/
IEEE TRANSACTIONS ON MAGNETICS VOL IEEE TRANSACTIONS ON MAGNETICS VOL

IEEE TRANSACTIONS ON MAGNETICS VOL - PDF document

conchita-marotz
conchita-marotz . @conchita-marotz
Follow
470 views
Uploaded On 2014-12-18

IEEE TRANSACTIONS ON MAGNETICS VOL - PPT Presentation

36 NO 5 SEPTEMBER 2000 2183 Low Density Parity Check Codes for Magnetic Recording Channels Hongxin Song Richard M Todd and J R Cruz Abstract We propose a system for magnetic recording using a low density parity check LDPC code as the error ID: 25502

SEPTEMBER

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON MAGNETICS VOL" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONMAGNETICS,VOL.36,NO.5,SEPTEMBER2000LowDensityParityCheckCodesforMagneticRecordingChannelsHongxinSong,RichardM.Todd,andJ.R.CruzWeproposeasystemformagneticrecording,usingalowdensityparitycheck(LDPC)codeastheerror-correcting-code,inconjunctionwitharate16/17quasi-maximum-transition-runchannelcodeandamodifiedEPR4-equalizedchannel.IterativedecodingbetweenthepartialresponsechannelandtheLDPCcodeisperformed.Simulationsshowthatthissystemcanachievea5.9dBgainoveruncodedEPR4.ThealgorithmsusedtodesignthisLDPCcodearealsodiscussed.IndexTerms—Iterativedecoding,lowdensityparitycheckcodes,magneticrecording.I.INTRODUCTIONURBOdecodingformagneticrecordingchannelshasbeeninvestigatedintwodifferentways:i)usingaclas-sicalturbocodewithatleasttwocomponentcodes[1],[2];orii)usingasingleconvolutionalcodeseriallyconcatenatedwithapartialresponse(PR)channelwhichplaystheroleofasecondconstituentcodeofrateone[3].Bothsystemsperformsignificantlybetterthanuncodedsystems.Inthispaper,insteadofusingasingleweakconvolutionalcode,weinvestigatetheuseofapowerfulblockcode,namelyalowdensityparitycheck(LDPC)code[4]–[6],anditsiterativedecodingwithanefficientdecodingalgorithm.Thepaperisorganizedasfollows.InSectionIIwedescribethebackgroundofseriallyconcatenatedsystemsandLDPCcodes.InSectionIIIwedescribeapracticalLDPCsystemwithturboequalizationformagneticrecording.InSectionIVwepresentthesimulationresultsfortheproposedsystem.InSec-tionVwediscussthedesignoftheLDPCcode.ConclusionsaregiveninSectionVI.II.BACKGROUNDAturbocodeusuallyconsistsoftwoormoreparallelconcate-natedconvolutionalcodes[7].Theapplicationofturbocodestomagneticrecordingchannelshasthepotentialforlargeperfor-mancegainsoveruncodedsystems[1],[2].Turboequalizationisperformedbyfeedingtheinformationfromtheturbodecoderbacktothechanneldecoder.etal.’sserialconcatenationschemesimplifiesthefullturbosystembyreplacingtheturbocodewithasinglecon-volutionalcode[3],andisshowntohaveaboutthesameper-formanceasthefullturbosystem,withlesscomplexity.ManuscriptreceivedFebruary15,2000;revisedMay15,2000.TheauthorsarewiththeSchoolofElectricalandComputerEngineering,TheUniversityofOklahoma,Norman,OK73019USA.PublisherItemIdentifierS0018-9464(00)08404-1.LDPCcodescanbespecifiedbyasparseparitycheckmatrix[4]–[6].Thebeliefpropagation(BP)algorithmcanbeused isdenotedby Thesetofchecksthatbit participatesisdenotedby .TheLog-BPalgorithmisoutlinedbelowusingthenotationof[5].Supposeacodeword istransmittedthroughanAWGNchannelwithsymbols+1and Thereceivedchannelvectoris .Define ,where isthesignand istheabsolutevalue.Similardefinitionsareusedinthefollowing,wherethefirstvariableindicatesthesignofarealvalueandthesecondvariableisitsabsolutevalue. forall and .Iteration: (1) (2)where .Pseudo-posterioriLLR: if III.MAGNETICYSTEMSWITHLDPCCApracticalmagneticrecordingsystemusinganLDPCcodeisshowninFig.1.TheproposedsystemisbasedonamodifiedextendedE PR4(ME PR4)channelwith Ontherecordingend,theuserdatablockisencodedbyarate16/17quasi-maximum-transition-run(QMTR)code[9],andthenfurtherencodedbyanLDPCcode.Thesequence0018–9464/00$10.00©2000IEEE IEEETRANSACTIONSONMAGNETICS,VOL.36,NO.5,SEPTEMBER2000 Fig.1.BlockdiagramofaPRchannelwithanLDPCcode.ofLDPCcheckbitsisinsertedwithguardbitssothattherun-lengthconditionsaresatisfied.Onthereadingend,anprobability(APP)decoder[10],[11]matchestheprecodedME PR4channel.TheAPPdecodertakes andtheapriori ,andcomputestheaposteriori TheLDPCdecodertakestheaposterioriLLRofthechanneldecoderasinput in(1),andoutputstheLLRin(3).TheextrinsicLLR isfedbacktothechannelAPPdecoderastheaprioriThedecodingprocesshastwoiterationloops.OneistheLDPCloopwithintheLDPCdecoder.AftereachiterationofLDPCdecoding,thedecoderchecksthesyndrome .Ifavalidcodewordisfound,theLDPCdecodingisfinished,andthewholedecodingprocessstops.Theotheriterationloopisthechannelloop.ItistheturboequalizationbetweenthePRchannelandtheLDPCcode[12].ThechannelloopiterationtakesplaceonlywhenthemaximumnumberofLDPCloopit-erationsisreachedwithoutfindingavalidcodeword.IV.SIMULATIONESULTSInoursimulation,theLorentzianchannelwithisolatedpulse isassumed.Userdensityisdefinedas ,where istheuserbitduration.Allsimulationsareperformedatuserdensity2.8.ThechannelisequalizedtotheME PR4channelresponse,andadditivewhiteGaussiannoisewithvariance isassumedbeforetheequalizer.Thesignal-to-noiseratio(SNR)isproportionaltotheratiooftheamplitudeoftheisolatedpulseand WeinvestigatetwoLDPCcodes.LDPC1isarate0.9358codewithblocklength4376givenin[13],withcolumnweight3.WedesignedLDPC2,withrate0.9402,4352informationbits,alsowithcolumnweight3.ThecodewasconstructedusingthemethoddiscussedinSectionV.TheproposedsystemwithLDPC2hasoverallcoderate0.8674anduserblocksize4096bits,whereasthesystemwithLDPC1hascoderate0.8622anduserblocksize3854bits.In Fig.2.PerformanceofLDPCcodesonPRchannels.Fig.1,themaximumnumberofiterationsissetat50and100fortheLDPCandchanneliterations,respectively.SimulationresultsarepresentedinFig.2.Alsoplottedinthefigurearetheperformanceoftherate16/17run-length-limited(RLL)codedPR4channel,theRLLcodedEPR4channel,theQMTRcoded PR4channel,andtheLDPC1andQMTRcodedME Thesimulationresultsshowthatourproposedsystemachieveda7.5dBgainoveruncodedPR4ora5.9dBgainoveruncodedEPR4atbiterrorrate10 ThedecodingoftheLDPCcodeshasaparticularlyniceprop-erty.ThewholedecodingprocessstopsifavalidLDPCcode-wordisfound,orifthemaximumnumberofchanneliterationsisreachedwithoutfindingavalidcodeword.Thisprovidesanaturalstoppingcriterionfortheiterativedecodingaswellasaflagindicatingthataparticularblockcontainserrors,whichisadistinctadvantageoversystemsusingconvolutionalcodes.AnundetectederroroccurswhenavalidLDPCcodeworddif-ferentfromthecorrectoneisobtainedbytheLDPCdecoder. etal.:LOWDENSITYPARITYCHECKCODESFORMAGNETICRECORDINGCHANNELS2185 Fig.3.Performanceoftheproposedsystemwithfewchanneliterations.Throughoutoursimulation,noundetectederrorswereobserved.ThismaybeduetothelargeminimumdistanceoftheLDPCTheimpactofthemaximumnumberofchanneliterationswasinvestigated.Fig.3showstheperformanceoftheLDPC2codedsystemwith1,2,3and100maximumchanneliterations.Com-paredwith100maximumchanneliterations,theperformancedegradationisabout0.5dBifnoturboequalizationisallowed.ThetotalnumberofLDPCiterationsforablockisthesumofLDPCiterationsineachchanneliteration.Atbiterrorrate andwiththelimitontotalchanneliterationsbeing1,2,or3,theaveragenumberofchanneliterationsis1,1.2and1.5re-spectively.TheaveragenumberofLDPCiterationsundertheseconditionsisabout5,20and35respectively.FromFig.3,itcanbeseenthatatbiterrorrate10 ,thegainforamaximumof3channeliterationsisabout0.3dBoverasinglechanneliterationorinotherwordsnoturboequalization,butittakesafactorofsevenincreaseintotalnumberofLDPCiterations.V.LDPCCWewantedanLDPCcodetobelongenoughtoholdastan-dard4096-bitdisksectorafterpassingthroughtherate16/17QMTRencoderandwithacoderatearound0.94.Anyparitycheckmatrixcanbethoughtofasamany-to-manymappingfromcodewordbitstoparitychecksandviceversa[14].Ifwecreateaset ofthecodewordbits,witheachbit appearinginthesetanumberoftimesequaltotheweightofthatcolumnof,andasimilarset oftheparitychecks,thenanyparitycheckmatrixspondstosomepermutationfromelementsof toelements .ThegoalistofindamappingthatleadstoanLDPCcodematrixsuchthattheresultingcodehasno4-cycles.Ithasbeenfoundthat4-cyclesaredetrimentaltothebiterrorrateperformanceofLDPCcodes[6].Thecodedesignalgorithmisasfollows:1.Computethedesiredcodewordsize andnumberofparitychecks andrandomlygenerateapermutationofthedesiredsize(thetotalnumberofonesin2.Checktoseethatitcorrespondstoavalidmatrix.Ifwefindthatismappingthebit toacheck morethanonce,werandomlyswapthetargetofthatonemappingwithsomeothermappinginandrepeatuntilwegeta3.Checkthepermutationfor4-cycles.Ifwefindnone,weproceedtoStep5.4.Ifwedidfinda4-cycleinvolvingsomecodewordbit werandomlypickanothercodewordbit andexchangethetargetsofthetwochecksthatmapsthesetwobitstoandgobacktoStep2.5.Nowwehaveancorrespondingtoacycle-free,thefinalstageistoreorderthecolumnssuchthattheright- sectionisinvertibleandcanbeconvertedtoageneratormatrix.Whetherthisalgorithmconvergesinanygivensituationisbynomeansobvious.Inpractice,itappearsthatthealgorithmconvergesmuchlessrapidlywithattemptstocreatecodesofratesmuchabove0.95,codesofveryshortlength,andcodeswithcolumnweightlargerthanthree.VI.CAseriallyconcatenatedsystemusingourLDPCcodeandit-erativedecodinghasbeenintroducedforuseonaME equalizedLorentzianchannel.Simulationresultsshowthatagainof5.9dBoveruncodedEPR4atabiterrorrateof10 canbeobtained.ThesesignificantgainsmakeLDPCcodedsys-temsveryattractiveasanalternativetoturbocodedmagneticrecordingsystems.AlthoughthisworkwasdoneindependentlyofFanetal.[15],theauthorswererecentlymadeawareoftheirworkontheperformanceofanLDPCcodedsystemforanide-allyequalizedEPR4channel.[1]W.E.Ryan,“PerformanceofhighrateturbocodesonaPR4-equalizedmagneticrecordingchannel,”inProc.IEEEInt.Conf.Commun.,1998,pp.947–951.[2]W.E.Ryan,L.L.McPheters,andS.W.McLaughlin,“CombinedturbocodingandturboequalizationforPR4-equalizedLorentianchannels,”Proc.Conf.Inform.SciencesandSystems,1998,pp.489–494.[3]T.Souvignier,A.Friedman,M.Oberg,P.H.Siegel,R.E.Swanson,andJ.K.Wolf,“TurbodecodingforPR4:Parallelversusserialconcatena-tion,”inProc.IEEEInt.Conf.Commun.,1999,pp.1638–1642.[4]R.G.Gallager,“Low-densityparity-checkcodes,”IRETrans.Inform.,vol.IT-8,pp.21–28,Jan.1962.[5]D.J.C.MacKay,“NearShannonlimitperformanceoflowdensityparitycheckcodes,”Electron.Lett.,vol.33,pp.457–458,Mar.1997. ,“Gooderror-correctingcodesbasedonverysparsematrices,”IEEETrans.Inform.Theory,vol.46,pp.399–431,Mar.1999.[7]C.Berrou,A.Glavieux,andP.Thitimajshima,“NearShannonlimiterror-correctingcodinganddecoding:turbo-codes,”inProc.IEEEInt.Conf.Commun.,1993,pp.1064–1070.[8]R.J.McEliece,D.J.C.MacKay,andJ.-F.Cheng,“TurbodecodingasaninstanceofPearl’s‘beliefpropagation’algorithm,”IEEEJ.Select.AreasCommun.,vol.16,pp.140–152,Feb.1998.[9]T.Nishiya,K.Tsukano,T.Hirai,T.Nara,andS.Mita,“Turbo-EEPRML:AnEEPR4channelwithanerror-correctingpost-processordesignedfor16/17ratequasi-MTRcode,”inProc.IEEEGlobalTelecommun.Conf.,1998,pp.2868–2873. IEEETRANSACTIONSONMAGNETICS,VOL.36,NO.5,SEPTEMBER2000[10]L.R.Bahl,J.Cocke,F.Jelinek,andJ.Raviv,“Optimaldecodingoflinearcodesforminimizingsymbolerrorrate,”IEEETrans.Inform.Theoryvol.IT-20,pp.284–287,Mar.1974.[11]P.Robertson,E.Villebrun,andP.Hoeher,“Acomparisonofoptimalandsub-optimalMAPdecodingalgorithmsoperatinginthelogdomain,”inProc.IEEEInt.Conf.Commun.,1995,pp.1009–1013.[12]C.Douillard,M.Jezequel,C.Berrou,A.Picart,P.Didier,andA.Galieux,“Iterativecorrectionofintersymbolinterference:Turbo-equal-EuropeanTrans.Telecommunication,vol.6,pp.507–511,Sept./Oct.1995.[13]D.J.C.MacKay’s,,website.[14]D.J.C.MacKay,S.T.Wilson,andM.C.Davey,“Comparisonofcon-structionsofirregularGallagercodes,”IEEETrans.Commun.,vol.47,pp.1449–1454,Oct.1999.[15]J.Fan,A.Friedmann,E.Kurtas,andS.McLaughlin,“Lowdensityparitycheckcodesformagneticrecording,”inProc.Thirty-SeventhAllertonConf.Commun.,Control,andComputing,1999.