/
Chapter VII Covering Spaces and Calculation of Fundamental Groups Chapter VII Covering Spaces and Calculation of Fundamental Groups

Chapter VII Covering Spaces and Calculation of Fundamental Groups - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
508 views
Uploaded On 2014-11-11

Chapter VII Covering Spaces and Calculation of Fundamental Groups - PPT Presentation

Covering Spaces 33 1 De64257nition of Covering Let topological spaces a continuous map Assume that is surjective and each point of possesses a neighborhood such that the preimage of is a disjoint union of open sets and maps each homeomorphically on ID: 10058

Covering Spaces

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter VII Covering Spaces and Calculat..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ChapterVIICoveringSpacesandCalculationofFundamentalGroups33.CoveringSpaces331.De nitionofCoveringLetX,Btopologicalspaces,p:X!Bacontinuousmap.AssumethatpissurjectiveandeachpointofBpossessesaneighborhoodUsuchthatthepreimagep1(U)ofUisadisjointunionofopensetsV andpmapseachV homeomorphicallyontoU.Thenp:X!Bisacovering(ofB),thespaceBisthebaseofthiscovering,XisthecoveringspaceforBandthetotalspaceofthecovering.NeighborhoodslikeUaresaidtobetriviallycovered.Themappisacoveringmaporcoveringprojection.33.A.LetBbeatopologicalspaceandFbeadiscretespace.ProvethattheprojectionprB:BF!Bisacovering.33.1.IfU0UBandtheneighborhoodUistriviallycovered,thentheneighborhoodU0isalsotriviallycovered.Thefollowingstatementshowsthatinacertainsenseanycoveringlo-callyisorganizedasthecoveringof33.A.33.B.Acontinuoussurjectivemapp:X!Bisacoveringi foreachpointaofBthepreimagep1(a)isdiscreteandthereexistaneighborhoodUofa 231 232VII.CoversingSpaces andahomeomorphismh:p1(U)!Up1(a)suchthatpjp1(U)=prUh.Here,asusual,prU:Up1(a)!U.However,thecoveringsof33.Aarenotinteresting.Theyaresaidtobetrivial.Hereisthe rstreallyinterestingexample.33.C.ProvethatR!S1:x7!e2ixisacovering. Todistinguishthemostinterestingexamples,acoveringwithacon-nectedtotalspaceiscalledacoveringinanarrowsense.Ofcourse,thecoveringof33.Cisacoveringinanarrowsense.332.MoreExamples33.D.R2!S1R:(x;y)7!(e2ix;y)isacovering.33.E.Provethatifp:X!Bandp0:X0!B0arecoverings,thensoispp0:XX0!BB0.Ifp:X!Bandp0:X0!B0aretwocoverings,thenpp0:XX0!BB0istheproductofthecoveringspandp0.The rstexampleoftheproductofcoveringsispresentedin33.D.33.F.C!Cr0:z7!ezisacovering.33.2.Riddle.Inwhatsensethecoveringsof33.Dand33.Farethesame?De neanappropriateequivalencerelationforcoverings.33.G.R2!S1S1:(x;y)7!(e2ix;e2iy)isacovering.33.H.Foranypositiveintegern,themapS1!S1:z7!znisacovering.33.3.ProvethatforeachpositiveintegernthemapCr0!Cr0:z7!znisacovering.33.I.Foranypositiveintegerspandq,themapS1S1!S1S1:(z;w)7!(zp;wq)isacovering.33.J.ThenaturalprojectionSn!RPnisacovering. 33.CoveringSpaces233 33.K.Is(0;3)!S1:x7!e2ixacovering?(Cf.33.14.)33.L.IstheprojectionR2!R:(x;y)7!xacovering?Indeed,whyisnotanopeninterval(a;b)Ratriviallycoveredneighborhood:itspreimage(a;b)Ristheunionofopenintervals(a;b)fyg,whicharehomeomorphicallyprojectedonto(a;b)bytheprojection(x;y)7!x?33.4.FindcoveringsoftheMobiusstripbyacylinder.33.5.FindnontrivialcoveringsofMobiusstripbyitself.33.6.FindacoveringoftheKleinbottlebyatorus.Cf.Problem21.14.33.7.FindcoveringsoftheKleinbottlebytheplaneR2andthecylinderS1R,andanontrivialcoveringoftheKleinbottlebyitself.33.8.DescribeexplicitlythepartitionofR2intopreimagesofpointsunderthiscovering.33.9*.Findacoveringofaspherewithanynumberofcrosscapsbyaspherewithhandles.333.LocalHomeomorphismsversusCoverings33.10.Anycoveringisanopenmap.1Amapf:X!YisalocalhomeomorphismifeachpointofXhasaneighbor-hoodUsuchthattheimagef(U)isopeninYandthesubmapab(f):U!f(U)isahomeomorphism.33.11.Anycoveringisalocalhomeomorphism.33.12.Findalocalhomeomorphismwhichisnotacovering.33.13.Provethattherestrictionofalocalhomeomorphismtoanopensetisalocalhomeomorphism.33.14.ForwhichsubsetsofRistherestrictionofthemapofProblem33.Cacovering?33.15.FindanontrivialcoveringX!BwithXhomeomorphictoBandprovethatitsatis esthede nitionofacovering.334.NumberofSheetsLetp:X!Bbeacovering.Thecardinality(i.e.,thenumberofpoints)ofthepreimagep1(a)ofapointa2Bisthemultiplicityofthecoveringataorthenumberofsheetsofthecoveringovera.33.M.Ifthebaseofacoveringisconnected,thenthemultiplicityofthecoveringatapointdoesnotdependonthepoint. 1Weremindthatamapisopeniftheimageofanyopensetisopen. 234VII.CoversingSpaces Inthecaseofcoveringwithconnectedbase,themultiplicityiscalledthenumberofsheetsofthecovering.Ifthenumberofsheetsisn,thenthecoveringisn-sheeted,andwetalkaboutann-foldcovering.Ofcourse,unlessthecoveringistrivial,itisimpossibletodistinguishthesheetsofit,butthisdoesnotpreventusfromspeakingaboutthenumberofsheets.Ontheotherhand,weadoptthefollowingagreement.Byde nition,thepreimagep1(U)ofanytriviallycoveredneighborhoodUBsplitsintoopensubsets:p1(U)=[V ,suchthattherestrictionpjV :V !Uisahomeomorphism.EachofthesubsetsV isasheetoverU.33.16.WhatarethenumbersofsheetsforthecoveringsfromSection332?Inproblems33.17{33.19wedidnotassumethatyouwouldrigorouslyjustifyyouranswers.Thiswillbedonebelow,seeproblems39.3{39.6.33.17.WhatnumberscanyourealizeasthenumberofsheetsofacoveringoftheMobiusstripbythecylinderS1I?33.18.WhatnumberscanyourealizeasthenumberofsheetsofacoveringoftheMobiusstripbyitself?33.19.WhatnumberscanyourealizeasthenumberofsheetsofacoveringoftheKleinbottlebyatorus?33.20.WhatnumberscanyourealizeasthenumberofsheetsofacoveringoftheKleinbottlebyitself?33.21.Constructad-foldcoveringofaspherewithphandlesbyaspherewith1+d(p1)handles.33.22.Letp:X!Yandq:Y!Zbecoverings.Provethatifqhas nitelymanysheets,thenqp:x!Yisacovering.33.23*.Isthehypothesisof nitenessofthenumberofsheetsinProblem33.22necessary?33.24.Letp:X!BbeacoveringwithcompactbaseB.1)ProvethatifXiscompact,thenthecoveringis nite-sheeted.2)IfBisHausdor andthecoveringis nite-sheeted,thenXiscompact.33.25.LetXbeatopologicalspacepresentableastheunionoftwoopencon-nectedsetsUandV.ProvethatiftheintersectionU\Visdisconnected,thenXhasaconnectedin nite-sheetedcovering.335.UniversalCoveringsAcoveringp:X!BisuniversalifXissimplyconnected.Theappear-anceoftheworduniversalinthiscontextisexplainedbelowinSection39.33.N.Whichcoveringsoftheproblemsstatedaboveinthissectionareuniversal? 34.TheoremsonPathLifting235 34.TheoremsonPathLifting341.LiftingLetp:X!Bandf:A!Bbearbitrarymaps.Amapg:A!Xsuchthatpg=fissaidtocoverforbealiftingoff.Varioustopologicalproblemscanbephrasedintermsof ndingacontinuousliftingofsomecontinuousmap.Problemsofthissortarecalledliftingproblems.Theymayinvolveadditionalrequirements.Forexample,thedesiredliftingmustcoincidewithaliftingalreadygivenonsomesubspace.34.A.TheidentitymapS1!S1doesnotadmitacontinuousliftingwithrespecttothecoveringR!S1:x7!e2ix.(Inotherwords,thereexistsnocontinuousmapg:S1!Rsuchthate2ig(x)=xforx2S1.)342.PathLifting34.BPathLiftingTheorem.Letp:X!Bbeacovering,x02X,b02Bbepointssuchthatp(x0)=b0.Thenforanypaths:I!Bstartingatb0thereexistsauniquepath~s:I!Xstartingatx0andbeingaliftingofs.(Inotherwords,thereexistsauniquepath~s:I!Xwith~s(0)=x0andp~s=s.)WecanalsoproveamoregeneralassertionthanTheorem34.B:seeProb-lems34.1{34.3.34.1.Letp:X!Bbeatrivialcovering.ThenforanycontinuousmapfofanyspaceAtoBthereexistsacontinuouslifting~f:A!X.34.2.Letp:X!Bbeatrivialcoveringandx02X,b02Bbepointssuchthatp(x0)=b0.ThenforanycontinuousmapfofaspaceAtoBmappingapointa0tob0,acontinuouslifting~f:A!Xwith~f(a0)=x0isunique.34.3.Letp:X!Bbeacovering,Aaconnectedandlocallyconnectedspace.Iff;g:A!Xaretwocontinuousmapscoincidingatsomepointandpf=pg,thenf=g.34.4.Ifwereplacex0,b0,anda0inProblem34.2bypairsofpoints,thentheliftingproblemmayhappentohavenosolution~fwith~f(a0)=x0.Formulateaconditionnecessaryandsucientforexistenceofsuchasolution.34.5.WhatgoeswrongwiththePathLiftingTheorem34.Bforthelocalhome-omorphismofProblem33.K?34.6.ConsiderthecoveringC!Cr0:z7!ez.Findliftingsofthepathsu(t)=2tandv(t)=(1+t)e2itandtheirproductsuvandvu. 236VII.CoversingSpaces 343.HomotopyLifting34.CPathHomotopyLiftingTheorem.Letp:X!Bbeacovering,x02X,b02Bbepointssuchthatp(x0)=b0.Letu;v:I!Bbepathsstartingatb0and~u;~v:I!Xbetheliftingpathsforu;vstartingatx0.Ifthepathsuandvarehomotopic,thenthecoveringpaths~uand~varehomotopic.34.DCorollary.UndertheassumptionsofTheorem34.C,thecoveringpaths~uand~vhavethesame nalpoint(i.e.,~u(1)=~v(1)).Noticethatthepathsin34.Cand34.Dareassumedtosharetheinitialpointx0.Inthestatementof34.D,weemphasizethatthentheyalsosharethe nalpoint.34.ECorollaryof34.D.Letp:X!Bbeacoveringands:I!Bbealoop.Ifthereexistsalifting~s:I!Xofswith~s(0)=~s(1)(i.e.,thereexistsacoveringpathwhichisnotaloop),thensisnotnull-homotopic.34.F.Ifapath-connectedspaceBhasanontrivialpath-connectedcoveringspace,thenthefundamentalgroupofBisnontrivial.34.7.Provethatanycoveringp:X!BwithsimplyconnectedBandpathconnectedXisahomeomorphism.34.8.Whatcorollariescanyoudeducefrom34.FandtheexamplesofcoveringspresentedaboveinSection33?34.9.Riddle.IsitreallyimportantinthehypothesisofTheorem34.Cthatuandvarepaths?Towhatclassofmapscanyougeneralizethistheorem? 35.CalculationofFundamentalGroups237 35.CalculationofFundamentalGroupsUsingUniversalCoverings351.FundamentalGroupofCircleForanintegern,denotebysntheloopinS1de nedbytheformulasn(t)=e2int.Theinitialpointofthisloopis1.Denotethehomotopyclassofs1by .Thus, 21(S1;1).35.A.Theloopsnrepresents n21(S1;1).35.B.FindthepathsinRstartingat02RandcoveringtheloopssnwithrespecttotheuniversalcoveringR!S1.35.C.ThehomomorphismZ!1(S1;1):n7! nisanisomorphism.35.C.1.Theformulan7! ndeterminesahomomorphismZ!1(S1;1).35.C.2.Provethataloops:I!S1startingat1ishomotopictosnifthepath~s:I!Rcoveringsandstartingat02Rendsatn2R(i.e.,~s(1)=n).35.C.3.Provethatiftheloopsnisnull-homotopic,thenn=0.35.1.Findtheimageofthehomotopyclassoftheloopt7!e2it2undertheisomorphismofTheorem35.C.DenotebydegtheisomorphisminversetotheisomorphismofTheorem35.C.35.2.Foranyloops:I!S1startingat12S1,theintegerdeg([s])isthe nalpointofthepathstartingat02Randcoverings.35.DCorollaryofTheorem35.C.Thefundamentalgroupof(S1)nisafreeAbeliangroupofrankn(i.e.,isomorphictoZn).35.E.OntorusS1S1 ndtwoloopswhosehomotopyclassesgeneratethefundamentalgroupofthetorus.35.FCorollaryofTheorem35.C.ThefundamentalgroupofpuncturedplaneR2r0isanin nitecyclicgroup.35.3.SolveProblems35.D{35.FwithoutreferencetoTheorems35.Cand31.H,butusingexplicitconstructionsofthecorrespondinguniversalcoverings.352.FundamentalGroupofProjectiveSpaceThefundamentalgroupoftheprojectivelineisanin nitecyclicgroup.Itiscalculatedintheprevioussubsectionsincetheprojectivelineisacircle.Thezero-dimensionalprojectivespaceisapoint,henceitsfundamental 238VII.CoversingSpaces groupistrivial.Nowwecalculatethefundamentalgroupsofprojectivespacesofallotherdimensions.Letn2,andletandl:I!RPnbealoopcoveredbyapath~l:I!SnwhichconnectstwoantipodalpointsofSn,saythepolesP+=(1;0;:::;0)andP=(1;0;:::;0).Denotebythehomotopyclassofl.Itisanelementof1(RPn;(1:0::0)).35.G.Foranyn2group1(RPn;(1:0::0))isacyclicgroupoforder2.Itconsistsoftwoelements:and1.35.G.1Lemma.AnyloopinRPnat(1:0::0)ishomotopiceithertolorconstant.ThisdependsonwhetherthecoveringpathoftheloopconnectsthepolesP+andP,orisaloop.35.4.Wheredidweusetheassumptionn2intheproofsofTheorem35.GandLemma35.G.1?353.FundamentalGroupofBouquetofCirclesConsiderafamilyoftopologicalspacesfX g.Ineachofthespaces,letapointx bemarked.TakethedisjointsumF X andidentifyallmarkedpoints.TheresultingquotientspaceW X isthebouquetoffX g.Henceabouquetofqcirclesisaspacewhichisaunionofqcopiesofcircle.Thecopiesmeetatasinglecommonpoint,andthisistheonlycommonpointforanytwoofthem.Thecommonpointisthecenterofthebouquet.DenotethebouquetofqcirclesbyBqanditscenterbyc.Letu1,...,uqbeloopsinBqstartingatcandparameterizingtheqcopiesofcirclecomprisingBq.Denoteby ithehomotopyclassofui.35.H.1(Bq;c)isafreegroupfreelygeneratedby 1,..., q.354.AlgebraicDigression:FreeGroupsRecallthatagroupGisafreegroupfreelygeneratedbyitselementsa1,...,aqif:eachelementx2Gisaproductofpowers(withpositiveornegativeintegerexponents)ofa1,...,aq,i.e.,x=ae1i1ae2i2:::aeninandthisexpressionisuniqueuptothefollowingtrivialambiguity:wecaninsertordeletefactorsaia1ianda1iaiorreplaceamibyariasiwithr+s=m.35.I.Afreegroupisdetermineduptoisomorphismbythenumberofitsfreegenerators. 35.CalculationofFundamentalGroups239 Thenumberoffreegeneratorsistherankofthefreegroup.Forastandardrepresentativeoftheisomorphismclassoffreegroupsofrankq,wecantakethegroupofwordsinanalphabetofqlettersa1;:::;aqandtheirinversesa11;:::;a1q.Twowordsrepresentthesameelementofthegroupi theycanbeobtainedfromeachotherbyasequenceofinsertionsordeletionsoffragmentsaia1ianda1iai.ThisgroupisdenotedbyF(a1;:::;aq),orjustFq,whenthenotationforthegeneratorsisnottobeemphasized.35.J.EachelementofF(a1;:::;aq)hasauniqueshortestrepresentative.Thisisawordwithoutfragmentsthatcouldhavebeendeleted.Thenumberl(x)oflettersintheshortestrepresentativeofanelementx2F(a1;:::;aq)isthelengthofx.Certainly,thisnumberisnotwellde nedunlessthegeneratorsare xed.35.5.ShowthatanautomorphismofFqcanmapx2Fqtoanelementwithdi erentlength.Forwhatvalueofqdoessuchanexamplenotexist?Isitpossibletochangethelengthinthiswayarbitrarily?35.K.AgroupGisafreegroupfreelygeneratedbyitselementsa1,...,aqi everymapofthesetfa1;:::;aqgtoanygroupXextendstoauniquehomomorphismG!X.Theorem35.Kissometimestakenasade nitionofafreegroup.(De -nitionsofthissortemphasizerelationsamongdi erentgroups,ratherthantheinternalstructureofasinglegroup.Ofcourse,relationsamonggroupscantelleverythingabout\internala airs"ofeachgroup.)NowwecanreformulateTheorem35.Hasfollows:35.L.ThehomomorphismF(a1;:::;aq)!1(Bq;c)takingaito ifori=1;:::;qisanisomorphism.First,forthesakeofsimplicitywerestrictourselvestothecasewhereq=2.Thiswillallowustoavoidsuper\ruouscomplicationsinnotationandpictures.Thisisthesimplestcase,whichreallyrepresentsthegeneralsituation.Thecaseq=1istoospecial.Totakeadvantagesofthis,letuschangethenotation.PutB=B2,u=u1,v=u2, = 1,and = 2.NowTheorem35.Llooksasfollows:ThehomomorphismF(a;b)!(B;c)takingato andbto isanisomorphism.ThistheoremcanbeprovedlikeTheorems35.Cand35.G,providedtheuniversalcoveringofBisknown. 240VII.CoversingSpaces 355.UniversalCoveringforBouquetofCirclesDenotebyUandVthepointsantipodaltoconthecirclesofB.CutBatthesepoints,removingUandVandputtinginsteadeachofthemtwonewpoints.Whateverthisoperationis,itsresultisacrossK,whichistheunionoffourclosedsegmentswithacommonendpointc.ThereappearsanaturalmapP:K!BthattakesthecentercofthecrosstothecentercofBandhomeomorphicallymapstheraysofthecrossontohalf-circlesofB.SincethecirclesofBareparameterizedbyloopsuandv,thehalvesofeachofthecirclesareordered:thecorrespondinglooppasses rstoneofthehalvesandthentheotherone.DenotebyU+thepointofP1(U)belongingtotheraymappedbyPontothesecondhalfofthecircle,andbyUtheotherpointofP1(U).WesimilarlydenotepointsofP1(V)byV+andV. UV U+UU+U= U+UV+V TherestrictionofPtoKrfU+;U;V+;Vgmapsthissethomeomor-phicallyontoBrfU;Vg.ThereforePprovidesacoveringofBrfU;Vg.However,itfailstobeacoveringatUandV:noneofthesepointshasatriviallycoveredneighborhood.Furthermore,thepreimageofeachofthesepointsconsistsof2points(theendpointsofthecross),wherePisnotevenalocalhomeomorphism.Toeliminatethisdefect,wecanattachacopyofKateachofthe4endpointsofKandextendPinanaturalwaytotheresult.Butthen12newendpointsappearatwhichthemapisnotalocalhomeomorphism.Well,werepeatthetrickandrecoverthepropertyofbe-ingalocalhomeomorphismateachofthe12newendpoints.Thenwedothisateachofthe36newpoints,etc.Butifwerepeatthisin nitelymanytimes,allbadpointsbecomeniceones.235.M.FormalizetheconstructionofacoveringforBdescribedabove. 2ThissoundslikeastoryaboutabattlewithHydra,butthehappyendingdemonstratesthatmodernmathematicianshaveamagicpowerofthesortthattheherosofmythsandtalescouldnotevendreamof.Indeed,wemeetaHydraKwith4heads,chopo alltheheads,but,accordingtotheoldtraditionofthegenre,3newheadsappearinplaceofeachoftheoriginalheads.Wechopthemo ,andthestoryrepeats.Wedonoteventrytopreventthismultiplicationofheads.Wejustchopthemo .Butcontrarytotherealherosoftales,weactoutsideofTimeandhencehavenotimelimitations.Thusafterin niterepetitionsoftheexercisewithanexponentiallygrowingnumberofheadswesucceed!Noheadsleft!Thisisatypicalsuccessstoryaboutanin niteconstructioninmathematics.Sometimes,asinourcase,suchaconstructioncanbereplacedbya niteone,butdealingwithin niteobjects.However,thereareimportantconstructionsinwhichanin nitefragmentisunavoidable. 35.CalculationofFundamentalGroups241 ConsiderF(a;b)asadiscretetopologicalspace.TakeKF(a;b).ItcanbethoughtofasacollectionofcopiesofKenumeratedbyelementsofF(a;b).TopologicallythisisadisjointsumofthecopiesbecauseF(a;b)isequippedwithdiscretetopology.InKF(a;b),weidentifypoints(U;g)with(U+;ga)and(V;g)with(V+;gb)foreachg2F(a;b).DenotetheresultingquotientspacebyX.35.N.ThecompositionoftheprojectionKF(a;b)!KandP:K!Bdeterminesacontinuousquotientmapp:X!B.35.O.p:X!Bisacovering.35.P.Xispath-connected.Foranyg2F(a;b),thereexistsapathcon-necting(c;1)with(c;g)andcoveringtheloopobtainedfromgbyreplacingawithuandbwithv.35.Q.Xissimplyconnected.356.FundamentalGroupsofFiniteTopologicalSpaces35.6.Provethatifathree-pointspaceXispath-connected,thenXissimplyconnected(cf.31.7).35.7.ConsideratopologicalspaceX=fa;b;c;dgwithtopologydeterminedbythebaseffag;fcg;fa;b;cg;fc;d;agg.ProvethatXispath-connected,butnotsimplyconnected.35.8.Calculate1(X).35.9.LetXbea nitetopologicalspacewithnontrivialfundamentalgroup.Letn0betheleastpossiblecardinalityofX.1)Findn0.2)Whatnontrivialgroupsariseasfundamentalgroupsofn0-pointspaces?35.10.1)Finda nitetopologicalspacewithnon-Abelianfundamentalgroup.2)Whatistheleastpossiblecardinalityofsuchaspace?35.11*.LetatopologicalspaceXbetheunionoftwoopenpath-connectedsetsUandV.ProvethatifU\Vhasatleastthreeconnectedcomponents,thenthefundamentalgroupofXisnon-Abelianand,moreover,admitsanepimorphismontoafreegroupofrank2.35.12*.Finda nitetopologicalspacewithfundamentalgroupisomorphictoZ2. 242VII.CoversingSpaces ProofsandComments33.ALetusshowthatthesetBitselfistriviallycovered.Indeed,prB1(B)=X=Sy2F(By),andsincethetopologyinFisdiscrete,itfollowsthateachofthesetsByisopeninthetotalspaceofthecovering,andtherestrictionofprBtoeachofthemisahomeomorphism.33.B Weconstructahomeomorphismh:p1(U)!Up1(a)foranarbitrarytriviallycoveredneighborhoodUBofa.Bythede nitionofatriviallycoveredneighborhood,wehavep1(U)=SU .Letx2p1(U),consideranopensetsU containingxandtakextothepair(p(x);c),wherefcg=p1(a)\U .Itisclearthatthecorrespondencex7!(p(x);c)determinesahomeomorphismh:p1(U)!Up1(a). Byassertion33.1,Uisatriviallycoveredneighborhood,hence,p:X!Bisacovering.33.CForeachpointz2S1,thesetUz=S1rfzgisatriviallycoveredneighborhoodofz.Indeed,letz=e2ix.ThenthepreimageofUzistheunionSk2Z(x+k1 2;x+k+1 2),andtherestrictionofthecoveringtoeachoftheaboveintervalsisahomeomorphism.33.DTheproduct(S1rfzg)Risatriviallycoveredneighborhoodofapoint(z;y)2S1R;cf.33.E.33.EVerifythattheproductoftriviallycoveredneighborhoodsofpointsb2Bandb02B0isatriviallycoveredneighborhoodofthepoint(b;b0)2BB0.33.FConsiderthediagramR2h!Cq??y??ypS1Rg!Cr0;whereg(z;x)=zex,h(x;y)=y+2ix,andq(x;y)=(e2ix;y).Theequal-ityg(q(x;y))=e2ixey=ey+2ix=p(h(x;y))impliesthatthediagramiscommutative.Clearly,gandharehomeomorphisms.Sinceqisacoveringby33.D,pisalsoacovering.33.GBy33.E,thisassertionfollowsfrom33.C.Certainly,itisnotdiculttoproveitdirectly.Theproduct(S1rfzg)(S1rfz0g)isatriviallycoveredneighborhoodofthepoint(z;z0)2S1S1.33.HLetz2S1.Thepreimagezundertheprojectionconsistsofnpoints,whichpartitionthecoveringspaceintonarcs,andtherestriction ProofsandComments243 oftheprojectiontoeachofthemdeterminesahomeomorphismofthisarcontotheneighborhoodS1rfzgofz.33.IBy33.E,thisassertionfollowsfrom33.H.33.JThepreimageofapointy2RPnisapairfx;xgSnofantipodalpoints.Theplanepassingthroughthecenterofthesphereandorthogonaltothevectorxsplitsthesphereintotwoopenhemispheres,eachofwhichishomeomorphiallyprojectedtoaneighborhood(homeomorphitoRn)ofthepointy2RPn.33.KNo,itisnot,becausethepoint12S1hasnotriviallycoveredneighborhood.33.LTheopenintervalsmentionedinthestatementarenotopensubsetsoftheplane.Furthermore,sincethepreimageofanyintervalisaconnectedset,itcannotbesplitintodisjointopensubsetsatall.33.MProvethatthede nitionofacoveringimpliesthatthesetofthepointsinthebasewithpreimageofprescribedcardinalityisopenandusethefactthatthebaseofthecoveringisconnected.33.NThosecoveringswherethecoveringspaceisR1,R2,Rnr0withn3,andSnwithn2,i.e.,asimplyconnectedspace.34.AAssumethatthereexistsaliftinggoftheidentitymapS1!S1;thisisacontinuousinjectionS1!R.Weshowthattherearenosuchinjections.Letg(S1)=[a;b].TheIntermediateValueTheoremimpliesthateachpointx2(a;b)istheimageofatleasttwopointsofthecircle.Consequently,gisnotaninjection.34.BCoverthebasebytriviallycoveredneighborhoodsandpartitionthesegment[0;1]bypoints0=a0a1:::an=1,suchthattheimages([ai;ai+1])isentirelycontainedinoneofthetriviallycoveredneigh-borhoods;s([ai;ai+1])Ui,i=0;1;:::;n1.Sincetherestrictionofthecoveringtop1(U0)isatrivialcoveringandf([a0;a1])U0,thereexistsaliftingofsj[a0;a1]suchthates(a0)=x0,letx1=es(a1).Similarly,thereexistsauniqueliftingesj[a1;a2]suchthates(a1)=x1;letx2=es(a2),andsoon.Thus,thereexistsaliftinges:I!X.Itsuniquenessisobvious.Ifyoudonotagree,useinduction.34.CLeth:II!Bbeahomotopybetweenthepathsuandv,thus,h(;0)=u(),h(;1)=v(),h(0;t)=b0,andh(1;t)=b12B.Weshowthatthereexistsamap~h:II!Xcoveringhandsuchthath(0;0)=x0.TheproofoftheexistenceofthecoveringhomotopyissimilartothatofthePathLiftingTheorem.WesubdividethesquareIIintosmallersquaressuchthattheh-imageofeachofthemiscontainedinacertaintriviallycoveredneighborhoodinB.Therestrictionhk;lofthehomotopyhtoeach 244VII.CoversingSpaces ofthe\little"squaresIk;liscoveredbythecorrespondingmapehk;l.Inordertoobtainahomotopycoveringh,wemustonlyensurethatthesemapscoincideontheintersectionsofthesesquares.By34.3,itsucestorequirethatthesemapscoincideatleastatonepoint.Letusmakethe rststep:leth(I0;0)Ub0andleteh0;0:I0;0!Xbeacoveringmapsuchthateh0;0(a0;c0)=x0.Nowweputb1=h(a1;c0)andx1=eh(a1;c0).Thereisamapeh1;0:I1;0!XcoveringhjI1;0suchthateh1;0(a1;c0)=x1.Proceedinginthisway,weobtainamapehde nedontheentiresquare.Itremainstoverifythatehisahomotopyofpaths.Considerthecoveringpatheu:t7!eh(0;t).Sincepeuisaconstantpath,thepatheumustalsobeconstant,whenceeh(0;t)=x0.Similarly,eh(1;t)=x1isamarkedpointofthecoveringspace.Therefore,ehisahomotopyofpaths.Inconclusion,weobservethattheuniquenessofthishomotopyfollows,oncemore,fromLemma34.3.34.DFormallyspeaking,thisisindeedacorollary,butactuallywealreadyprovedthiswhenprovingTheorem34.C.34.EAconstantpathiscoveredbyaconstantpath.By34.D,eachnull-homotopicloopiscoveredbyaloop.35.AConsiderthepaths~sn:I!R:t7!nt,~sn1:I!R:t7!(n1)t,and~s1:I!R:t7!n1+tcoveringthepathssn,sn1,ands1,respectively.Sincetheproductesn1es1isde nedandhasthesamestartingandendingpointsasthepathesn,wehaveesnesn1es1,whencesnsn1s1.Therefore,[sn]=[sn1] .Reasoningbyinduction,weobtaintherequiredequality[sn]= n.35.BSeetheproofofassertion35.A:thisisthepathde nedbytheformulaesn(t)=nt.35.CBy35.C.1,themapinquestionisindeedawell-de nedhomo-morphism.By35.C.2,itisanepimorphism,andby35.C.3itisamonomor-phism.Therefore,itisanisomorphism.35.C.1Ifn7! nandk7! k,thenn+k7! n+k= n k.35.C.2SinceRissimplyconnected,thepathsesandesnarehomotopic,therefore,thepathssandsnarealsohomotopic,whence[s]=[sn]= n.35.C.3Ifn=0,thenthepathesnendsatthepointn,hence,itisnotaloop.Consequently,theloopsnisnotnull-homotopic. ProofsandComments245 35.DThisfollowsfromtheabovecomputationofthefundamentalgroupofthecircleandassertion31.H:1(S1:::S1| {z }nfactors;(1;1;:::;1))=1(S1;1):::1(S1;1)| {z }nfactors=Zn:35.ELetS1S1=f(z;w):jzj=1;jwj=1gCC.Thegeneratorsof1(S1S1;(1;1))aretheloopss1:t7!(e2it;1)ands2:t7!(1;e2it).35.FSinceR2r0=S1R,wehave1(R2r0;(1;0))=1(S1;1)1(R;1)=Z.35.G.1LetubealoopinRPn,andlet~ubethecoveringuthepathinSn.Forn2,thesphereSnissimplyconnected,andifeuisaloop,theneuandhencealsouarenull-homotopic.Nowifeuisnotaloop,then,oncemoresinceSnissimplyconnected,wehaveeuel,whenceul.35.GBy35.G.1,thefundamentalgroupconsistsoftwoelements,there-fore,itisacyclicgroupofordertwo.35.HSee355.35.MSeetheparagraphfollowingthepresentassertion.35.NThisobviouslyfollowsfromthede nitionofP.35.OThisobviouslyfollowsfromthede nitionofp.35.PUseinduction.35.QUsethefactthattheimageofanyloop,asacompactset,inter-sectsonlya nitenumberofthesegmentsconstitutingthecoveringspaceX,anduseinductiononthenumberofsuchsegments.