/
LOWNESSNOTIONS,MEASUREANDDOMINATION3Theorem1.7(Kjos-Hanssen[9]).ALRBi LOWNESSNOTIONS,MEASUREANDDOMINATION3Theorem1.7(Kjos-Hanssen[9]).ALRBi

LOWNESSNOTIONS,MEASUREANDDOMINATION3Theorem1.7(Kjos-Hanssen[9]).ALRBi - PDF document

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
359 views
Uploaded On 2015-08-29

LOWNESSNOTIONS,MEASUREANDDOMINATION3Theorem1.7(Kjos-Hanssen[9]).ALRBi - PPT Presentation

4BJRNKJOSHANSSENJOSEPHSMILLERANDREEDSOLOMONLemma21KraftinequalityIfA2ispre xfreethenP2A2jj1InparticularifMisapre xfreeTuringmachinethenP2domM2jj1Theorem22KraftChaitinTheo ID: 117570

4BJRNKJOS-HANSSEN JOSEPHS.MILLER ANDREEDSOLOMONLemma2.1(Kraftinequality).IfA2ispre x-free thenP2A2jj1.Inparticular ifMisapre x-freeTuringmachine thenP2dom(M)2jj1.Theorem2.2(Kraft{ChaitinTheo

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "LOWNESSNOTIONS,MEASUREANDDOMINATION3Theo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

LOWNESSNOTIONS,MEASUREANDDOMINATION3Theorem1.7(Kjos-Hanssen[9]).ALRBifandonlyifeveryA1classofpositivemeasurehasaB1subclassofpositivemeasure.CombiningTheorem1.7withthewell-knownresultofKurtz[10]thatevery02classhasa;02subclassofthesamemeasure,itfollowsthat;0LRAexactlycharacterizesthep.m.dominatingsets.Corollary1.8(Kjos-Hanssen[9]).Aisp.m.dominatingifandonlyif;0LRA.Asthispoint,wehavethefollowingpicture.Aisu.a.e.dominating)Aisa.e.dominating)Aisp.m.dominating,;0LRAInSection3,weclosethiscirclebyshowingthatifAisp.m.dominating,thenAisu.a.e.dominating.ThisresultisanapplicationofamoregeneraltheoremalongthelinesofTheorem1.7:everyA2classhasaB2subclassofthesamemeasureifandonlyifALRBandATB0.Asanotherapplication,weprovethatifAislowfor1-randomnessthenitislowforweak2-randomness(seealsoNies[15]).ThemaintechniqueusedinSection3givesusanewwaytoleveragetheassumptionthatALRB.Itis rstintroducedinSection2,whereweshowthatLRimpliesLK,areducibilitythatcomparesthestrengthoforaclesintermsoftheire ectonpre x-freeKolmogorovcomplexity.Intheremainingsections,weexaminetheimplicationoftheequivalenceofu.a.e.dominationandp.m.dominationforthereversemathematicsquestionofhowdicultitistoprovethatPOS!G-REG.InSection5,weshowthatRCA0isnotstrongenoughtoprovethisimplication,oreventhatG-"!G-REG.InSection7,weshowthatWWKL0`POS!G-REG.NoticethatsinceWKL0doesnotproveG-REG,thefactthatWWKL0|whichisweakerthanWKL0|provesthisimplicationisnottrivial.Moreover,sincemeasuretheoryisverylimitedwithoutWWKL0[18],itisreasonabletoworkoverthissystemtoprovetheequivalence.Ournotationisstandardthroughout.Weusetodenotethesubsetrelationbetweensets(orclasses),vtodenotetheinitialsegmentrelationbetween( niteorin nite)strings,andjjtodenotethelengthofa nitestring.WeidentifyasetXwiththein nitestringgivenbyitscharacteristicfunction.ForX!ands2!,X[s]denotesthestringhX(0);X(1);:::;X(s�1)i.ForY2,[Y]denotestheopenclassin2!ofallXsuchthat92Y(vX).IfZ2!,thenZc=2!nZ.Finally,ifMisanymachine(viewedasde ningapartialfunctionfrom2to2),thendom(M)denotesthesetofstringsonwhichMconverges(thatis,thedomainofthede nedfunction).2.LRimpliesLKInthissection,weexaminetherelationshipbetweenLRandLK,areducibilitybasedonaninformationtheoreticde nitionofrandomness.ThereaderwhoisnotfamiliarwithKolmogorovcomplexityisreferredtoLiandVitanyi[12]foranintroduction.IfUisauniversalpre x-free(Turing)machineandisa nitebinarystring,thenthepre x-free(Kolmogorov)complexityofisde ned(uptoanadditiveconstantdependingonthechoiceofU)byK()=minfjjjU()=g:WewillusetwobasicfactsfromthetheoryofKolmogorovcomplexity. 4BJRNKJOS-HANSSEN,JOSEPHS.MILLER,ANDREEDSOLOMONLemma2.1(Kraftinequality).IfA2ispre x-free,thenP2A2�jj1.Inparticular,ifMisapre x-freeTuringmachine,thenP2dom(M)2�jj1.Theorem2.2(Kraft{ChaitinTheorem).Lethdi;iii2!beacomputablesequenceofpairssuchthatdi2!,i22andPi2!2�di1.(Therangefhdi;ii:i2!gofsuchasequenceiscalledaKraft{Chaitinset.)Thereisapre x-freemachineMandstringsioflengthdisuchthatM(i)=iforalli2!.Inparticular,theuniversalityofUimpliesthatK(i)di+O(1).AiscalledLevin-Chaitinrandomifforalln,K(A[n])n�O(1).Despitethedi erenceincontext,thisnotionofrandomnesscoincideswithMartin-Lofrandom-nessde nedabove.Nies[14]de nedareducibilityLKsimilartoLR,butbasedonKolmogorovcomplexity.TheideaofthisreducibilityisthatALKBifAisnomoreusefulthanBinthesensethatAcannotcompressinformationanymorethanBcan.De nition2.3(Nies[14]).ALKBif(8)KB()KA()+O(1).ItisstraightforwardtoshowthatALKBimpliesALRB;ourgoalforthissectionistoshowthattheyareequivalent.Ourproofwillrequireonebasicfactfromrealanalysis.Lemma2.4.Lethaiii2!beasequenceofrealnumberswith0ai1,foralli.ThenQi2!(1�ai)&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;ܩ ;� Td;&#x [00;0i Pi2!aiconverges.Lemma2.5.Foranycomputablefunctionf:!!!thereisauniformlycom-putablecollectionof nitesetsofbinarystringsVn,n2!,suchthat[Vn]=2�f(n)andthesets[Vn],n2!,formamutuallyindependentfamilyofeventsunder.Proof.AssumethatVthasbeende nedforallts.LetkbethelengthofthelongeststringinStVtandletVs=fb0f(s):22kg.ItisclearthatVs,s2!,hastherequiredproperties.Theorem2.6.IfALRB,thenALKB.Proof.Identifyingtheelementsof!2withnaturalnumbersviaane ectivebi-jection,weletVs,s2!beasguaranteedbyLemma2.5forthefunctionf(hn;i)=n.ThisensuresthatifI!2,then�Ts2I[Vs]c=Qhn;i2I(1�2�n),sinceeachVsisindependentfromalloftheothers.LetUAbeauniversalpre x-freemachinerelativetoAandde neI=fhjj;i:UA()=g:ThenIisA-c.e.,soP=Ts2I[Vs]cisaA1class.NotethatPhn;i2I2�nP2dom(U)2�jj1bytheKraftinequality.Also,h0;iisnotinIforany.SobyLemma2.4,(P)=Qhn;i2I(1�2�n)&#x!]TJ;&#x/F8 ; .96;& T; 11;&#x.994;&#x -3.;ؕ ;&#xTd [;0.ThereforebyTheorem1.7,thereisaB1classQPsuchthat(Q)&#x!]TJ;&#x/F8 ; .96;& T; 11;&#x.994;&#x -3.;ؕ ;&#xTd [;0.De neJ=fhn;i:[Vhn;i]\Q=;g.NotethatJisaB-c.e.setsinceQcisgeneratedbyaB-c.e.setofstrings,Vhn;iisa nitesetofstrings,and[Vhn;i]\Q=;ifandonlyif[Vhn;i]iscoveredbya nitesetofbasicintervalsfromQc.Also,bythecommentsinthe rstparagraphofthisproof,Qhn;i2J(1�2�n)=�Ts2J[Vs]c(Q)&#x!]TJ;&#x/F8 ; .96;& T; 11;&#x.994;&#x -3.;ؕ ;&#xTd [;0.ThereforebyLemma2.4,Phn;i2J2�nconverges.Furthermore,weclaimthatIJ.Ifhn;i2I,then[Vhn;i]\P=;.SinceQP,[Vhn;i]\Q=;andhencehn;i2J. LOWNESSNOTIONS,MEASUREANDDOMINATION5SincePhn;i2J2�nconverges, xc2!suchthatthissumisboundedby2c.ThenbJ=fhn+c;i:hn;i2JgisaKraft{ChaitinsetrelativetoB.ThereforebytheKraft{ChaitinTheorem,hn;i2J=)hn+c;i2bJ=)KB()n+c+O(1)n+O(1):SinceIJ,wehavehKA();i2Jforeach22!.ThusKB()KA()+O(1).Inotherwords,ALKB.Corollary2.7.ALRBifandonlyifALKB.Proof.Asnotedpreviously,ALKBimpliesALRB.Theorem2.6suppliestheotherimplication.Weo eroneapplicationofTheorem2.6basedonaspecialcaseofLRandLK.Aislowfor1-randomnessifALR;,thatis,ifeveryrandom(inthemeasuretheoreticsense)remainsrandomrelativetoA.Similarly,AiscalledlowforKifALK;,thatis,everystringcontainsasmuchinformationrelativetoAasitdoeswithnooracle.Corollary2.8(Nies[14]1).Aislowfor1-randomnessifandonlyifAislowforK.Proof.ThiscorollaryfollowsfromCorollary2.7bysettingB=;.3.PreservingMeasureInthissection,weshowthatp.m.dominationimpliesu.a.e.domination,therebyshowingtheequivalenceofthethreedominationnotionsintroducedinSection1.Lemma3.1.IfATB0andALRB,theneveryA1classhasaB2subclassofthesamemeasure.Proof.TheproofwillbesimilartothatofTheorem2.6.Identifyingnowtheele-mentsof22withnaturalnumbersviaane ectivebijection,weletfVsgs2!beasguaranteedbyLemma2.5forthefunctionf(h;i)=jj.Asbefore,ifI22,then�Ts2I[Vs]c=Qh;i2I(1�2�jj).LetXbeaA1class.Assume,withoutlossofgenerality,thatX6=;.LetSA2beapre x-freeA-c.e.setofstringssuchthatX=2!r[SA];notethatSAdoesnotcontaintheemptystring.LetI=fh;i:2SAwithuseg.ConsidertheA1classP=Ts2I[Vs]c.NotethatPh;i2I2�jj=P2SA2�jj1bytheKraftinequality.SobyLemma2.4,(P)=Qh;i2I(1�2�jj)&#x!]TJ;&#x/F8 ; .96;& T; 14;&#x.373;&#x -3.;ؖ ;&#xTd [;0.ThereforebyTheorem1.7,thereisaB1classQPsuchthat(Q)&#x!]TJ;&#x/F8 ; .96;& T; 14;&#x.373;&#x -3.;ؖ ;&#xTd [;0.De neJ=fh;i:[Vh;i]\Q=;g.AsintheproofofTheorem2.6,JisaB-c.e.set,IJ,andQh;i2J(1�2�jj)=�Ts2J[Vs]c(Q)&#x!]TJ;&#x/F8 ; .96;& T; 14;&#x.373;&#x -3.;ؖ ;&#xTd [;0.ThereforebyLemma2.4,Ph;i2J2�jjconverges.ByassumptionATB0,soletfAsgs2!beaB-computablesequenceapproxi-matingA.De neTs=fh;i2J:(9ts)2SAttwithuseg 1Yetanotherproof|onebasedonworkofHirschfeldt,NiesandStephan[8]|canbefoundinNies[15]. 8BJRNKJOS-HANSSEN,JOSEPHS.MILLER,ANDREEDSOLOMONCombiningCorollary3.4andTheorem3.5togetherwiththefactthatlowforweak2-randomtestsimplieslowforweakfor2-randomnessyieldsthefollowingcorollary.Corollary3.6.ForanysetA,thefollowingconditionsareequivalent:(1)Aislowfor1-randomness,(2)Aislowforweak2-randomtests,and(3)Aislowforweak2-randomness.Corollary3.6canalsobeprovedusingthegoldenrunmachineryofNies[14].Thiswasdiscoveredindependently,andearlier,byNiesandaproofalongtheselinesisgiveninNies[15].4.MeasureDefinitionsinReverseMathematicsIntheremainderofthispaper,weconsiderthereversemathematicsquestionofhowdicultitistoprovePOS!G-REG.Webeginwithde nitionsofcodesforopen,closed,GandFsubsetsof2NinRCA0.(Weswitchfrom!toNasitisstandardtouseNtodenotethe rstorderpartofanygivenmodelofsecondorderarithmetic.)Acodeforanopensetin2NisasetO2N.WecanassumewithoutlossofgeneralitythatOispre xfree.WewriteX2[O](andsaythatXisinthesetcodedbyO)ifthereisastring2OsuchthattvX.Itisoftenusefultothinkofanopensetastheunionofasequenceofclopensets.Fort2N,weletOt=f2Ojjjtgandnotethat[O]=St[Ot].Equivalently,wecanspecifyanopensetbya01formula(allowingparameters)9s'(x),where'(x)containsonlyboundedquanti ers.Inthiscontext,wesaythatXisinthecodedopensetif9s'(X[s]).Lateritwillbeconvenienttothinkofthecollectionofstringssatisfying(orenumeratedby)suchaformulaeventhoughthiscollectionneednotbeasetinRCA0.Weusetheterm01classofstrings(orsimply01class,relyingoncontexttodi erentiatebetweenthisnotionofclassandtheoneusedinthecontextofsetsofreals)todenotethecollectionofstringssatisfyingaparticular01formula.Thisterminologyallowsustousesetnotationforsuchcollections,althoughanysuchstatementisunderstoodasstandingfortheappropriatetranslationofthede ningformulas.IfOisthe01classofstringscorrespondingtotheformula9s'(x),thenOt=fjjjt^9st'()g.Asabove,eachOtisclopenand[O]=St[Ot].Inthiscontext,wecannotassumethatthe01classofstringsOispre xfree.However,abusingnotation,wecanassume(byremovingstringsfromOtinauniformmanner)thatthe nitesetsOtarepre xfree.InsystemsweakerthanACA0,wecannotassumethatboundedincreasingse-quencesofrationalsconverge.Therefore,ratherthanassumingthatopensetshavede nitemeasures,weworkwithcomparativestatementssuchas(O)qforq2Q.Tode nethesenotionsinRCA0,letObea(pre x-free)codeforanopenset.Fort2N,de ne(Ot)=P2Ot2�jj,andforq2Q,de ne(O)q,8t((Ot)q)(O)&#x-386;q,9t((Ot)&#x-386;q)(O)q,8r2Q(rq!(O)&#x-277;r) LOWNESSNOTIONS,MEASUREANDDOMINATION11Corollary5.5.RCA00POS!G-REGandRCA00G-"!G-REG.Proof.ThiscorollaryfollowsimmediatelyfromCorollaries5.2and5.4.6.LogarithmPropertiesWehavenowestablishedthatalthoughpositivemeasuredominationisequivalenttouniformalmosteverywheredomination,RCA0isnotstrongenoughtoprovePOS!G-REG.Inthelasttwosections,weshowthatWWKL0isstrongenoughtoprovethisimplication.Inthissection,wesketchthedevelopmentofthenaturallogarithminRCA0andgiveananalogueofLemma2.4.Wewishtode nethenaturallogarithmusingtheusualintegralformln(x)=Zx11 udu:Becausethefunctionf(u)=1=udoesnothaveamodulusofuniformcontinuity,wedonotautomaticallygetacodeforln(x)asacontinuousfunctioninRCA0.(SeeSimpson[17],De nitionIV.2.1,LemmaIV.2.6,andTheoremIV.2.7fortherelevantbackgroundonintegralsinsubsystemsofsecondorderarithmetic.)Letq2Q+.FollowingthestandardprocedureforestimatingRq11 udubyrectan-gles,wesubdividetheinterval[1;q](or[q;1]ifq1)intonequalpieces.Becausef(u)=1=uisadecreasingfunction,weobtainupperandlowerestimatesoftheintegralusingtheleftandrightendpointsofeachintervaltode netheheightoftheapproximatingrectangle.AshortcalculationshowsthatUpperSum�LowerSum=jq�1j n 1�1 q ;whichgoesto0asn!1.InRCA0,wede nethefollowingcodeforln(x).(SeeSimpson[17],De nitionII.6.1,fortheformalde nitionofacodeforacontinuousfunctioninasubsystemofsecondorderarithmetic.)LetlnNQ+Q+Q+Q+begivenby(n;a;r;b;s)2lnifandonlyif0a�r,theuppersumfortheestimateofln(a+r)usingnintervalsisb+s,andthelowersumfortheestimateofln(a�r)usingnintervalsis&#x-278;b�s.Sincethedi erencebetweentheupperandlowersumsconvergesto0,lnisacodeforacontinuousfunctionandthefunctionln(x)de nedbytheseconditionscoincideswithRx11=udu.Theproofthat1=xisthederivativeofln(x)canbecarriedoutinastraightforwardmannerwithinRCA0.Lemma6.1(RCA0).Thefollowingresultshold.(1)TheMeanValueTheorem.(2)Iffisadi erentiablefunctiononanopenintervalinR,thenf0=0onthisintervalifandonlyiffisconstant.Iff00onthisinterval,thenfisnondecreasing,andiff00onthisinterval,thenfisnonincreasing.(3)Foralla;b2R+,ln(ab)=ln(a)+ln(b).(4)Forallk2Nandallsequencesofpositiverationalnumbersa0;:::;ak,ln(Qki=0ai)=Pki=0ln(ai).Proof.Part(1)isprovedbyHardinandVellemanin[7].Parts(2)and(3)followbytheirclassicalproofsusingtheMeanValueTheorem.Part(4)followsby01inductiononksincetheequalitypredicatebetweenrealsis01. LOWNESSNOTIONS,MEASUREANDDOMINATION13Proof.If0ai1 2,thenbyLemma6.3,0�ln(1�ai)2ai.ThuskXi=0ln(1�ai)kXi=0(�2ai)=(�2)kXi=0ai�4soasinProposition6.6,Qki=0(1�ai)e�41=81(usingthefactthate3).7.WorkinginWWKL0Throughoutthissection,weworkinWWKL0toprovePOS!G-REG.OurproofwillroughlybeaformalizationoftheargumentsinLemma3.1andCorollary3.3withoneimportantdi erence.IntheproofsleadingtoCorollary3.3,weusedthefactthatevery02classcontainsa;02classofthesamemeasure.Thisfactallowedustoswitchfromworkingwitha02classtoworkingwithclosedclasseswithoracles.BecauseWWKL0cannotprovetheexistenceof;0,weneedtoworkdirectlywiththegivenGsetandapproximateitsmeasurewithinWWKL0.ThroughoutthissectionweworkinWWKL0(infact,exceptforLemma7.8,weworkinRCA0),assumePOSandproveG-REG.LetX=hXiji2NibeacodeforaGsetofpositivemeasure.EachXiisanonemptypre x-freesubsetof2NandXi;sdenotesthesetofallstrings2Xisuchthatjjs.Wewillbenotationallysloppyaboutthedistinctionbetweencodingsets,suchasXandXi,andthesubsetsof2Ntheycode,relyingonthecontexttoindicatewhichistheintendedmeaning.Ifthecontextisnotclear,wewillusesquarebrackets[X]todenotethecodedsubsetof2N.Foreachpairi;n2N,wede neafunctionmi;n(t)byprimitiverecursion(uni-formlyiniandn)toapproximate(Xi).Setmi;n(0)=0andmi;n(t+1)=mi;n(t)if(Xi;t+1�Xi;mi;n(t))2�n�i�1;t+1otherwise.Lemma7.1.Thefollowingpropertiesholdforeachi;n2N.(1)8t;u(tu!mi;n(t)mi;n(u)).(2)8t;u(mi;n(t)mi;n(u)!(tu^(Xi;mi;n(u)�Xi;mi;n(t))2�i�n�1)).(3)9t8ut(mi;n(u)=mi;n(t)).Proof.Properties(1)and(2)followdirectlyfromthede nitions.ToproveProperty(3),weproceedbycontradiction.IfProperty(3)failsforaparticulariandn,thenbyProperty(1),forallt,thereisau&#x-278;tsuchthatmi;n(u)&#x-278;mi;n(t).Wede neafunctionfsuchthatf(0)=0andf(j+1)=theleastu&#x-278;f(j)suchthatmi;n(u)&#x-278;mi;n(f(j)).ByProperty(2),wehavethat(Xi;mi;n(f(j)))j2�i�n�1,whichforj&#x-278;2i+n+1givesthedesiredcontradiction.Weletm1i;n=limsmi;n(s).(Soinasensem1i;nisthelaststagethatissigni cantforthepair(i;n).)AsweareworkinginWWKL0,wecannotformafunctiontakingeachpairhi;nitom1i;n,soweunderstandeachstatementm1i;n=ktobeanabbreviationforthe02formulagivenbytheequivalentformulations9t8ut(mi;n(u)=k)and8t9ut(mi;n(u)=k).Wesaythath;ni2NNNiscorrectatsifjjs,ns,and(i)=mi;n(s)forallijj.(Thecollectionoftriplesh;n;sisuchthath;niiscorrectatsisaset.)Wesaythath;niiscorrectif(i)=m1i;nforallijjandweletC1ndenotethe02classofallstringssuchthath;niiscorrect.(Tohelpmaintain 14BJRNKJOS-HANSSEN,JOSEPHS.MILLER,ANDREEDSOLOMONthedistinctionbetweensetsofstringsandclassesofstrings,weuseboldfacelettersforclasses.Anystatementinvolvingaclassistoberegardedasshorthandforthestatementgivenbysubstitutinginthede ningformulafortheclass.)Noticethatinadditiontobeinga02class,C1nisalsod.c.e.(adi erenceoftwocomputablyenumerablesets)inthesensethatifh;nibecomescorrectats,theneitherh;niremainscorrectatallfuturestages(and2C1n)orh;niceasestobecorrectatsomet�sandisnevercorrectatanystaget.Weneedtode netheappropriateversionofthesetIfromLemma3.1forourargument.Consideranarbitraryn,astages,andavalueks.Thestring=hm0;n(s);m1;n(s);:::;mk�1;n(s)iistheuniquestringoflengthksuchthath;niiscorrectats.Itgivesrisetothefollowingsequenceofclopensets(X0;(0))c(X0;(0)\X1;(1))c0@\jjjXj;(j)1Ac:Thedi erence(TjjjXj;(j))c�(Tjjj�1Xj;(j))cisaclopensetgeneratedbya nitesetofminimallengthstrings(sothesestringsformanantichain).Wede nethesetINN2NNNbyh;;n;si2Iifandonlyifh;niiscorrectatsandisaminimumlengthstringusedtocover(TjjjXj;(j))c�(Tjjj�1Xj;(j))c.WewillbeinterestedinthefollowingprojectionsandrestrictionsofI.I;n;s=fjh;;n;si2IgIs=fh;;nijh;;n;si2IgI9n;s=fj9(h;;n;si2I)gI1=fh;;nij9t8st(h;;n;si2IgI1;n=fj9s(h;;n;si2IgI;n;s,IsandI9n;sareall nitesets,whileI1isa02classofstrings(viatheequivalentcondition8t9st(h;;n;si2I))andI1;nisa01classofstrings.(ToseethatI9n;sisa niteset,noticethatI9n;sistheunionofthe nitesetsI;n;soverthe nitelymanysuchthath;niiscorrectats.)Thefollowingpropertiesareeasilyveri edfromthede nitions.Inthecurrentargument,Property(7)playstheroleoftheKraftinequalityinLemma3.1.Lemma7.2.Thefollowingpropertiesholdforall,,nands.(1)Ifh;niisnotcorrectats,thenI;n;s=;.(2)Ifh;niiscorrectats,thenI;n;sI9n;s.(3)h;;ni2I1ifandonlyifh;niiscorrectand2I1;n.Furthermore,ifh;niiscorrectandiscorrectats,thenI1;n=I;n;s.(4)Foreachnandk,thereisauniquestringsuchthatjj=kandh;niiscorrect(thatis,2C1n).Foreachik,hi;niiscorrect, \iXi!c \iXi;(i)!c= \iXi;m1i;n!c=[i[I1i;n]and [i[I1i;n]� \iXi!c!Xi2�n�i�1: LOWNESSNOTIONS,MEASUREANDDOMINATION17Lemma7.6.(P)�0.Proof.Weneedtoshowthatthereisan"2Q+suchthat8j0@0@\ijPi1A"1A:Weproceedbycontradiction.Supposethatforevery"�0,thereisajsuchthat(TijPi)".Fixanarbitrary"andthecorrespondingj.FixusuchthatPi;u=Piforallij.Asabove,weassumei=hi;i;ni;tii.Foreachij,Pi;u=[Vi;i;ni]cimplieshi;i;nii2Iu\I1,andPi;u6=[Vi;i;ni]cimpliesPi;u=2N.Furthermore,becauseeachPi;uisa nitesetofstrings,wecantellwhichofthesecasesapplies.Formthe nitesetK=fhi;i;niijij^Pi;u=[Vi;i;ni]cgIu:Calculatingmeasures,wehaveYhi;i;nii2K(1�2�jij�ni)=0@\ijPi;u1A=0@\ijPi1A":Furthermore,wehaveXhi;i;nii2K2�jij�niXh;;ni2Iu2�jj�n2:(The rstinequalityfollowsbecauseKIuandthesecondinequalityfollowsfromProperty(7)ofLemma7.2.)Forasmallenoughvalueof",thefactthatQhi;i;nii2K(1�2�jij�ni)"andPhi;i;nii2K2�jij�ni2contradictsPropo-sition6.7.Lemma7.7.Forall,andn,[V;;n]\P=;ifandonlyifh;niiscorrectand2I1;n.Proof.Supposethath;niiscorrectand2I1;n.ByProperty(3)ofLemma7.2,h;;ni2I1.ByLemma7.5,[V;;n]cisoneoftheintersectedsetsformingPandtherefore[V;;n]\P=;.Nowassumethatitisnotthecasethath;niiscorrectand2I1;n.AgainbyProperty(3)ofLemma7.2,wehaveh;;ni=2I1.So[V;;n]cdoesnotoccurintheintersectionformingP.Lets=h;;ni.RecallhowthesetsVtwereformedinLemma2.5.LetkbethelengthofthelongeststringinStVt.ConsiderthesequenceX=1k0f(s)1N.ItfollowsfromtheconstructionofthesetsVt,t2N,thatX2[Vs]butX2[Vt]cforeveryt6=s.Therefore,X2[V;;n]\P,so[V;;n]\P6=;.ByLemma7.7,wecanwriteZasA2Z,8n9;([V;;n]\P=;^A2[]):ByPOS,wecan xaclosedsetQPsuchthat(Q)&#xs]TJ;&#x/F11;&#x 9.9;ئ ;&#xTf 1;.15; 2.;উ ;&#xTd [;0.FollowingtheproofofLemma3.1,itwouldmakesensetode neJtobetheclasscontainingalltriplesh;;nisuchthat[V;;n]\Q=;.TheproblemisthatwithoutWKL0,thiswould 18BJRNKJOS-HANSSEN,JOSEPHS.MILLER,ANDREEDSOLOMONnotnecessarilybea01condition.SincewewanttoworkinWWKL0,weneedaslightlydi erentde nitionofJ.Takek2Nsuchthat(Q)�2�k.LetJ=fh;;nij([V;;n]\Q)2�h;;ni�k�2g:InSection4wesawthatifOisanopensetandq2Q,then(O)&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;qisa01statement.Thus,Jisa01class.Lemma7.8.If[V;;n]\Q=;,thenh;;ni2J.Proof.ThisfollowsfromWWKL0anditisouronlyuseoftheprinciple.Ifh;;ni=2J,then([V;;n]\Q)&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;0.ButthenWWKL0impliesthat[V;;n]\Q6=;.Lemma7.9.ThesumPh;;ni2J2�jj�nisboundedabove.Proof.BecauseJisa01class,thissumcanbeexpressedasPaiwherethese-quenceai2QisdeterminedbytheenumerationofJ.Thatis,ai=2�jj�nifthei-thelementenumeratedintoJish;;ni.(Recallthatwethinkofa01classsuchasJenumeratedinstageswithJsequaltothe nitesetoftuplesh;;niswhichareinJwithanexistentialwitnesss.)Wede neanopensetRasfollows.Atthestageswhenh;;nigoesintoJ,wehave([V;;n]\Qs)2�h;;ni�k�2.Enumeratetheclopenset[V;;n]\QsintoR.Notethat(R)Ph;;ni2J2�h;;ni�k�22�k�1.Alsonotethatifh;;ni2J,then[V;;n]R[Qc.Therefore,Q�RTh;;ni2Js[V;;n]c.Foranys2N,wehaveYh;;ni2Js(1�2�jj�n)=0@\h;;ni2Js[V;;n]c1A(Q�R)(Q)�(R)&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;2�k�2�k�1=2�k�1&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;0:andthereforetheproductQh;;ni2J(1�2�jj�n)isboundedawayfrom0.Hence,byProposition6.6,Ph;;ni2J2�jj�nisboundedabove.Toapproximatethede ningconditionforZgivenimmediatelyafterLemma7.7,welookatthe01predicateh;;ni2J^9ts(h;;ni2It):De neTn;s=fh;;nijh;;ni2J^9ts(h;;ni2It)g;Un;s=fj9(h;;ni2Tn;s)g:NotethatTn;sandUn;sare01classesandforany xedn,wehaveTn;0Tn;1Tn;2;andUn;0Un;1Un;2:We nallyde neourdesired02classYY=\n2N\s2N[Un;s]:Lemma7.10.ZY. LOWNESSNOTIONS,MEASUREANDDOMINATION19Proof.LetA2Zand xanyn.WeshowthatA2Ts2N[Un;s].SinceA2Z,therearestringsandsuchthat[V;;n]\P=;andA2[].SinceQP,wehave[V;;n]\Q=;,soh;;ni2J.ByLemma7.7,wehavethath;niiscorrectand2I1;n.Therefore,foralls,thereistssuchthath;;ni2It.(Infact,thisistrueforalmostallts.)Itfollowsthatforalls,h;;ni2J^9ts(h;;ni2It);andhencethath;;ni2Tn;sand2Un;sforalls.SinceA2[],wehavethatA2Ts2N[Un;s]asrequired.Lemma7.11.(Y�Z)=0.Proof.Fork2NweletZk=[2C1k[I1;k];Yk=\s2N[Uk;s]:TheproofofLemma7.10showsthatZkYk.SinceZ=TkZkandY=TkYk,itsucestoshowthat(Yk�Zk)=0.Toprovethismeasurestatement,weneedtoprovethatforevery"2Q+,thereisacsuchthat(Uk;c�Zk)".Fixk2Nand"2Q+.ByLemma7.9, xmsuchthatXh;;ni2Jh;;nim2�jj�n"2�k:(Inthissum,,andnvary.)Fixingn=kinthissummationandmultiplyingby2k,wehave(nowlettingonlyandvary)Xh;;ki2Jh;;kim2�jj":Foreachtupleh;;ki2Tk;0suchthath;;ki=2I1,theremustbeancsuchthatforalluc,h;;ki=2Iu,andhenceh;;ki=2Tk;c.Wewouldliketoobtainasinglewitnesscwhichworksforallsuchh;;kim.Considertheboundedquanti erstatement'(;;k;u)whichsaysthatuisawitnessforh;;ni2J,that9tu(h;;ki2It),andthath;;ki=2Iu.Fixanyh;;kisuchthat9u'(;;k;u), xthewitnessuforthisstatementand xtuthatwitnessesthesecondconjunctof'.Becauseh;;ni2Jandh;;ki2It,wehavethath;;ki2Tk;0.Becauseh;;ki=2Iuandtu,wehavethat8vu(h;;ki=2Iv)andhenceh;;ki=2Tk;u.Furthermore,bythepreviousparagraph,ifh;;ki2Tk;0andh;;ki=2I1,then9u'(;;k;u).Thestrong01boundingscheme(whichholdsinRCA0,seeSimpson[17]ExerciseII.3.14)impliesthat9c8h;;kim(9u'(;;k;u)!9uc'(;;k;u)):Fixsuchac.Foranyh;;kim,ifh;;ki2Tk;0andh;;ki=2I1,thenh;;ki=2Tk;c.