/
Chapter  Traditional Analog Modulation Techniques Mikael Olofsson   Modulation techniques Chapter  Traditional Analog Modulation Techniques Mikael Olofsson   Modulation techniques

Chapter Traditional Analog Modulation Techniques Mikael Olofsson Modulation techniques - PDF document

danika-pritchard
danika-pritchard . @danika-pritchard
Follow
620 views
Uploaded On 2015-01-19

Chapter Traditional Analog Modulation Techniques Mikael Olofsson Modulation techniques - PPT Presentation

The reason for that may be that the channel is bandlimited or that we are assigned a certain frequency band and frequencies outside that band is supposed to be used by others Therefore we are interested in the spectral properties of v arious modulat ID: 33216

The reason for that

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter Traditional Analog Modulation T..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chapter5TraditionalAnalogModulationTechniquesMikaelOlofsson|2002{2007Modulationtechniquesaremainlyusedtotransmitinformationinagivenfrequencyband.Thereasonforthatmaybethatthechannelisband-limited,orthatweareassignedacertainfrequencybandandfrequenciesoutsidethatbandissupposedtobeusedbyothers.Therefore,weareinterestedinthespectralpropertiesofvariousmodulationtechniques.Themodulationtechniquesdescribedherehavealonghistoryinradioapplications.Theinformationtobetransmittedisnormallyananalogsocalledbasebandsignal.Bythatweunderstandasignalwiththemainpartofitsspectrumaroundzero.Especially,thatmeansthatthemainpartofthespectrumisbelowsomefrequency,calledthebandwidthofthesignal.Wealsoconsidermethodstodemodulatethemodulatedsignals,i.e.toregaintheoriginalsignalfromthemodulatedone.Noiseaddedbythechannelwillnecessarilya ectthedemodulatedsignal.Weseparatetheanalysisofthosedemodulationmethodsintoonepartwhereweassumeanidealchannelthatdoesnotaddanynoise,andanotherpartwhereweassumethatthechanneladdswhiteGaussiannoise.5.1AmplitudeModulationAmplitudemodulation,normallyabbreviatedAM,wasthe rstmodulationtechnique.The rstradiobroadcastsweredoneusingthistechnique.ThereasonforthatisthatAMsignalscanbedetectedveryeasily.Essentially,allyouneedisanonlinearity.Actually,almostanynonlinearitywillsucetodetectAMsignals.Therehaveevenbeenreportsofpeoplehearingsomenearbyradiostationfromtheirstainlesssteelkitchensink.Andsome67 68Chapter5.TraditionalAnalogModulationTechniques (includingtheauthor)haveexperiencedthatwithaguitarampli er.ThecrystalreceiverisademodulatorforAMthatcanbemanufacturedatalowcost,whichhelpedmakingradiobroadcastspopular.InChapter3,Theorem9,wenotedthataconvolutioninthetimedomaincorresondstoamultiplicationinthefrequencydomain.Infact,theoppositeisalsotrue. Theorem 10(Fouriertransformofamultiplication)LetandbesignalswithFouriertransformsand.ThenwehaveFf=()( Proof: TheproofisalongthesamelineastheproofofTheorem8,butstartingwiththeinversetransformofthesuggestedspectrum.Basedonourde nitions,wehave)( 1)(ftdf 1 1deftdf:Wecanrewritetheexpressionaboveas)( 1 1ftddf:Now,set,andweget)( 1 1dd 1td 1td:Finally,weidentifythelasttwointegralsastheinverseFouriertransformsof)and),andweget)( 2 So,multiplyinginthetimedomaincorrespondstoaconvolutioninthefrequencydomain. 5.1.AmplitudeModulation69 101 antennaBP lterdiodeLP lterear-phone 101(a)(b)(c)Figure5.1:(a)AstandardAMsignalforthemessage)=cos(2twith=2and=1.Thedarklineis.(b)Principleofanenvelopedetector.(c)Thecorrespondingoutputfromanenvelopedetector.StandardAMAnAMsignal,),correspondingtothemessagesignal,),isgivenbytheequation)=))cos(2fwhereisreferredtoasthecarrierfrequencyissomenon-zeroconstant,andwheretheconstantischosensuchthatCholdsforall.InFigure5.1aastandardAMsignalispresentedtogetherwiththemessage,whichinthisparticularexampleisacosinesignal.WementionedthatAMsignalscanbedetectedusinganonlinearity.The rstAMreceiverwasthesocalledcrystalreceiver.Itconsistsofanantenna,aresonancecircuit(bandpass lter),adiodeandasimplelow-pass lter.Itextractstheenvelope)from),andisthereforeoftencalledanenvelopedetector.ThediodeinFigure5.1bisthenon-linearitythatmakesthedetectionpossible.Thefewsimplecomponentsmakesitpossibletomanufacturethereceiveratalowcost.Inadditiontothat,itdoesn'tevenneedapowersourceofitsown.Thepoweristakendirectlyfromtheantenna.Theoutputpowerisofcourseverysmall,andonlyonelistenercouldusethesmallearphonethatwasused.InFigure5.1c,theAMsignalispresentedtogetherwiththeoutputofanenvelopedetector.Notethattheoutputisverysimilartotheoriginalmessage.Themechanicalpartsintheearphone,andtheearwillfurtherlow-pass ltertheoutput,sothelistenerwillhearalmostthesamesignalastheonetransmitted.Modernenvelopedetectorshaveampli ersinvariousplacesandmaybeimplementeddigitally,butthebasicconstructionisstillabandpass lter,adiode(orsomeotherrecti er)followedbyalowpass lter.AnadvantageofenvelopedetectorsisthattheBP lterthat ltersouteverythingexcepttheintended 70Chapter5.TraditionalAnalogModulationTechniques MessageCarrierStandardAMjFfcos(2fgjlowersidebanduppersidebandlowersidebanduppersidebandFigure5.2:SpectrumforstandardAMsignals.frequencybandisnotcritical.Itisenoughifitscenterfrequencyisapproximatelycorrect.Inotherwords,itdoesnotneedtoknowthecarrierfrequencyexactly,orthecarrierphaseforthatmatter.WewishtostudythespectrumofAMsignals.SinceanAMsignalistheproductofamessageandacarrier,thatiseasiestdonebasedonTheorem10.Thus,weneedto ndtheFouriertransformofcos(2f).Firstconsiderftdffwherethe rstequalityisgivenbythede nitionoftheinverseFouriertransform,andwherethelastequalityisgivenbythede nitionoftheunitimpulse.So,wehaveFfcos(2fff 2=1 )+))NowwearereadytoapplyTheorem10on).Let)bethespectrumof)andlet)bethespectrumof).Thenweget)=FfACcos(2fFfAm)cos(2fAC (f fc)+)]+ M(f fc)+)] 5.1.AmplitudeModulation71 Itisleftasanexercisetoverifythatthelastequalityholds.TheinvolvedspectraaredisplayedinFigure5.2.HereAC )+))isreferredtoasthecar-rier,sincethattermcorrespondstoACcos(2f).Theotherpartofthespectrum, )+)),isreferredtoasthesidebands.Thosesidebandsaretheonlypartsofthespectrumthatdependonthemessage).Thesidebandsarecalledupperandlowersidebandsbasedonwheretheyarecomparedtothecarrierfrequency,accordingtothefollowing.Uppersideband )+))for�fLowersideband )+))forfBecauseofthosetwosidebands,thistypeofAMmodulationisoftencalleddoublesidebandAM,abbreviatedAM-DSB.TherearealsootherversionsofAM,buttheycannotbedetectedusinganenvelopedetector.SuppressedCarrierModulationAlltheinformationaboutthemessage)instandardAMisinthesidebands.Thecarrieritselfdoesnotcarryanyinformation,andinthatrespectthecarriercorrespondstounnecessarypowerdissipation.OneversionofAMthatcannotbedetectedusinganenvelopedetectoriscalledAM-SCorAM-DSB-SC,whereSCshouldbeinterpretedasSuppressedCarrier.Forthistypeofmodulation,theconstantissimplysettozero,i.e.wehave)=Am)cos(2fandthecorrespondingspectrumis)= )+))Sothecarrierisremovedfromthespectrum,asthenamesuggests.InFigure5.3,anAM-SCsignalispresentedtogetherwiththemessageandthecorrespondingenvelopedetectoroutput,aswellastheabsolutevalueofthemessage.Notethattheoutputfromanenvelopedetectorinthiscaseisclosetotheabsolutevalueofthemessage.Thus,anenvelopedetectorcannotbeusedtoreceiveAM-SC.DemodulationofAM-SCcaninsteadbedonebymodulatingoncemore.Let)withspectrum)betheoutputofthatmodulation.Thenwehave,similarilyasabove,)=)cos(2f)=Am)cos(2f)= )(1+cos(4f)) 72Chapter5.TraditionalAnalogModulationTechniques 10 10 10(a)(b)(c)Figure5.3:(a)AnAM-SCsignalforthemessage)=cos(2twith=1.Thethicklineis.(b)Thecorrespondingoutputfromanenvelopedetector.(c)TheAM-SCsignaltogetherwithforcomparison. MessageAM-SCDemodulatedFigure5.4:ModulationofAM-SCanddemodulationbymodulatingagain. 5.1.AmplitudeModulation73 andthecorrespondingspectrumis)= )+))= )+ )++2))So,wehaveregained),butwealsohavecopiesof)centeredaround.TheinvolvedspectraaredisplayedinFigure5.4.If,thebandwidthofthemessage),issmallerthan,whichnormallyisthecase,thenthosecopiesdonotoverlapwiththeoriginalspectrum.Thus,wecanuseasuitablelow-pass ltertoremovetheunwantedcopies.Thefurtherawaytheunwantedcopiesareinthefrequencydomain,thesimplerthat ltercanbe.ItshouldbenotedthatstandardAMcanalsobedemodulatedusingthismethod.SingleSidebandModulationSincethereisaone-to-onerelationbetween)and),thereisalsoaone-to-onerelationbetweenthetwosidebands,atleastifissmallerthan.So,inbothstandardAMandAM-SC,weactuallytransmitourdatatwiceinthefrequencydomain.Noinfor-mationislostifweonlytransmitoneofthesidebands.ThistypeofAMisreferredtoasSSB,whichshouldbeinterpretedasSingleSideBand.ThereareSSBversionsofbothstandardAMandAM-SC,andtheycanbeobtainedby rstgeneratingstandardAMorAM-SC,andthenusingasuitableband-pass ltertoremovetheunwantedsideband.SpectraofAM-SSBandAM-SSB-SCaredisplayedinFigure5.5.Obviously,SSBmodula-tiononlyneedshalfthebandwidthcomparedtooriginalAMorAM-SC.SSB-modulatedsignalscanalsobedemodulatedbymodulatingagainusingAM-SC,andwestillgetcopiesnear,thathastoberemovedbyalow-pass lter.Howeverthesecopiesnowcontainonlyonesideband.SynchronizationforAMDemodulationDemodulationbyremodulationasdescribedaboveisamethodthatcanbeusedfordetec-tionofallvariantsofAM.However,thatdemandsthatwehaveacorrectcarrieravailableinthedemodulator,withbothcorrectfrequencyandatleastapproximatelycorrectphase.ForstandardAMandforAM-SSB,wherethecarrierisavailableinthesignal,itcaneasilybeextractedfromthereceivedsignalusinganarrowBP- lterwithcenterfrequencyForAM-SC,andforAM-SSB-SC,theabsenceofacarriermakesitimpossibletoextractthecarrierinthatway.OnewayforthereceivertoextractacarriersignalfromanAM-SCsignal)=Am)cos(2f 74Chapter5.TraditionalAnalogModulationTechniques AM-SSBAM-SSB-SCuppersidebanduppersidebandFigure5.5:SpectraforAM-SSBandAM-SSB-SC. NarrowLP lterVCOcos(2f)cos(2cos(2fFigure5.6:Aphase-lockedloopforgenerationofawell-de nedcarriersignal.Thesignalisgivenby)=cos(2f)cos(2f)= (cos(4f)+cos()).ThedevicelabelledVCOisavoltagecontrolledoscillator. LP lterLP lterNarrowLP lterVCOphaseshiftAm)cos(2fAm)(cos(4f)+cos())Am)(sin(4f)+sin())Am)cos(Am)sin()sin(2sin(22cos(2f2sin(2fFigure5.7:ACostasloopfordetectionofAM-SC. 5.1.AmplitudeModulation75 istoproducethesquare)=)cos(2f)= (1+cos(4f))Whenwesendinformation,theaverageof)isnon-zero,whichmeansthatascaledversionofcos(4f)canbeextractedfrom),againusinganarrowBP- lter,butwithcenterfrequency2.ExtractingcarriersinthosewayswillproducesignalswithafrequencythatisthecorrectcarrierfrequencyintheAMorAM-SSBcaseandtwicethecarrierfrequencyintheAM-SCcase,buttheamplitudecanvaryfromtimetotimedependingontheactualbehaviourofthechannelorthestatisticsoftheinformation.Also,theextractedsignalmayincludenoiseandpartsofthesideband(s).Acleancarrierwithboththecorrectfrequencyandawellde nedamplitude,withoutanynoiseorresiduesfromthesidebands,canbeobtainedfromtheextractedsignalusingphase-lockedloop(PLL).Thereareseveralvariantsofphase-lockedloopsinuse,andasimplevariantisdisplayedinFigure5.6.ThesignalsgiveninFigure5.6assumethattheinputisalreadyacleansinusoid.Inpractice,theinputisanextractedapproximatecarrierwhich,asnotedabove,ispollutedwithnoiseandresiduesfromthesidebands.Aphase-lockedloopisacontolloopthatproducesasinusoidwithconstantamplitude,thecorrectfrequencyandanapproximatephase.Thevoltage-controlledoscillator(VCO)ischosensuchthatthewantedcarrierfrequencycorrespondstozeroinput.ThefrequencyVCOin)oftheoutputoftheVCOisafunctionoftheinputvoltagein,suchthatthederivativeofthatfunctionispositive,i.e.wehave dVinVCOin0.Thecarrierfrequencyinusemaydi erslightlyfromthewantedcarrierfrequency,andthephase-lockedloopfollowsthecarrierfrequency,whichmeansthattheinputtotheVCOmaydi erslightlyfromzero.InFigure5.6thatmeansthatthesignalproducedbythePLLhasphaseforwhichcos(0holds,inapointwherecos()haspositivederivative.Inotherwords,wehave forsomeinteger.Wemayassumeanyintegervalueof,sincetheproducedsignalisthesamefordi erentvaluesof.So,wecanforinstancesaythatthesignalhasthephase ForAM-SC,wherewehavesquaredthesignal,andwherethefrequencyoftheextractedsignalistwicethecarrierfrequency,thefeedbackisequippedwithafrequencydoublerwhichcanforinstancebeasquarer.Theresultingoutputisthenasinusoidwiththecorrectcarrierfrequencyandphaseapproximately Aspecialtypeofphase-lockedloopthatisespeciallywellsuitedfordetectionofAM-SCsignalsistheCostasloop,giveninFigure5.7.Itextractsthecarrierdirectlyfromthesignal.Again,theVCOischosensuchthatthewantedcarrierfrequencycorrespondstozeroinput.Thus,theloopproducesasinusoidwhosefrequencyisthecarrierfrequencywithphaseforwhichsin(20holds,inapointwheresin()haspositivederivative.Theresultingphaseistherefore0.TheoutputoftheCostasloopisthemessagescaledbycos(),butsincewehave0,wealsohavecos(1. 76Chapter5.TraditionalAnalogModulationTechniques BP lterLP lter)+noise)+2cos(2fFigure5.8:DemodulationofAMsignalsinthepresenceofnoise.ThereasonthattheCostasloopworksisthepresenceofbothsidebands,andtheone-to-onemappingbetweenthetwosidebands.Thetwosidebandspointatthecarrierfrequency,andthephaseinformationinthesidebandsgivesusthecarrierphase.TheCostasloopcanthereforenotbeusedforAM-SSB-SC.ThereissimplynowaytoextractthecarrierfromanAM-SSB-SCsignal,duetothefactthatthecarrierisnotavailableinthesignal,andnothinginthespectrumgivesanyhintaboutthecarrierfrequency.Thatisthepricewehavetopayforsuppressingboththecarrierandoneofthesidebands.Therefore,thereareanumberofmodi cationsofAM-SSB-SC,thatmakesitpossibletoextractacarrieranyway.Themostsimplemethodisnottosuppressthecarriercompletely.Thenthe{howeverweak{carriercanbeextractedfromthesignal.Anothermethodistosendashortcarrierburst,andletaPLLlockontothatburst.Aftertheburst,theoscillatorcontinuesproducinganinternalcarrierbasedonthatburst.Ofcourse,theoscillatorwillmostprobablydivergefromtheusedcarriereventually.Thereforethecarrierburstisrepeatedregularly.Athirdpossibilityistokeepasmallpartoftheremovedsideband,andinthereceiver ltertheothersidebandsimilarily,andthenextractacarrierusingoneofthemethodsabove.ImpactofNoiseinAMDemodulationWewouldliketoanalyzetheimpactofnoiseondemodulationofAMsignals.Forthisanalysisweneedtomakesomeassumptionsaboutthenoiseandaboutthedemodulation.The rstassumptionisthatthenoiseisdominatedbythermalnoise,andthatitisinde-pendentofthemessage.AsmentionedinSection4.1,suchnoisecanbemodeledaswhiteGaussiannoise.Weassumethatthereceivedsignalis lteredbyanidealBP lterthatexactlymatchesthebandwidthoftheAMsignalbeforedemodulation.Weassumethatthedemodulationisdonebyremodulationby2cos(2f)asintheCostasloop.Wealsoassumethatthedemodulatedsignalis lteredbyanidealLP lterthatexactlymatchesthebandwidthofthemessage.SeeFigure5.8.Weneedtointroducesomenotation.Letdenotethebandwidthofthemessage.Letdenotetheone-sidedpowerspectraldensityoftheassumedwhiteGaussiannoise,andlet)denotethenoiseaftertheBP lter.Also,introducethefollowingnotationfortheinvolvedpowers. 5.1.AmplitudeModulation77 :The(expected)powerofthemessage).mod:The(expected)powerofthereceivedmodulatedsignal).Notethatthismeansthatincludesimpactsofthechannel.:The(expected)powerofthemessageafterdemodulationandLP lter.mod:TheexpectedpoweroftheideallyBP- lterednoise)beforedemodula-tion.:TheexpectedpowerofthedemodulatedandLP- lterednoise.Wede nethesignal-to-noiseratio=Pafterdemodulation.Wewillcomparethissignal-to-noiseratioforDSBandSSBmodulationusingthesamesentpowermodtransmittedoverachannelwiththesameFirstweconsiderAM-SC.Thenwehavethesignal)=Am)cos(2fwithbandwidth2andexpectedpowermodP=2sincethecarriercos(2fhasaveragepower12.Afterdemodulation,weregainAm),whichmeansthatwehave.Forthenoise,wehavemod=2WN.Thedemodulatednoise2cos(2fhasexpectedpower2mod,sincethecarrier2cos(2f)hasaveragepower2.HalfofthatexpectedpowerisinthefrequencyintervalW,whiletheotherhalfisinthefrequencyinterval2W.ThelatterpartisremovedbytheLP lter,leavinguswithmod.Finally,thatgivesusthesignal-to-noiseratio Pn=A2P WNForAM-SSB-SC,oneofthesidebandsfromAM-SCisremoved,whichmeansthatthepowermodisreducedtohalfthatofAM-SC.ToproduceanSSBsignalwiththesamepowerasintheDSBcase,wethereforeneedtoamplifythesignalby 2.So,westartwith)= Am)cos(2fand lteroutoneofthesidebands.ThenwehavethesamesentpowermodP=2.Afterdemodulation,wegetascaledversionofthemessage.Moreprecisely,theoutputis p ),whichhaspowerP=2.Forthenoise,wehavemodWN,sincethebandwidthis.Thedemodulatednoise2cos(2f 78Chapter5.TraditionalAnalogModulationTechniques stillhasexpectedpower2mod,sincethecarrier2cos(2f)hasaveragepower2.HalfofthatexpectedpowerisinthefrequencyintervalW,whiletheotherhalfisinthefrequencyinterval2W.Actually,theotherhalfofthepowerisintheinterval2Wifthelowersidebandisused,orintheintervaliftheuppersidebandisused.Inanycase,thepartofthespectrumthatisnear2isremovedbytheLP lter,leavinguswithmod.Finally,thatgivesusthesignal-to-noiseratio Pn=A2P WNi.e.thesamesignal-to-noiseratioasforDSB.5.2AngleModulationAnglemodulationisthecommonnameforaclassofmodulationtechniques,withthatincommonthatthebandwidthofthemodulatedsignalisnotgivenonlybythebandwidthofthemessage,butalsobyaparametercalledthemodulationindex.Bysettingthismodulationindextoasuitablenumber,wecandecidewhatbandwidthtouse,andthelargerthatindexis,thebetteristheobtainedquality.Thesemethods,andcombinationsofthemareusedinradiobroadcastsintheFM-band(88{108MHz).Theideathatanglemodulationisbasedonistoletafunction))ofthemessage)bethephaseofacarrier,i.e.thesentsignalis)=cos(2f)))whereissomenon-zeroconstant,andwhereagainisreferredtoasthecarrierfre-quency.Wesaythat))isthemomentaryphaseof).Thenthephasedeviation)isthedi erencebetweenthemomentaryphaseandtheaverageofthemomentaryphase.Typically,)hasaveragezero,andthefunctionischosensuchthat))alsohasaverage0.Thenwehave)=))andthepeakphasedeviationisde nedasmax=maxThepeakphasedeviationisalsocalledthephasemodulationindex,andisdenotedAnalternativeinterpretationofthevaryingphaseofthesignal),istosaythat)hasvaryingfrequency.Wede nethemomentaryfrequencyasmom)= 2d dt(2f)))= 2d dt)) 5.2.AngleModulation79 Note,thatthisfrequencyisafunctionoftime,justasthemomentaryphasealsoisafunctionoftime.Thefrequencydeviation)isthedi erencebetweenthemomentaryfrequencyandthecarrierfrequency,i.e.)=momandthepeakfrequencydeviationisde nedasmax=maxThefrequencymodulationindexisde nedasmax whereisthebandwidthofthemessage),orratherthehighestfrequencycomponentin).If)isastationarysine,thenthetwomodulationindicesareequal.SpectrumofAngleModulationThespectraofanglemodulatedsignalsaregenerallyhardtodetermine,duetothefactthatanglemodulationisnon-linear.Forthesimpleexample)=cos(2fsin(2f))for,itiseasilyshownthatisboththephasemodulationindexandthefrequencymodulationindexofthatsignal.Itcanalsobeshownthatwehave)= 1)cos(2nfwhere)istheBesselfunctionoforder.Wewillnotatalltrytoperformthatproof.Thespectrumofthatsignalis)= 1 (f+fc+nf)+nf)]TheBesselfunctionoforderisgivenby)==01) !()! +2forpositiveintegers.Itcanalsobewrittenas 80Chapter5.TraditionalAnalogModulationTechniques 02468101214161820Figure5.9:Besselfunctionsforupto7. =1=5=10Figure5.10:Spectrumofananglemodulatedsignalwithmodulationindex,carrierfrequency,acosinemessagewithfrequency.Thehightsofthearrowsdenotingimpulsesrepresenttheamplitudeofthecorrespondingfrequencies. 5.2.AngleModulation81 )= cos(sin(nd;stillforpositiveintegers.Fornegativeintegers,wehave)=(1)Formally,thebandwidthofthissignalisin nite.However,thecoecients)decreaserapidlytowards0for�,seeFigure5.9.Thus,wecanstatethatthebandwidthofthesignalisapproximately2f.Acommonapproximationofthebandwidthis2(+1)whichisknownasCarson'srule.Usingtheidentitymax=f,wecanexpressthebandwidthas21+ max.InFigure5.10,wehaveplottedthespectraforthreedi erentvaluesofthemodulationindex,withasineshapedmessage.Notehowthebandwidthgrowswiththemodulationindex.PhaseModulationPhasemodulationisnormallyabbreviatedPMorPhM.Themessage,),isinthistechniqueuseddirectlytodeterminethemomentaryphase,i.e.wehave))=whereissomeconstant.Themodulatedsignal,),isthusgivenby)=cos(2f))Themomentaryfrequencyforthismodulationismom)= 2d dt(2f))= 2d dtthefrequencydeviationis)= 2d dtandthepeakfrequencydeviationismax max dtFinally,thefrequencymodulationindexisgivenby Wmax dtWenoticethatthepeakfrequencydeviationdependsonmax dt.Hence,thebandwidthof)dependsonthebandwidthof),butalsoontheamplitudeof).InFigure5.11a,aPMsignalispresentedtogetherwiththecorrespondingmessage. 82Chapter5.TraditionalAnalogModulationTechniques FrequencyModulationFrequencymodulationisnormallyabbreviatedFM.AsforPM,themessage,),deter-minesthephaseofthecarrier,butnotdirectly.Instead,thederivativeofthephaseisproportionalto),i.e.thephaseisascaledinde niteintegralof).Moreprecisely,wehave))=dt;whereissomeconstant.Themodulatedsignal,),isthengivenby)=cosfdtandthemomentaryfrequencyisgivenbymom)= 2d dtfdt Thus,themomentaryfrequencyisdirectlygivenbythemessage.Notethatanyinde niteintegralof)canbeusedasthephase.Anaturalchoiceis))=d;whereisthetimeinstancewhenthecommunicationstarts.Thefrequencydeviationis)= andthepeakfrequencydeviationismax maxFinally,thefrequencymodulationindexisgivenby BmaxWenoticethatthefrequencydeviationdependsonmax.Hence,thebandwidthof)dependsontheamplitudeof),butnotonthebandwidthof).InFigure5.11b,anFMsignalispresentedtogetherwiththecorrespondingmessage. 5.2.AngleModulation83 101 101(a)(b)Figure5.11:(a)APMsignal(thinline)forthemessage)=cos(2t(thickline).(b)AnFMsignal(thinline)forthemessage)=cos(2t(thickline).Themodulationindexisinbothcases10andwehave=1DemodulationofPMandFMRecallthatthesentsignalis)=cos(2f)))Thissignalcanbedemodulatedbydeterminingthederivativeofthesignal, dt)=f dt))sin(2f)))Thisgivesusasignalforwhichtheamplitudedependsonthemessage)inawaysimilartoAM-DSB,butitscarrierhasvaryingphase.Thissignalcanthenbedemodulatedusinganenvelopedetector,whichgivesustheenvelopef dt))TheconstanttermcanberemovedusingaBPorHP lter,leavinguswiththesignal dt)).ForPM,wehave))=am).Thismeansthatweneadtointegratethesignal dt))togetthewantedmessage,i.e.wemustproduce d))dAa))whereisthetimeinstancewhenthecommunicationstarted.ForFM,wehave))=dt: 84Chapter5.TraditionalAnalogModulationTechniques d dtEnvelopedetectorBP lterFigure5.12:DemodulationofPM. d dtEnvelopedetectorBP lterFigure5.13:DemodulationofFM. sgn( dtLP ltermomFigure5.14:Detectionofmomentaryfrequencyinanglemodulatedsignalsusingzerocrossings.Thenwehavethesignal dt))= dtdtAaTherefore,demodulationofPMandFMcanbedoneasindicatedinFigures5.12and5.13,respectively.Alternatively,PMandFMcanbedemodulatedbyextractingthemomentaryfrequencyofthemodulatedsignal).Thatcanbedonebydetectingthezerocrossingsof).ThedemodulatorinFigure5.14isbasedonthisapproach.The rstblockoutputsthesignofitsinput,i.e.itsoutputissgn()).Thesgnfunctionisde nedassgn()=1,x�0,0,=0,-1,x0.Inpractice,thisblockisanampli erwithveryhighgain.Thesecondblockproducesthederivativeofitsinput.Theresultisthattheoutputofthesecondblockisapositive(negative)impulsewhen)passeszerowithpositive(negative)derivative.Afterthethirdblock,whichisarecti er,allthoseimpulsesarepositive,withmomentaryfrequencythatistwicethemomentaryfrequencyof).AllthatislefttoproducethemessageisanLP lter,whichisthelastblockinFigure5.14.Thisproducesasignalthatisproportionaltothemomentaryfrequencymom)of).ForFMthisisessentiallythemessage),andforPMthisisessentially dt).AllwehavelefttodoistoremovetheDCcomponent 5.2.AngleModulation85 thatoriginatesfromthecarrierfrequency,usingaHP lter,orbyreplacingtheLP lterinFigure5.14byaBP lter.ForPM,wealsohavetointegratetheoutputtogetthemessage.ImpactofNoiseinPMandFMDemodulationWeassumethatthedemodulationiscarriedoutasdescribedabove,andweassumethatthenoiseisdominatedbywhiteGaussiannoisewithone-sidedpowerspectraldensityWeusethesamenotationfortheinvolvedpowersaswedidforAMdemodulation.:The(expected)powerofthemessage).mod:Theaveragepowerofthemodulatedsignal).:The(expected)powerofthemessageafterdemodulationandLP lter.mod:TheexpectedpoweroftheideallyBP- lterednoisebeforedemodulation.:TheexpectedpowerofthedemodulatedandLP- lterednoise.Thesignal)isacosinewithamplitude.Theaveragepowermodofthemodulatedsignal)isthereforegivenbymod2.Thevaryingphase-orfrequencyforthatmatter-isirrelevantinthisrespect.ForbothPMandFM,thedemodulatedsignalisAa),whichgivesus.Thebandwidthof)isapproximately2maxTheexpectedpowermodoftheideallyBP- lterednoisebeforedemodulationisthereforemod=2max2=maxAnglemodulationmethodsarenon-linear.ThatmakestheanalysisofdetectioninthepresenceofnoisealotmorecomplicatedthanforAM.Wesimplyskipthatanalysisandstatethenoisepowerforthetwocases,undertheassumptionthatthesignal-to-noiseratioonthechannelmod=Pmodishigh.WestartwithPM.Thenitcanbeshownthatthenoisepowerisgivenby=2WNThisgivesusthesignal-to-noiseratio Pn=A2a2P WNWewouldliketoexpressthissignal-to-noiseratiousingthephasemodulationindexWeget=max))max 86Chapter5.TraditionalAnalogModulationTechniques fromwhichweget maxWeusethisrelationtorewritethesignal-to-noiserationas Pn=p max WNAswecansee,wegetincreasedsignal-to-noiseratiowithincreasedphasemodulationindex.NowweturntoFM.Itcanbeshownthatthenoisepowerisgivenby Thisgivesusthesignal-to-noiseratio Pn=A2a2P Nowwewouldliketoexpressthesignal-to-noiseratiousingthefrequencymodulationindex.Wehavealreadynotedthatwehavemax Wfromwhichweget  maxWeusethisrelationtorewritethesignal-to-noiseratioas =12 max WNHerewegetincreasedsignal-to-noiseratiowithincreasedfrequencymodulationindex.Pre-emphasizedFMTheresultingnoiseafterdemodulatingPMsignalsisevenlydistributedoverfrequenciesfrom0to,whichresemblesthesituationforAM.ThatisnotthecaseforFM,whereinsteadtheresultingnoiseisdominatedbyhighfrequencies(near).Moreprecisely,thepowerspectraldensityoftheresultingnoiseafterdemodulatingFMasdescribedaboveis,wherefisfrequency.Therefore,ifwecouldcombinePMandFMinsuchawaythatPMisusedforhighfrequenciesinthemessage)andFMisusedforlowfrequencies, 5.2.AngleModulation87 wecouldhopeforreducednoisecomparedtoanyofthetwomethodsbythemselves.Suchacombinationexistsandiscalledpre-emphasizedFM.Thenthemessageis rst lteredusingapre-emphasis lterwithfrequencyresponse)=1+jf=fTheoutputofthat lteristhenfrequencymodulated.Inthereceiver,afterordinarydemodulationoftheFMsignal,theresultis lteredwithaninverse lterof)calledade-emphasis lter.That lterhasfrequencyresponse)= H1(f)=1 1+jf=fTheresultisthatweregaintheoriginalsignal,andthattheresultingnoiseissmallerthanifwewouldhaveusedordinaryPMorFM.ThetransmissionsonthesocalledFMband(88-108MHz)aredoneusingpre-emphasizedFMwith=2122Hz.