/
1A cross-linguistic acoustic study of voiceless fricativess 1A cross-linguistic acoustic study of voiceless fricativess

1A cross-linguistic acoustic study of voiceless fricativess - PDF document

danika-pritchard
danika-pritchard . @danika-pritchard
Follow
480 views
Uploaded On 2015-07-25

1A cross-linguistic acoustic study of voiceless fricativess - PPT Presentation

2Montana Salish and Toda The examined languages form a genetically diverse set with only twoelicited in isolation from native speakers by researchers conducting fieldwork designed to Chickasaw G ID: 92540

2Montana Salish and Toda.

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "1A cross-linguistic acoustic study of vo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1A cross-linguistic acoustic study of voiceless fricativess 2Montana Salish, and Toda. The examined languages form a genetically diverse set with only twoelicited in isolation from native speakers by researchers conducting fieldwork designed to Chickasaw [Gordon et al. 2000]Muskogean j [Shalev et al. 1994] aiappears in Appendix 1. Each word containing a targeted fricative was repeated twice by each 32.3. MeasurementsfTfsSñi/a/ (see Appendix 1).s 4Table 2. Average duration in milliseconds for 12 speakers of ChickasawfsSñ 104.0140.6109.752.2 F2113.5108.2100.890.9 F3145.1161.6129.4171.9 F4128.9137.8114.5120.5 F5131.9140.5127.7148.4 F6122.0121.998.4102.3 F7105.2125.5138.9126.6 M187.5110.0115.2----- M2113.9104.079.1112.0 M3114.3126.0122.3112.9 M4110.3119.6119.6115.3 M595.495.390.4123.1 123.6112.8116.0 ssfsSñ 4193542346754462 F25150567447095119 F34235514248274685 F44848494345584469 F54925585451585102 F64720565349544658 F74228448043334523 M14369540747754938 M24600468642684858 M34584500348274866 M44352473742524546 M54326451945104358 516346794715 speakers indicated little interspeaker variation in spectral characteristics) are plotted in Figure 1.s/ 5and /ñfffS/ñSññss/.ss/ (and other coronal obstruents) betweenssSsSs/ññ 45 50 55 60 65 70 75 80 85 0 2 4 6 8 10 kHz S ñ s f dB 6 40 45 50 55 60 65 70 75 80 0 2 4 6 8 10 kHz S f dB 40 50 60 70 80 90 100 0 2 4 6 8 10 kHz M3 M2 M1 s dB 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz M5 M4 s 40 45 50 55 60 65 70 75 80 85 90 95 0 2 4 6 8 10 kHz M3 M2 M1 dB ñ 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz M5 M4 ñ 73.2. Western ApachesSñxiaññs/ = 183ms, /S/ = 188ms, /xsSñx 173.1185.9-----219.1 F2182.0186.1229.3134.8 F3193.1193.2234.3150.3 M1121.9141.081.776.2 M2122.1125.591.0159.1 M3204.7178.3-----237.1 M4182.7200.9127.3195.2 M5174.0196.4204.5159.6 175.9161.3166.4 sSñ/ and /x/ in turn,SñSñ 8Table 5. Average gravity center frequencies in Hz for 8 speakers of Western ApachesSñx 5831480446344286 F25810518945384162 F35482512845934068 M15176503746624374 M25378441145824294 M355124924----4456 M44851462045394555 M55363463748094582 485946234347 ñ/, /S/, and /xsx/Ss/strongest concentrations of noise fall at higher frequencies for /sThus, the differences between fricatives in the location of spectral peaks in Figures 3 and 4ss/, falling at about 40 50 60 70 80 90 100 0 2 4 6 8 10 kHz x S ñ dB 35 40 45 50 55 60 65 70 75 80 85 90 0 2 4 6 8 10 kHz F3 F2 F1 s 9 40 50 60 70 80 90 100 0 2 4 6 8 10 kHz M3 M2 M1 dB s 40 45 50 55 60 65 70 75 80 85 90 0 2 4 6 8 10 kHz M5 M4 s 45 50 55 60 65 70 75 80 85 90 0 2 4 6 8 10 kHz x S ñ ffj/sSxsfs/ and /f 10ffjsSx 81.9107.0138.2116.485.2123.6 F252.2-----121.1133.9118.4101.7 F345.7130.9130.291.7130.4106.0 M154.960.0101.5100.399.483.5 M2107.0137.0126.0104.195.293.8 M381.3105.0123.5125.9108.5109.0 M4114.3120.2146.4128.2105.2162.0 M592.6134.4155.9106.9107.8107.7 M656.766.5132.288.7115.484.4 130.4110.7108.6107.9 sxfhighest for /s/ for all speakers except speaker F1 and F2. The tendency for gravity center valuesxfsSx F1492647054850445747924384 F2405643684209405441853976 F3494649115567471845314194 M1427542284591428042674160 M2454046845020463845524049 M3427341234416390343024008 M4439247085553483543724617 M5444444454600415243014145 M6407643055151453044444343 44974884439644164209 ff 11SfjxfjS/. The densestxfssss/sssss 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz S fD dB 20 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz x  10 20 30 40 50 60 70 80 90 100 0 2 4 6 8 10 kHz F3 F2 F1 dB f 10 20 30 40 50 60 70 80 90 100 0 2 4 6 8 10 kHz F3 F2 F1 s 12 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz S fD f dB 20 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz x  20 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz M3 M2 M1 dB s 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz M6 M5 M4 s sñxXarecording certain of the fricatives in word-initial position, the palatal and lateral, and certain ones insx/ñ/, and /Xx/. /xññs/ ÔbirdsÕs 13sXsñxX -----200.7279.3300.2271.4 F2499.0181.5194.8332.6235.7 F3322.1239.5166.5------223.1 F4307.4222.1290.1233.9219.7 M1354.1192.2169.4490.6355.5 M2326.6307.2256.0196.8153.6 223.8226.0310.8243.1 ssssñxX 50774804422343744144 F253614537425943554289 F351274393-----41834316 F451654757464244184380 M152444830434243174541 M253404789456844444476 4648443043644358 14 30 40 50 60 70 80 90 100 0 2 4 6 8 10 kHz F4 F3 F2 F1 s dB 30 35 40 45 50 55 60 65 70 75 80 85 0 2 4 6 8 10 kHz X x  ñ 45 50 55 60 65 70 75 80 85 0 2 4 6 8 10 kHz M2 M1 s dB 35 40 45 50 55 60 65 70 75 80 85 90 0 2 4 6 8 10 kHz M2 M1  15 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz X x ñ dB azD 16 690 700 710 720 730 740 750 F1 1400 1450 1500 1550 1600 1650 1700 1750 F2 x X Hz sñ/SXap=.0960, according to a two factor ANOVA (fricative and gender) pooled over all speakers.ñsSñXXW F1209.6178.0173.5-----144.570.1 F2149.0195.5166.2175.7202.2144.7 F3160.6158.3163.873.9164.3115.3 M1160.6187.8185.7185.9209.5162.9 M2179.3174.7114.9122.3193.2133.4 178.9160.8139.5182.7125.3 sñsSñ/ and /X 17sñSsSñXXW F1474441064405397541004158 F2466840474388367738993970 F3454841704194392039153886 M1467640174123436041094089 M2436644134576388944074136 41344334392440434032 sSñsS/ and /ñññSñS/ even though they/ and /XW 18 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz dB S s ñ 10 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz S s ñ 10 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz XW X xW dB 0 10 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz XW X xW a/, /X/, and /XW/. Formantl/qxW/ vs. /X/ and p=.0329 for /XW/ vs. /X 19equivalent to that of the rounded uvular. The low F1 value for the rounded velar persists into the/XXW 600 650 700 750 800 F1 900 1000 1100 1200 1300 1400 F2 X XW xW Hz sSñx/, aS 20Sñ/, and /xIs/xW/ and /x7WsSsSñxx7W F1326.0211.5256.7153.1307.4222.1 M1226.7230.3181.8186.4188.9161.6 217.7219.2169.8248.1201.9 ssSñxx7W F1449343844413415336824084 M1522745524523437943894133 44404468422840354100 sssSsS/ however isSññ/Sx 21 0 10 20 30 40 50 60 70 80 dB 0 2 4 6 8 10 kHz S s ñ 10 20 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz S s ñ 0 10 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz x7W xW x dB 0 10 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz x7W xW x auIxxW/, and /x7WxW/ forx 22 300 350 400 450 500 550 600 F1 1100 1150 1200 1250 1300 1350 F2 x7W xW Hz 400 500 600 700 800 900 750 850 950 1050 1150 1250 F2 x x7W xW Hz fTsS§ñxO/AffxxS§Sf/x/.f/ and /Tf 23fTsS§ññ¢x F173.2233.3233.6233.9290.3275.7153.5195.9125.4 F271.4148.5168.5179.6158.3190.3183.4201.8102.6 F350.5309.9168.9222.8310.3169.0197.8211.5143.3 M1186.9179.5243.1205.4278.1277.6231.7205.9240.0 M2136.2118.3192.4143.9166.5161.2184.2162.2113.0 M3149.1167.2204.1204.1234.2210.6186.4195.1176.8 192.8201.8198.3239.6214.1189.5195.4150.2 /Tf/, /ñ/ /ñ¢/, and /x/ and /sfsfTsS§ññ¢x F1390641865042451247474810400239734364 F2421546205093486846764650422139304481 F3415637254877457744914406421445704277 M1444540194580437048774378434841894109 M2437237975289439948554626396043934370 M3451343175284444745794340424042753784 41115027452947044535416442224231 ññ¢/ and /sfTssSss 24sSSsSs/S/, the peak for /Ss/.§sS/,§s§/sS§ñ/ññ¢s§ 0 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz s1 f T dB 10 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz x § S s 25 0 10 20 30 40 50 60 70 80 0 2 4 6 8 10 kHz F3 F2 F1 dB ñ 0 10 20 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz F3 F2 F1 ñ¢ 30 40 50 60 70 80 0 2 4 6 8 10 kHz ñ¢ ñ f T dB 20 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz x § S 35 40 45 50 55 60 65 70 75 80 85 90 0 2 4 6 8 10 kHz M3 M2 M1 dB s1 20 30 40 50 60 70 80 90 0 2 4 6 8 10 kHz M3 M2 M1 s 26xfTfT/OfTfTfTappear in Figure 16, female speakers on the left and male speakers on the right. Formant valuesfwith /pTtfTTf/TfTfffT 27 500 550 600 650 700 F1 1050 1100 1150 1200 1250 1300 1350 F2 T f Hz 500 550 600 650 700 F1 900 950 1000 1050 1100 1150 F2 T f Hz fT/, /s/, /S/ and /§ññ¢OAS/S/S§ 28S§§sSS/Ss 1100 1200 1300 1400 1500 1600 1700 2000 2200 2400 2600 2800 3000 3200 F3 s1 s S § F2 Hz 1520 1540 1560 1580 1600 1620 1640 1660 2300 2400 2500 2600 2700 2800 2900 3000 F3 ñ ñ¢ Hz ffssxfxññ/ and /XW 29ssss/ñSxSxShigher gravity centers than /sS§/). Furthermore, /SXTfññ¢/§sS/. Rounding inSñSñññ¢/ and /sSñSñ 30/, /X/ and /XWSssSsss§/S/); thus, Toda /§SSfT 31TfjSññSñSññSñ/ and 3.5-4kHz for /SSñSSññsñx/, rounded /xW 32fT/ infTT/ than in the vowel before /fTfT/SSthe seven examined languages. Formant transitions also proved useful in differentiating fricativesMany of the spectral properties observed in the diverse set of examined languages offers 33sbirds ñaXboy altide hizaxalmost tSiÉDaX ÕI/kotIñan sa!nE! SaS xañ fa sa SañtSi ñaS/he dances fstay (future) fjanV«Vflaying sat«Vthrowing Sax«tpast anVibought xatjilslept 34Õs (speaker F1)through it alaSnasty hajaÉñthen naÉ9xtwo maxW tñÕuxW (speaker F1) jîaÉx7W naÉtîInux7W (speaker F1) ssplit wood SalÉhe got bored ñaqÕtwide, shovel xWaltSst aqÕW XÕpay fswelling tOÉT s1money pOÉs S § ñstudy añ¢ xblood B B B D D 35D FF F GG G R GthHHARRIS 1HH JJJJ J KAnalysis and SynthesisL LL LN NR SC.A. Reitzel.S 36S,S 4SS 3S 3S T TT WZ