/
The XMASS 800kg Experiment The XMASS 800kg Experiment

The XMASS 800kg Experiment - PowerPoint Presentation

conchita-marotz
conchita-marotz . @conchita-marotz
Follow
372 views
Uploaded On 2017-12-30

The XMASS 800kg Experiment - PPT Presentation

Jing LIU IPMU Univ of Tokyo TAUP2011 Munich XMASS collaboration Kamioka Observatory ICRR Univ of Tokyo Y Suzuki M Nakahata S Moriyama M Yamashita Y Kishimoto Y ID: 618604

800kg xmass jing liu xmass 800kg liu jing taup2011 lxe xenon pmt detector neutrino kev pmts massive water scintillation

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "The XMASS 800kg Experiment" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

The XMASS 800kg Experiment

Jing LIUIPMU, Univ. of TokyoTAUP2011, Munich

XMASS collaboration:

Kamioka

Observatory, ICRR, Univ. of Tokyo

Y. Suzuki, M.

Nakahata

, S. Moriyama, M. Yamashita, Y.

Kishimoto

,

Y.

Koshio

, A. Takeda, K. Abe, H.

Sekiya

, H. Ogawa, K. Kobayashi,

K.

Hiraide

, A. Shinozaki, S. Hirano, D.

Umemoto

, O.

Takachio

, K.

Hieda

IPMU, University of Tokyo

K. Martens,

J.Liu

Kobe University:

Y. Takeuchi, K.

Otsuka

, K. Hosokawa, A. Murata

Tokai University:

K.

Nishijima

, D. Motoki, F.

Kusaba

Gifu University

S.

Tasaka

Yokohama National University

S. Nakamura, I. Murayama, K.

Fujii

Miyagi University of Education

Y. Fukuda

STEL, Nagoya University

Y.

Itow

, K. Masuda, H. Uchida, Y.

Nishitani

, H.

Takiya

Sejong

University

Y.D. Kim

KRISS:

Y.H. Kim, M.K. Lee, K. B. Lee, J.S. LeeSlide2

The XMASS Experiment

XMASS 800kg

Jing LIU @ TAUP2011

2

Xenon

MASSive

detector for Solar neutrino (pp/

7

Be)

Xenon neutrino MASS detector (double beta decay)

Xenon detector for weakly interacting

MASSive Particles

~100 kg LXeprototype

~800 kg LXedirect dark matter search

~26 ton LXeMulti-purpose

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

PMT

LXe insideSlide3

The XMASS Experiment

XMASS 800kg

Jing LIU @ TAUP2011

3

Xenon

MASSive

detector for Solar neutrino (pp/

7

Be)

Xenon neutrino MASS detector (double beta decay)

Xenon detector for weakly interacting

MASSive Particles

~100 kg LXeprototype

~800 kg LXedirect dark matter search

~26 ton LXeMulti-purpose

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

PMT

LXe inside

, n,

,…

or

?

PMT

LXe

scintillationSlide4

The XMASS Experiment

XMASS 800kg

Jing LIU @ TAUP2011

4

Xenon

MASSive

detector for Solar neutrino (pp/

7

Be)

Xenon neutrino MASS detector (double beta decay)

Xenon detector for weakly interacting

MASSive Particles

~100 kg LXeprototype

~800 kg LXedirect dark matter search

~26 ton LXeMulti-purpose

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

PMT

LXe inside

PMT

LXeSlide5

The XMASS Experiment

XMASS 800kg

Jing LIU @ TAUP2011

5

Xenon

MASSive

detector for Solar neutrino (pp/

7

Be)

Xenon neutrino MASS detector (double beta decay)

Xenon detector for weakly interacting

MASSive Particles

~100 kg LXeprototype

~800 kg LXedirect dark matter search

~26 ton LXeMulti-purpose

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

PMT

LXe insideSlide6

The XMASS Experiment

XMASS 800kg

Jing LIU @ TAUP2011

6

Xenon

MASSive

detector for Solar neutrino (pp/

7

Be)

Xenon neutrino MASS detector (double beta decay)

Xenon detector for weakly interacting

MASSive Particles

~100 kg LXeprototype

~800 kg LXedirect dark matter search

~26 ton LXeMulti-purpose

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

PMT

LXe insideSlide7

The XMASS Experiment

XMASS 800kg

Jing LIU @ TAUP2011

7

Xenon

MASSive

detector for Solar neutrino (pp/

7

Be)

Xenon neutrino MASS detector (double beta decay)

Xenon detector for weakly interacting

MASSive Particles

~100 kg LXeprototype

~800 kg LXedirect dark matter search

~26 ton LXeMulti-purpose

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

PMT

LXe insideSlide8

Structure of XMASS 800kg detector

XMASS 800kg

Jing LIU @ TAUP2011

8

PMTSlide9

Structure of XMASS 800kg detector

XMASS 800kg

Jing LIU @ TAUP2011

9

PMT

Pentakis

dodecahedron

~10 PMTs in one triangle

642 PMTs in total

~0.8 meter

PMT photo-cathodes cover ~62% inner surfaceSlide10

Reconstruct interaction point from PMT hit pattern

XMASS 800kg

Jing LIU @ TAUP2011

10

Colored photo cathodes indicating number of

p.e

. (photoelectrons) recorded by PMTs

Interaction point (vertex) can be reconstructed from the PMT hit pattern. Slide11

LXe self-shielding

XMASS 800kg

Jing LIU @ TAUP2011

11

Simulation:

g

into

LXe

water

LXe

E

[

keV]

Attenuation

length of 

[cm]Slide12

Where is it?

XMASS 800kg

Jing LIU @ TAUP2011

12

1000 m rock overburden

(2700 m water equiv.):

Muon

: 6.0x10

-8 /cm

-2/s/sr

Neutron: 1.2x10-6/cm

-2/s360m above the seaHorizontal access:15 minutes drive from office,too easy to get in!No excuse to avoid 24-hour shift Kamioka underground observatorySlide13

XMASS 800kg

Jing LIU @ TAUP2011

13

New experimental hall, Aug. 2008

15 meter

15 meter

20 meterSlide14

XMASS 800kg

Jing LIU @ TAUP2011

14

water tank, Nov. 2008

10 m x 10 mSlide15

XMASS 800kg

Jing LIU @ TAUP2011

15

Frame of clean room in water tank, Mar. 2008Slide16

XMASS 800kg

Jing LIU @ TAUP2011

16

PMT mounting in clean room, Dec. 2009Slide17

XMASS 800kg

Jing LIU @ TAUP2011

17

PMT mounting finished, Feb. 2010Slide18

XMASS 800kg

Jing LIU @ TAUP2011

18

Water filling, Sep. 2010Slide19

XMASS 800kg

Jing LIU @ TAUP2011

19

Commissioning started, Nov. 2010Slide20

Scintillation light yield :: calibration system

XMASS 800kg

Jing LIU @ TAUP2011

20

Top PMT can be pulled out

Source changed here

Z position of source is controlled by a motor on top at <1 mm accuracy

x

y

z

57

Co,

241

Am,

109

Cd,

55Fe, 137Cs

F~

4mm

F~

0.15mm

for

57

CoSlide21

Scintillation light yield: 15.9

 1.2

p.e

./

keV

(

57Co at center)

XMASS 800kgJing LIU @ TAUP2011

21

DataMC

122

keV136 keV59.3

keV (W)

Number of photoelectronsArbitrary unitSlide22

Position & energy resolution (

122keV

g

from

57

Co)

Data

Reconstructed vertices for various source positions

Position resolution (RMS):

1.4 cm @ z = 0 cm

1.0 cm @ z = 20 cm

Reconstructed energy [keV]Arbitrary unitDataMC

122

keV

136

keV

59.3 keV (W)

RMS ~4%

XMASS 800kg

Jing LIU @ TAUP2011

22

y [cm]

z [cm]

Data

MC

Arbitrary unitSlide23

Background under control?

ExternalComic ray: underground, muon veto

Ambient gamma & neutron: water shielding

PMT radiation: LXe self-shielding

Internal

Rn

: material screening, clean room filled with Rn free air

Kr: distillation

XMASS 800kgJing LIU @ TAUP201123Slide24

Xe

water

X [cm]

y [cm]

Ambient

 and n: pure water tank, ~10 meter

XMASS 800kg

Jing LIU @ TAUP2011

24

Pure water tank (large enough for 26 ton LXe)

equipped with 20 inch PMTs on the wall as

active

muon veto and

passive ambient  and n shielding

20 inch PMTs

Water tanks

LXe sphere

10

7

n

eutrons, simulation

g

<<

g

from PMT, n<<10

-4

/d/kgSlide25

LXe copper cryostat

Calibration pipe

g

g

n

n

PMT radiation: Ultra low background PMTs

XMASS 800kg

Jing LIU @ TAUP2011

25

Neutron: <1.2x10

-5

dru

@5-10

keVSlide26

PMT & PMT holder radiation: LXe self-shielding

XMASS 800kg

Jing LIU @ TAUP2011

26

Energy [

keV

]

Counts [

dru

]

Simulation:

g

into

LXe

fiducial

volume: r<20cm, 100 kg LXe

BG/PMT [

mBq

]

U chain

0.70

0.28

Th chain

1.51

0.31

40

K

< 5.10

60

Co

2.92

0.16Slide27

85

Kr (Q

b

=687keV)

: distillation

XMASS 800kg

Jing LIU @ TAUP2011

27

Kr

LXe

intake

LXe

outlet

Gas Kr

outlet

K. Abe

et al

. for XMASS

collab

.,

Astropart

. Phys. 31 (2009) 290

Kr can be boiled out from LXe

0.1

ppm

 ~1ppt (~1 ton in 10 days)Slide28

Kr

concentrationXMASS 800kg

Jing LIU @ TAUP2011

28

Xenon sample

bg

sample 1

bg

sample 2

Kr concentration: < 2.7

ppt

(90% C.L.)Measured by gas chromatography + API mass spectrometerSlide29

222

Rn

XMASS 800kg

Jing LIU @ TAUP2011

29

p0 * exp(-t/

t

) + p1,

t

: decay constant

Time difference

[s]

1st event (

214Bi b)

2nd event (214Po

a)

Tail due tosaturation

214Po decays with 164 ms half life.It can be

identified by time coincidence between two consecutive events:214Bi b

decays into 214Po214Po

a decays into 210Pb

x10

3

Number of photoelectrons

Events

8.2

0.5

mBq

EventsSlide30

220

Rn

XMASS 800kg

Jing LIU @ TAUP2011

30

p0 * exp(-t/

t

) + p1,

t

: decay constant

216

Po decays with 140 ms half lifeTime difference [ms]

EventsEvents

x103

Number of photoelectrons

1

st event

2nd event

<0.28 mBq (90%C.L.)Slide31

Target sensitivity of WIMP-nucleon XS (spin independent)

XMASS 800kg

Jing LIU @ TAUP2011

31

XENON100

CDMSII

XMASS 1yr

Expected energy

spectrum a

ssuming

1 year exposure

flat background (10

-4

dru)

sc = 10

-44 cm

2

MWIMP = 50

GeV

Leff

= 0.2

Black: signal + background

Red: background (10

-4

dru)Slide32

Conclusion

The XMASS 800kg detector is a single phase LXe scintillation detectorConstruction of the 800kg detector finished last winter

Commissioning runs are on going to confirm the detector performance and low background properties

Energy resolution and vertex resolution were as expected. ~1cm position resolution and ~4% energy resolution for 122

keV

g.

Radon and Kr background are close to the target values.The physics results are on the way

XMASS 800kgJing LIU @ TAUP201132Slide33

XMASS 800kg

Jing LIU @ TAUP2011

33

Thanks!Slide34

PMT

holer

made of OFHC copperSlide35

3 Steps in reconstruction

Step1

Search the map grid where likelihood becomes smallest.

Step2

By linear interpolation, calculate likelihood at finer “interpolated grid” in Cartesian coordinate.

1.5cm interval, 5x5x5 finer grid points are evaluated.

Result

grid

of step1

1.5cm

å

-

=

PMT

pe

G

L

)

(

pe

+1)

)

exp

(

Log(

)

Log(

m

m

Ln likelihood is calculated from the expected

pe

and observed

pe

. Using gamma distribution.

Treatment of saturated PMT, cumulative probability of gamma distribution.

z

x

ySlide36
Slide37
Slide38
Slide39

Integral spectrum

Assumption

1x10^-44 cm^2

100 kg X 1 year exposure

WIMP Mass [GeV]

50

100

1000

No. of Events

26

37

6

25 keVr(5keVee) energy threshold

100kg x 1 yearSlide40
Slide41
Slide42
Slide43
Slide44

XMASS 800kg

Jing LIU @ TAUP2011

44Slide45

XMASS 800kg

Jing LIU @ TAUP2011

45Slide46

XMASS 800kg

Jing LIU @ TAUP2011

46Slide47

XMASS 800kg

Jing LIU @ TAUP2011

47