanyreal-lifesituations,duetomeasurementuncertainty,insteadoftheactual nthereexistsa14x00000andCkdi11eomorphismB14yRnsuchthatB26yfxx1x2xn2B10xnx00000gB26yfxx1x2xn2B10xn0g15u2C215aijbicRarefunctionsoncalledthecoe14cientsofLWeshallassumeWLOGthataijaji115fRisalsoafunctionon 3ReceivedDecember092018AcceptedinrevisedformApril172020CommunicatedbyChunLiuyCorrespondingauthorSchoolofMathematicsLiaoningUniversityShenyang110036PRChinawjh800415163comSheispartiallysupportedbyNation UnderjointGaussianassumptionsweknowthatKalmansmoothingisequivalentto12ndingtheMaximumAPosterioriMAPestimatorforthestatesgiventhewholeobservationsHoweverhowdoesthisfactalgebraicallyplayoutWhatifthevari CONTENTSCONTENTSContents1Introduction12Killingtensors221IsometriesandtheLiederivative222Killingvectorsandtensors423TheLieandsynmmetricSchouten21Nijenhuisbrackets624Conservationlawsforparticles925Conse

Download Document

Here is the link to download the presentation.
"NE[NXi=1x2i2NXi=1xi"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents