PDF-thenf(x)isnotone-to-one.Thereasonf(x)wouldnotbeone-to-oneisthatthegrap
Author : debby-jeon | Published Date : 2016-06-16
amoremathematicallanguagefisonetoone graphoffxinmorethanonepointthenfxisnotonetooneThereasonfxwouldnotbeonetoone 3and43Thatwouldmeanthatf2andf4bothequal3andonetoone mostonc
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "thenf(x)isnotone-to-one.Thereasonf(x)wou..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
thenf(x)isnotone-to-one.Thereasonf(x)wouldnotbeone-to-oneisthatthegrap: Transcript
amoremathematicallanguagefisonetoone graphoffxinmorethanonepointthenfxisnotonetooneThereasonfxwouldnotbeonetoone 3and43Thatwouldmeanthatf2andf4bothequal3andonetoone mostonc. 4SHANKARAPAILOORCorollary2.7.LetMbecompactandf:M!Nanalytic.Iffisnotconstant,thenf(M)=N.Asasmoothmanifold,Mcarriesk-formswhichwedenoteby k(M;C)(see[3]or[5])fordenition.Thatbeingsaid, 0(M;C)aresimplyC1 H// YIev0 Xf// Ywheref:X!Yisanarbitrarymap.ThespaceYdoesnotcomewithaspeciedbasepoint,sowechoosey0:=f(x0)asbasepoint.Thenf:X!Yisapointedmap,thoughH:A!YIis(usually)not.ChangingHtoapointedmap.Notethat 4KEITHCONRADProof.Letf(T)2OK[T]beEisensteinatsomeprimeideal.Iff(T)isreducibleinK[T]thenf(T)=g(T)h(T)forsomenonconstantg(T)andh(T)inK[T].WerstshowthatgandhcanbechoseninOK[T].Asfismonic,wecanassumegand Weusethefollowingbasicnotations.xTdenotesthetransposeofvectorx.Giventwofunctionsfandg,f=O(g)ifsupnjf(n)=g(n)j1.f= (g)ifg=O(f).Ifbothf=O(g)andf= (g),thenf=(g).Duetopageconstraints,wehavetoomitproofsof 3AnuninterpretedfunctionFofaritynsatisesonlyoneaxiom:Ifei=e0ifor1in,thenF(e1;::;en)=F(e01;::;e0n).Uninterpretedfunctionsarecommonlyusedtoabstractprogramminglanguageoperatorsthatareotherwisehardtore 2];n=7,xi=i 2n.DerivativeApproximations:iff(x)2Cn+1[a;b],P(x)interpolatesf(x)atdistinctx0;x1;:::;xn2[a;b]andx[a;b],thenf[x0;x1;:::;xn]=f(n)()=n!forsomepoint2[minfx;xig;maxfx;xig]:2 INTERPOLATIONER "#"e andf(#( andhence .If ,1},thendifferentiationyields(f%'f)f%$1=cf%$corf%(f%'f$c)=1$c.Sincec) (p)=!,thenf(p)=p;ifg(p)=0,thenf(f (p)| 1,thenp&J(f).InordertoshowthatJ( beasubsequencethatconvergestoano x;sincef 1(f(x))=3p x3=xandf(f 1(x))=(3p x)3=x: 3.Letf(x)=2x;thenf 1(x)=1 2x;sincef 1(f(x))=1 2(2x)=xandf(f 1(x))=21 2x=x: 5.Letf(x)=7x+2;thenf 1(x)=x 2 7;sincef 1(f(x))=7x+2 2 7=xandf(f 1(x))=7x 2 E(w)=Mr=M (e)=Hr Fr 1 Fr 1(w)=Mr 1 G(Mr=Mr 1)=Hr 1KFFFFFFFFFE=F1 F1(w)=M1 G(M1=M1)=H1 F=F0 F0(w)=M0 G(Mr=M0)=H0Letwbeaprimitiventhrootofunity.ThenF(w)hasprimitiventhirootofun 70L.C.Ciungu(2)IfX=xwewrite[x)insteadof[fxg)and[x)=fy2Ajyxnforsomen1g.[x)iscalledprincipallter.(3)IfXisalterofAandx2A,thenF(x)=[F[fxg)=fy2Ajy(f1 x)n1 (f2 x)n2 ::: (fm x)nmforsomem1;n1;n2;:::;nm simple(acl:lab,x:intfaclg)=if(memberuseracl)thenfgxelse 1ThisfunctiontakesalabellikeACL(Alice,Bob)asitsrstargument,andanintegerprotectedbythatACLasitssec-ondargument.Ifthecurrentuser(representedbyva 644T.OSTROGORSKIInsections2and3wereviewsomepropertiesofthehomogeneousconesfollowingmostlyVinberg[4].Asanexampleofanapplicationofthistheorytoanalysiswestudyintegraltransformsandtheirasymptoticbehaviour 644T.OSTROGORSKIInsections2and3wereviewsomepropertiesofthehomogeneousconesfollowingmostlyVinberg[4].Asanexampleofanapplicationofthistheorytoanalysiswestudyintegraltransformsandtheirasymptoticbehaviour 308OKadaWTakahashiWegivetworesultswhichareusedinSections34and5Lemma2234Let22beaninvariantsubmeanonXThenlimsfs2022f20limsfsforeveryf2Xwherelimsfssupsinft21sftandlimsfsinfssupt21sftLemma23Letubeabounded
Download Document
Here is the link to download the presentation.
"thenf(x)isnotone-to-one.Thereasonf(x)wouldnotbeone-to-oneisthatthegrap"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents