PDF-1.Letf(x)=x3;thenf1(x)=3p

Author : cheryl-pisano | Published Date : 2016-07-27

xsincef1fx3p x3xandff1x3p x3x 3Letfx2xthenf1x1 2xsincef1fx1 22xxandff1x21 2xx 5Letfx7x2thenf1xx2 7sincef1fx7x22 7xandff1x7x2

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "1.Letf(x)=x3;thenf1(x)=3p" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

1.Letf(x)=x3;thenf1(x)=3p: Transcript


xsincef1fx3p x3xandff1x3p x3x 3Letfx2xthenf1x1 2xsincef1fx1 22xxandff1x21 2xx 5Letfx7x2thenf1xx2 7sincef1fx7x22 7xandff1x7x2. Asaconsequence,compositionofcontinuousmapsde nesafunction[X;Y][Y;Z]![X;Z];([f];[g])7![gf]:2.HomotopyequivalencesDe nition2.1.Letf:X!Ybeacontinuousmap.Thenfissaidtobehomotopyequivalenceifthereexistsa 4KEITHCONRADProof.Letf(T)2OK[T]beEisensteinatsomeprimeideal.Iff(T)isreducibleinK[T]thenf(T)=g(T)h(T)forsomenonconstantg(T)andh(T)inK[T].We rstshowthatgandhcanbechoseninOK[T].Asfismonic,wecanassumegand Weusethefollowingbasicnotations.xTdenotesthetransposeofvectorx.Giventwofunctionsfandg,f=O(g)ifsupnjf(n)=g(n)j1.f= (g)ifg=O(f).Ifbothf=O(g)andf= (g),thenf=(g).Duetopageconstraints,wehavetoomitproofsof 3AnuninterpretedfunctionFofaritynsatis esonlyoneaxiom:Ifei=e0ifor1in,thenF(e1;::;en)=F(e01;::;e0n).Uninterpretedfunctionsarecommonlyusedtoabstractprogramminglanguageoperatorsthatareotherwisehardtore 2];n=7,xi=i 2n.DerivativeApproximations:iff(x)2Cn+1[a;b],P(x)interpolatesf(x)atdistinctx0;x1;:::;xn2[a;b]andx[a;b],thenf[x0;x1;:::;xn]=f(n)()=n!forsomepoint2[minfx;xig;maxfx;xig]:2 INTERPOLATIONER "#"e andf(#( andhence .If ,1},thendifferentiationyields(f%'f)f%$1=cf%$corf%(f%'f$c)=1$c.Sincec) (p)=!,thenf(p)=p;ifg(p)=0,thenf(f (p)|1,thenp&J(f).InordertoshowthatJ( beasubsequencethatconvergestoano amoremathematicallanguage:fisone-to-one graphoff(x)inmorethanonepoint,thenf(x)isnotone-to-one.Thereasonf(x)wouldnotbeone-to-one ,3)and(4,3).Thatwouldmeanthatf(2)andf(4)bothequal3,andone-to-one mostonc 1.Letf(x;y):=F(y)(yx).ThenyisasolutionofVVIi thesystemS(y)isimpossible.2.Letf(x;y):=F(x)(yx).ThenyisasolutionofMVVIi thesystemS(y)isimpossible.Lemma1.Iff(y;y)=0,thenS(y)isimpossiblei yisasol E(w)=Mr=M (e)=Hr Fr1 Fr1(w)=Mr1 G(Mr=Mr1)=Hr1K FFFFFFFFFE=F1 F1(w)=M1 G(M1=M1)=H1 F=F0 F0(w)=M0 G(Mr=M0)=H0Letwbeaprimitiventhrootofunity.ThenF(w)hasprimitiventhirootofun sn=f(x1;:::;xn)g(x1;:::;xn) sn(x1;:::;xn)Itisoflowertotaldegreethantheoriginalf.Byinductionontotaldegree(fg)=snisexpressibleintermsoftheelementarysymmetricpolynomialsinx1;:::;xn.===[1.0.3]Remark:The 1.Letf(x;y):=F(y)(yx).ThenyisasolutionofVVIi thesystemS(y)isimpossible.2.Letf(x;y):=F(x)(yx).ThenyisasolutionofMVVIi thesystemS(y)isimpossible.Lemma1.Iff(y;y)=0,thenS(y)isimpossiblei yisasol 644T.OSTROGORSKIInsections2and3wereviewsomepropertiesofthehomogeneousconesfollowingmostlyVinberg[4].Asanexampleofanapplicationofthistheorytoanalysiswestudyintegraltransformsandtheirasymptoticbehaviour 644T.OSTROGORSKIInsections2and3wereviewsomepropertiesofthehomogeneousconesfollowingmostlyVinberg[4].Asanexampleofanapplicationofthistheorytoanalysiswestudyintegraltransformsandtheirasymptoticbehaviour CONTENTSvChapter16.APPLICATIONSOFTHEINTEGRAL12116.1.Background12116.2.Exercises12216.3.Problems12716.4.AnswerstoOdd-NumberedExercises130Part5.SEQUENCESANDSERIES131Chapter17.APPROXIMATIONBYPOLYNOMIALS1

Download Document

Here is the link to download the presentation.
"1.Letf(x)=x3;thenf1(x)=3p"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents