/
EECS  IMPULSES AND IMPULSE RESPONSE CONTINUOUSTIME IMPULSES Def An impulse is the limiting EECS  IMPULSES AND IMPULSE RESPONSE CONTINUOUSTIME IMPULSES Def An impulse is the limiting

EECS IMPULSES AND IMPULSE RESPONSE CONTINUOUSTIME IMPULSES Def An impulse is the limiting - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
507 views
Uploaded On 2014-12-16

EECS IMPULSES AND IMPULSE RESPONSE CONTINUOUSTIME IMPULSES Def An impulse is the limiting - PPT Presentation

An impulse has zero width in64257nite height and 64257nite area under it Math Mathematicians Impulses are distributions or generalized functions Dont call them Dirac delta functionsDirac would sue for de famation Def The impulse response of a syste ID: 24901

impulse has zero

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "EECS IMPULSES AND IMPULSE RESPONSE CONT..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

EECS216IMPULSESANDIMPULSERESPONSE CONTINUOUS-TIMEIMPULSES Def:Animpulseisthelimitingcaseofaconstant-areahighandfastpulse.Animpulsehaszerowidth,in niteheight,and niteareaunderit.Math:Mathematicians:Impulsesaredistributionsorgeneralizedfunctions.Don'tcallthemDiracdeltafunctions{Diracwouldsuefordefamation!Def:Theimpulseresponseofasystemissimplyitsresponsetoanimpulse:Impulse=(t)! SYSTEM !h(t)=impulseresponse(makessense).Def:Thestepresponseofasystemissimplyitsresponsetoastepfunction:step=1(t)! SYSTEM !s(t)=stepresponse(iseasiertocompute). CONTINUOUS-TIMEIMPULSERESPONSE Q:Howtocomputetheresponsetoaninputthatdoesn'texistphysically?A:ConsideraseriesRCcircuitdrivenbyahighandfastvoltagepulse:1.Source=step=x(t)=1(t)!y(t)=s(t)=[1et=(RC)]1(t)(familiar).2.Stepup,thendown:x(t)=1(t)1(t)!y(t)=s(t)s(t).3.Scaleprevious:x(t)=1 [1(t)1(t)]!y(t)=1 [s(t)s(t)].4.Fort�,thisbecomesy(t)=1 [1et=(RC)]1 [1e(t)=(RC)]=[e=(RC)1]1 et=(RC) RC1 et=(RC)=1 RCet=(RC)fort�0using(ex1)=(1+x+x2 2!+:::1)xforx==(RC)1.5.Responsey(t)toapulsex(t)ofwidth,height1 andarea =1isindependentofand1 ,aslongasRC(notetheunits). PHYSICALINTERPRETATIONOFIMPULSEANDIMPULSERESPONSE 1.TakeNortonequivalent:Impulsivecurrentsource1 R.Duration=.2.Shotofcharge1 Rchargescapacitorupto1 C1 R=1 RC.(q=Cv)3.Capacitorvoltagedecays.Impulsivesourcelikeaninitialcondition!4.Current=1 Randduration=don'tmatter{onlycharge=product.5.Howcanthecapacitorvoltagejump?Becausethecurrentisin nite! PROPERTIESOFIMPULSEANDIMPULSERESPONSE 1.Impulseresponse=h(t)=ds dt=d dt(stepresponse).Forabovecircuit,h(t)=d dt(1et=(RC))=1 RCet=(RC)fort�0.Forabovecircuit, 2.h(t)=L1fH(s)g=L1f1=(sC) R+1=(sC)g=L1f1=(RC) s+1=(RC)g=1 RCet=(RC).3.Rba(tc)dt=areaunder(t)=1ifacb:R11(ta)dt=1.4.R11x(t)(ta)dt=x(a)(siftingproperty).x(t)(ta)=x(a)(ta).5.(at)=1 jaj(t)(bothhavearea1 jaj).(t)1(t)and(t) tareunde ned. EECS216COMPUTINGCONVOLUTIONS TENRULESFORCOMPUTINGCONVOLUTIONS 1.h(t)[ax(t)+by(t))=a[h(t)x(t)]+b[h(t)y(t)]Breakupconvolutionsusinglinearcombinations. 2.Ifh(t)x(t)=y(t)thenh(ta)x(t+b)=y(ta+b)Thisisveryusefulifthegivenfunctionshavedelays. 3.x(t)(ta)=x(ta)andx(t)u(t)=Rt1x()ddh dtx(t)=h(t)dx dt=dy dt;similarlyforintegrals.#1-#3greatlysimpli esmanyconvolutionsinEECS216. 4.Ifbothh(t)andx(t)arecausal,theny(t)=h(t)x(t)=[Rt0h()x(t)d]u(t)isalsocausal. 5.Ifx(t)isamorecomplicatedfunctionthanh(t),usey(t)=R11x()h(t)dsoyoudon'tsubstitutet. 6.Ifh(t)=0outside0tLandx(t)=0outside0tM,theny(t)=h(t)x(t)=0outside0t(L+M).Anduse#2! 7.Even*even=even;Even*odd=odd;Odd*odd=evenfunctions.Use#2toshiftsymmetricandantisymmetricfunctions. 8.(t)(t)=(t)andu(t)*u(t)=r(t)=tu(t)andrect(t)*rect(t)=triangle(t). 9.Ify(t)=h(t)x(t)thenRy(t)dt=[Rh(t)dt][Rx(t)dt].Goodcheck. 10.Discretizeh(t)andx(t)anduseMatlab'sconvtocheckform.Youstillneedtosetthescalefactorproperly(use#9). EX#1:Computey(t)=etu(t)[u(t)u(ta)]. Sol'n:Using#1-#5,y(t)=etu(t)u(t)etu(t)u(ta)1stterm=Rt0edu(t)=[1et]u(t):2ndterm=[1e(ta)]u(ta).y(t)=[1et]u(t)[1e(ta)]u(ta)=RCcircuitpulseresponse. EX#2:Computey(t)=etu(t)t T[u(t)u(tT)].Hint:Notet T[u(t)u(tT)]=1 TRt0[u(t)u(tT)T(tT)]dt. Sol'n:Abusingnotationforclarityandusing#3andEx#1above,wehavey(t)=Rt0[etu(t)1 T[u(t)u(tT)T(tT)]]dty(t)=1 TRt0[1et]dtu(t)1 TRtT[1e(tT)]dtu(tT)RtTe(tT)dtu(tT)y(t)=1 T[t+et1]u(t)1 T[(tT)+e(tT)1]u(tT)+[e(tT)1]u(tT)ComparetoSolimanandSrinathp.60{yes,theyDOagree(tryit!).