/
Positrons for a New Measurement of the Positron Magnetic Mo Positrons for a New Measurement of the Positron Magnetic Mo

Positrons for a New Measurement of the Positron Magnetic Mo - PowerPoint Presentation

conchita-marotz
conchita-marotz . @conchita-marotz
Follow
442 views
Uploaded On 2016-06-20

Positrons for a New Measurement of the Positron Magnetic Mo - PPT Presentation

Shannon Fogwell Hoogerheide Lepton Moments 2014 July 21 2014 Acknowledgements 2 Prof Gerald Gabrielse Elise Novitski PhD in progress Joshua Dorr 2013 Shannon Fogwell ID: 370059

loading source min positron source loading positron min mci apparatus measurement magnetic rate 100 rev lett phys tmod 300

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Positrons for a New Measurement of the P..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Positrons for a New Measurement of the Positron Magnetic Moment

Shannon Fogwell HoogerheideLepton Moments 2014July 21, 2014Slide2

Acknowledgements

2

Prof. Gerald

Gabrielse

Elise

Novitski

(PhD in progress…)Joshua Dorr (2013)Shannon Fogwell Hoogerheide (2013)

New ApparatusRetractable Positron SourcePositron LoadingSlide3

2008 Electron Magnetic Moment Measurement

3

Best measurement of electron

g

-value:

→ Most precise determination of fine

structure constant:

→Most precise test of Standard Model and QED (with independent α)However, best measurement of positron g-value is only 4.3 ppt.This limits test of CPT violation in lepton systems:

Could be improved by 15x with 0.28

ppt

positron measurement

T. Aoyama, M. Hayakawa, T. Kinoshita, and M.

Nio

, Phys. Rev.

Lett

. 109, 111808 (2012)

D

.

Hanneke

, S.

Fogwell

, and G.

Gabrielse

,

Phys. Rev.

Lett

.

100

, 120801 (2008)

R.

Bouchendira

et.al.

Phys. Rev.

Lett

.

106,

080801 (2011)

R. Van

Dyck

et.al.

Phys. Rev.

Lett

.

59

. 26 (1987)Slide4

2008 Measurement

4

Best measurement of electron

g

-value:

→ Most precise determination of fine

structure constant:

→Most precise test of QED with independent αHowever, best measurement of positron g-value is only 4.3 ppt.This limits test of CPT violation in lepton systems:

Could be improved by 15x with 0.28

ppt

positron measurement

T. Aoyama, M. Hayakawa, T. Kinoshita, and M.

Nio

, Phys. Rev.

Lett

. 109, 111808 (2012)

D

.

Hanneke

, S.

Fogwell

, and G.

Gabrielse

,

Phys. Rev.

Lett

.

100, 120801 (2008)R. Bouchendira et.al. Phys. Rev. Lett. 106, 080801 (2011)R. Van Dyck et.al. Phys. Rev. Lett. 59. 26 (1987)

Solution: New and Improved Apparatus with Positron Loading Capability!Slide5

5

Magnetic Field:

6 T Superconducting Solenoid

Electric Field:

Silver trap electrodes

Axial

Magnetron

CyclotronSlide6

6

Magnetic Field:

6 T Superconducting Solenoid

Electric Field:

Silver trap electrodes

Dilution Refrigerator:

Quantum measurement

h

n

c

/

k

B

7.2 K

Run at 100

mK

<n> <<1Slide7

New Apparatus

7

2.5 cmSlide8

Advantages of the New Apparatus

Mechanical Stability

8Slide9

Advantages of the New Apparatus

Mechanical Stability

9

Challenge:

Lowering warm apparatus straight into a liquid helium

dewar

without quenching the magnetSlide10

Cooldown Procedure

10

4-5 hour cooling time

Sliding seal plus glove bagSlide11

Cooldown Procedure

11

4-5 hour cooling time

Sliding seal plus glove bagSlide12

Advantages of the New Apparatus

Mechanical StabilityRadial Centering

12Slide13

Advantages of the New Apparatus

Mechanical StabilityRadial CenteringImproved Magnetic Shielding6x More Cooling

Power at 100 mK (300 μW vs 50 μW)

More Room for Electronics

13Slide14

Advantages of the New Apparatus

Mechanical StabilityRadial CenteringImproved Magnetic Shielding6x More Cooling Power at 100 mK (300 μW vs 50 μW)

More Room for ElectronicsSmaller Magnetic BottleNarrower resonance lines

14Slide15

Advantages of the New Apparatus

Mechanical StabilityRadial CenteringImproved Magnetic Shielding6x More Cooling Power at 100 mK (300 μW vs 50 μW)

More Room for ElectronicsSmaller Magnetic BottleTrap Cavity Mode DesignAllows for new techniques (discussed in next talk)

15Slide16

Advantages of the New Apparatus

Mechanical StabilityRadial CenteringImproved Magnetic Shielding6x More Cooling Power at 100 mK (300 μW vs 50 μW)

More Room for ElectronicsSmaller Magnetic BottleTrap Cavity Mode DesignPositron Source Access

16Slide17

Positron Source

Source: Radioactive 22Na capsuleRequirements:Smallest source activity

possibleSafety considerationsMinimal disruption to high-precision environmentReasonable loading rate

17Slide18

Positron Source Requirements

Smallest source activity possibleReasonable loading rate

18

Solution:

Positron Loading TrapSlide19

Positron Source Requirements

Smallest source activity possibleReasonable loading rateRetractable source

19Slide20

Positron Source Requirements

Smallest source activity possibleReasonable loading rateRetractable sourceAdvantages: Preserve high-precision environment for measurement

Able to easily remove source from apparatus if desired

20Slide21

Positron Source Requirements

Smallest source activity possibleReasonable loading rateRetractable sourceAdvantages: Preserve high-precision environment for measurement

Able to easily remove source from apparatus if desiredChallenges: Move source at 100 mKMinimize heat load on Dil fridge: Dil

fridge can only handle ~300

uW

at 100 mK – a 1/32” (0.8 mm) hole at 300 K radiates ~200 uW at 100 mK!

21Slide22

Retractable Positron Source

22

Take great care to prevent room temperature thermal radiation from reaching cryogenic environmentSlide23

Retractable Positron Source

23Slide24

Positron Loading Mechanism

24

J. Estrada

et al.

, Phys. Rev. Lett.

84

, 859 (2000)

e

+

Ps*

e

+

e

-Slide25

Comparison of Source Size and Loading Rate

25

Source Size

Loading Rate

Loading Rate/mCi

UW ’81-’87

(resistive damping)

0.5 mCi

0.4 e

+

/min

0.8 e

+

/min/mCi

HU ’94-’95

(resistive damping + RMOD)

10 mCi

12 e

+

/min

1.2 e

+

/min/mCi

HU ’00 (ATRAP)

(TMOD only)

2.5 mCi

420 e

+

/min

170 e

+

/min/mCi

HU ’00 (ATRAP)

(TMOD + RMOD)

2.5 mCi

1700 e

+

/min

670 e

+

/min/mCi

HU ’03 (ATRAP)

(TMOD + RMOD)

75 mCi

3.2x10

4

e

+

/min

420 e

+

/min/mCi

This work

(TMOD only)

.0065 mCi

1-2 e

+

/min

150-300 e

+

/min/mCiSlide26

Comparison of Source Size and Loading Rate

26

Source Size

Loading Rate

Loading Rate/mCi

UW ’81-’87

(resistive damping)

0.5 mCi

0.4 e

+

/min

0.8 e

+

/min/mCi

HU ’94-’95

(resistive damping + RMOD)

10 mCi

12 e

+

/min

1.2 e

+

/min/mCi

HU ’00

(TMOD only)

2.5 mCi

420 e

+

/min

170 e

+

/min/mCi

HU ’00

(TMOD + RMOD)

2.5 mCi

1700 e

+

/min

670 e

+

/min/mCi

HU ’03

(TMOD + RMOD)

75 mCi

3.2x10

4

e

+

/min

420 e

+

/min/mCi

This work

(TMOD only)

.0065 mCi

1-2 e

+

/min

150-300 e

+

/min/mCiSlide27

Loading Potentials

27Slide28

Loading Potentials

28Slide29

Positron Loading Rate

Maximum positron loading rate: 1-2 e+/min for 6.5 μCi source, or 3-5 e+/s/mCiSimilar normalized loading rate

to the 2.5 mCi and 100 mCi sources used to demonstrate positronium loading method3-5 times higher loading rate and 75 times smaller source than used in previous e

+

g-value measurement

29Slide30

Prospects for a New Positron Magnetic Moment Measurement

New high-precision apparatus complete and running wellRobust positron loading demonstratedWork is underway on transferring positrons to the precision trapReady for new (and improved!) measurements (NEXT TALK)

30Slide31

31