/
Homeostasis and feedback Homeostasis and feedback

Homeostasis and feedback - PowerPoint Presentation

debby-jeon
debby-jeon . @debby-jeon
Follow
710 views
Uploaded On 2017-03-16

Homeostasis and feedback - PPT Presentation

The Human Body An IRSC L ive Virtual Lesson By Diana Lenartiene Ed S The biological definition of homeostasis is the tendency of an organism or cell to regulate its internal environment and maintain equilibrium usually by a system of feedback controls so as to stabilize health and f ID: 524874

homeostasis feedback body system feedback homeostasis system body blood mechanisms negative http positive anatomyandphysiologyi control stimulus sugar positivenegative response

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Homeostasis and feedback" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Homeostasis and feedbackThe Human Body

An IRSC

L

ive Virtual Lesson

By: Diana Lenartiene, Ed. S. Slide2

The biological definition of homeostasis is “the tendency of an organism or cell to regulate its internal environment and maintain equilibrium, usually by a system of feedback controls, so as to stabilize health and functioning”. Generally, the body is in homeostasis when it’s needs are met and it’s functioning properly.

Definition of Homeostasis

http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide3

Every organ in the body contributes to homeostasis. A complex set of chemical, thermal, and neural factors interact in complex ways, both helping and hindering the body while it works to maintain homeostasis.

http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide4

Homeostatic controlTo maintain homeostasis, communication within the body is essential. The image below is an example of how a homeostatic control system works. Here is a brief explanation:

Stimulus

- produces a change to a variable (the factor being regulated).

Receptor- detects the change. The receptor monitors the environment and responds to change (stimuli).Input- information travels along the (afferent) pathway to the control center. The control center determines the appropriate response and course of action.Output- information sent from the control center travels down the (efferent) pathway to the effector.Response- a response from the effector balances out the original stimulus to maintain homeostasis.http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide5

Think of it as an extremely complex balancing act. Here’s a diagram of the process.

http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide6

We will now view a video

Explaining homeostasis Slide7

Afferent pathways- carry nerve impulses into the central nervous system. For instance, if you felt scorching heat on your hand, the message would travel through afferent pathways to your central nervous system.

Efferent pathways

- carry nerve impulses away from the central nervous system to effectors (muscles, glands).

The feeling of heat would travel through an afferent pathway to the central nervous system. It would then interact with the effector and travel down the efferent pathway, eventually making the person remove their hand from the scorching heat.http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide8

Negative feedback mechanismsAlmost all homeostatic control mechanisms are negative feedback mechanisms. These mechanisms change the variable back to its original state or “ideal value”.

A good example of a negative feedback mechanism is a home thermostat (heating system). The thermostat contains the receptor (thermometer) and control center. If the heating system is set at 70 degrees Fahrenheit, the heat (effector) is turned on if the temperature drops below 70 degrees Fahrenheit. After the heater heats the house to 70 degrees Fahrenheit, it shuts off effectively maintaining the ideal temperature.

http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide9

Stimulus and response

flowchart of feedback

http://www.opencurriculum.org/5385/homeostasis-and-regulation-in-the-human-body/Slide10

The control of blood sugar (glucose) by insulin is another good example of a negative feedback mechanism. When blood sugar rises, receptors in the body sense a change . In turn, the control center (pancreas) secretes insulin into the blood effectively lowering blood sugar levels. Once blood sugar levels reach homeostasis, the pancreas stops releasing insulin.

These are just two examples of negative feedback mechanisms within our body, there are 100’s, can you think of a few more?

http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide11

Positive feedback mechanisms

A positive feedback mechanism is the exact opposite of a negative feedback mechanism. With negative feedback, the output reduces the original effect of the stimulus. In a positive feedback system, the output enhances the original stimulus. A good example of a positive feedback system is child birth.

During

labor, a hormone called oxytocin is released that intensifies and speeds up contractions. The increase in contractions causes more oxytocin to be released and the cycle goes on until the baby is born. The birth ends the release of oxytocin and ends the positive feedback mechanism.http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide12

Another good example of a positive feedback mechanism is blood clotting. Once a vessel is damaged, platelets start to cling to the injured site and release chemicals that attract more platelets. The platelets continue to pile up and release chemicals until a clot is formed.

Just remember that positive feedback mechanisms enhance the original stimulus and negative feedback mechanisms inhibit it.

http://anatomyandphysiologyi.com/homeostasis-positivenegative-feedback-mechanisms/Slide13

Negative Feedback

Positive Feedback

1.Resist change in the body

and bring back the original

state.For

example when you are exposed to cold your body temperature drops and your body make changes to bring it back to the body temperature. 2. In this feedback loop, the values remain with in a range. For example blood sugar is maintained at 100mg/ml. If blood sugar level goes up

te

control center pancreas steps in and produce insulin hormone, which helps to pump sugar into

cells.Once

the sugar levels reach normal pancreas stops secreting insulin.

3. Common in the body

 4. This feedback loop is initiated by a stimulus that disturbs the homeostasis of a body

system.For

e.g

. Eating sugar disrupts the glucose balance in the blood and triggers the Negative feedback loop of insulin.

1. Reinforce change

in the body

that

results in a positive out come. For example when a

pregnant

mother is ready to deliver the

bab

, the

hormone oxytocin levels shoots up causing stronger uterine contractions. 2. Values goes out of range

3. Very uncommon

 4. Positive feedback loop is also triggered by a stimulus and

Compare negative and

Positive feedback

http://biochemhelp.com/define-homeostasis-what-is-the-difference-between-negative-and-positive-feedback-systems.htmlSlide14

Homeostatic Processes

Hormones and Other Messengers

Tissues, Organs and Organ Systems Involved

Osmoregulation (also known as excretions)

Excess water, salts, and urea expelled from body

Antidiuretic hormone (ADH), aldosterone, angiotensin II, carbon dioxide

Kidneys, urinary bladder, ureters, urethra (urinary system), pituitary gland (endocrine system), lungs (respiratory system)

Thermoregulation

Sweating, shivering, dilation/constriction of blood vessels at skin surface, insulation by adipose tissue, breakdown of adipose tissue to produce heat

Nerve Impulses

Skeletal muscle (muscular system), nerves (nervous system), blood vessels (cardiovascular system), skin and adipose tissue (integumentary system), hypothalamus (endocrine system)

Chemical Regulation (including glucoregulation)

Release of insulin and glucagon into the blood in response to rising and falling blood glucose levels, respectively; increase in breathing rate in response to increases carbon dioxide levels in the blood, and release of carbon dioxide into exhaled air from lungs, secretion of erythropoietin by kidneys to stimulate formation of red blood cells

Insulin, glucagon, cortisol, carbon dioxide, nerve impulses, erythropoietin (EPO)

Pancreas (endocrine system), liver (digestive system); adrenal glands (endocrine system) lungs (respiratory system), brain (nervous system), kidneys (urinary system)

Table 1: Types of Homeostatic Regulation in the Body

http://www.opencurriculum.org/5385/homeostasis-and-regulation-in-the-human-body/Slide15

We will now view a video on

Homeostasis and feedbackSlide16

What we have learned

Homeostasis is from the Greek and means staying the same.

Homeostasis has internal and external stimuli which effect it and cause the body to give negative or positive feedback.

Negative feedback is more common than positive feedback

A feedback loop is the set of stimulus and response activities related to a specific situation. We studied several examples.

Prolonged exposure to negative feedback can cause disease or death. This is why Homeostasis is so important to the human body.Slide17

Don’t forget to make

a screen shot

and

send it to your

Instructor for credit.

Here’s how:Slide18

Now, you need to make a copy of this screen to send to your teacher for proof of

Attendance. This can be done in three easy steps:Slide19
Slide20
Slide21

Thank you for viewing this presentation.

Diana Lenartiene

, IRSC ABE Instructor

If you still have questions, please contact me at:dlenarti@irsc.edu