PDF-thenf(x)isnotone-to-one.Thereasonf(x)wouldnotbeone-to-oneisthatthegrap

Author : debby-jeon | Published Date : 2016-06-16

amoremathematicallanguagefisonetoone graphoffxinmorethanonepointthenfxisnotonetooneThereasonfxwouldnotbeonetoone 3and43Thatwouldmeanthatf2andf4bothequal3andonetoone mostonc

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "thenf(x)isnotone-to-one.Thereasonf(x)wou..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

thenf(x)isnotone-to-one.Thereasonf(x)wouldnotbeone-to-oneisthatthegrap: Transcript


amoremathematicallanguagefisonetoone graphoffxinmorethanonepointthenfxisnotonetooneThereasonfxwouldnotbeonetoone 3and43Thatwouldmeanthatf2andf4bothequal3andonetoone mostonc. 4SHANKARAPAILOORCorollary2.7.LetMbecompactandf:M!Nanalytic.Iffisnotconstant,thenf(M)=N.Asasmoothmanifold,Mcarriesk-formswhichwedenoteby k(M;C)(see[3]or[5])forde nition.Thatbeingsaid, 0(M;C)aresimplyC1 H// YIev0 Xf// Ywheref:X!Yisanarbitrarymap.ThespaceYdoesnotcomewithaspeci edbasepoint,sowechoosey0:=f(x0)asbasepoint.Thenf:X!Yisapointedmap,thoughH:A!YIis(usually)not.ChangingHtoapointedmap.Notethat 4KEITHCONRADProof.Letf(T)2OK[T]beEisensteinatsomeprimeideal.Iff(T)isreducibleinK[T]thenf(T)=g(T)h(T)forsomenonconstantg(T)andh(T)inK[T].We rstshowthatgandhcanbechoseninOK[T].Asfismonic,wecanassumegand Weusethefollowingbasicnotations.xTdenotesthetransposeofvectorx.Giventwofunctionsfandg,f=O(g)ifsupnjf(n)=g(n)j1.f= (g)ifg=O(f).Ifbothf=O(g)andf= (g),thenf=(g).Duetopageconstraints,wehavetoomitproofsof 3AnuninterpretedfunctionFofaritynsatis esonlyoneaxiom:Ifei=e0ifor1in,thenF(e1;::;en)=F(e01;::;e0n).Uninterpretedfunctionsarecommonlyusedtoabstractprogramminglanguageoperatorsthatareotherwisehardtore 2];n=7,xi=i 2n.DerivativeApproximations:iff(x)2Cn+1[a;b],P(x)interpolatesf(x)atdistinctx0;x1;:::;xn2[a;b]andx[a;b],thenf[x0;x1;:::;xn]=f(n)()=n!forsomepoint2[minfx;xig;maxfx;xig]:2 INTERPOLATIONER "#"e andf(#( andhence .If ,1},thendifferentiationyields(f%'f)f%$1=cf%$corf%(f%'f$c)=1$c.Sincec) (p)=!,thenf(p)=p;ifg(p)=0,thenf(f (p)|1,thenp&J(f).InordertoshowthatJ( beasubsequencethatconvergestoano x;sincef1(f(x))=3p x3=xandf(f1(x))=(3p x)3=x: 3.Letf(x)=2x;thenf1(x)=1 2x;sincef1(f(x))=1 2(2x)=xandf(f1(x))=21 2x=x: 5.Letf(x)=7x+2;thenf1(x)=x2 7;sincef1(f(x))=7x+22 7=xandf(f1(x))=7x2 E(w)=Mr=M (e)=Hr Fr1 Fr1(w)=Mr1 G(Mr=Mr1)=Hr1K FFFFFFFFFE=F1 F1(w)=M1 G(M1=M1)=H1 F=F0 F0(w)=M0 G(Mr=M0)=H0Letwbeaprimitiventhrootofunity.ThenF(w)hasprimitiventhirootofun 70L.C.Ciungu(2)IfX=xwewrite[x)insteadof[fxg)and[x)=fy2Ajyxnforsomen1g.[x)iscalledprincipal lter.(3)IfXisa lterofAandx2A,thenF(x)=[F[fxg)=fy2Ajy(f1 x)n1 (f2 x)n2 ::: (fm x)nmforsomem1;n1;n2;:::;nm simple(acl:lab,x:intfaclg)=if(memberuseracl)thenfgxelse1ThisfunctiontakesalabellikeACL(Alice,Bob)asitsrstargument,andanintegerprotectedbythatACLasitssec-ondargument.Ifthecurrentuser(representedbyva 644T.OSTROGORSKIInsections2and3wereviewsomepropertiesofthehomogeneousconesfollowingmostlyVinberg[4].Asanexampleofanapplicationofthistheorytoanalysiswestudyintegraltransformsandtheirasymptoticbehaviour 644T.OSTROGORSKIInsections2and3wereviewsomepropertiesofthehomogeneousconesfollowingmostlyVinberg[4].Asanexampleofanapplicationofthistheorytoanalysiswestudyintegraltransformsandtheirasymptoticbehaviour 308OKadaWTakahashiWegivetworesultswhichareusedinSections34and5Lemma2234Let22beaninvariantsubmeanonXThenlimsfs2022f20limsfsforeveryf2Xwherelimsfssupsinft21sftandlimsfsinfssupt21sftLemma23Letubeabounded

Download Document

Here is the link to download the presentation.
"thenf(x)isnotone-to-one.Thereasonf(x)wouldnotbeone-to-oneisthatthegrap"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents