/
1476J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis 1476J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis

1476J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis - PDF document

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
363 views
Uploaded On 2016-07-07

1476J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis - PPT Presentation

theCbalanceoftheseecosystemsMoore2002Pageetal2002Despitetheirprovenroleinpastandpresentglobalcoolingandtheirpotentialforlargepositivefeedbackstotheclimatesystemthroughsequestrationandemissionof ID: 394188

theCbalanceoftheseecosystems(Moore 2002;Pageetal. 2002).Despitetheirprovenroleinpastandpresentglobalcoolingandtheirpotentialforlargepositivefeedbackstotheclimatesystemthroughsequestrationandemissionof

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "1476J.Limpensetal.:Peatlandsandthecarbon..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1476J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis theCbalanceoftheseecosystems(Moore,2002;Pageetal.,2002).Despitetheirprovenroleinpastandpresentglobalcoolingandtheirpotentialforlargepositivefeedbackstotheclimatesystemthroughsequestrationandemissionofgreen-housegases,peatlandsarenotexplicitlyincludedinglobalclimatemodelsandthereforeinpredictionsoffutureclimatechange(IPCC,2007).InApril2007asymposiumwasheldinWageningen,theNetherlands(Wiederetal.,2007),toadvanceourunder-standingofpeatlandCcyclingthroughintegrationacrossdisciplinesandresearchapproaches,andtodevelopamoresyntheticpictureofthepresentandfutureroleofpeatlandsintheglobalCcycleandtheirinteractionswiththeclimatesystem.Thispaperaimstosynthesizethemainndingsofthesymposium.Withaprocessbasedapproachwehopetocontributetotheintegrationofresearchresultsacrosspeatlandtypesandcli-maticzones,improvingfuturepredictionsoftheresponseofthepeatlandCbalancetoenvironmentalandclimatechange.Thispaperpresentsanewsynthesison(i)small-scalepro-cesses,(ii)Cuxesatthelandscapescale,and(iii)peatlandsinthecontextofclimatechange.Thepaperconcludeswithdirectionsfornewresearchtoreducekeyuncertaintiesinourknowledgeinordertofacilitatetheexplicitinclusionoftheseecosystemsinanewgenerationofearthsystemmodels.1.1GeneralisationsaccrosspeatlandtypesThenecessityoffocusingonprocessesbecomesclearwhenweconsiderthelargevariationinpeatlandtypes.Peatlandscomprisemanydifferentecosystems(RydinandJeglum,2006)withandwithoutatreeand/ormosslayer.Fortunately,therearesomeunifyingconceptsthatapplyacrossdifferentpeatlandtypesalthoughSphagnum-dominatedpeatlandsarethemoststudiedcomparedtootherpeatlandtypes.There-doxpotentialisdecisiveformanybiogeochemicalprocessesinthepeat,andthisislargelygovernedbythepositionofthewatertable.Theupperpeatlayer(about5–40cm)isun-saturatedwithwaterandoxicduringthegrowingseasonandsupportsmostbiologicalactivity,whereasthelayerbelowiswaterloggedandanoxic.Theoxic-anoxicboundaryshiftsasaresultofwatertableuctuations.Anotherkeydistinc-tionismadeonthedominantwatersourceinuencingtheorganicsoillayer.Peatlandsthatreceivemostoftheirwaterfromprecipitationarereferredtoasombrotrophicpeatlandsorbogs,whereaspeatlandsthataremainlyfedbywaterthathasbeenintocontactwiththemineralsoilarereferredtoasminerotrophicpeatlandsorfens.2Smallscaleprocessesandplant-soilfeedbacksUnderstandingthemechanismscontrollingaerobicandanaerobicrespirationatsmallspatialscalesisparticularlyimportantforimprovingourpredictionsofpotentialeffectsofclimatechangesandperturbationsonpeatlandCux.Anexampleofakeyprocessisnitrogen(N)fertilizationduetoanthropogenic-drivenNdeposition.Feedbacksbetweenveg-etation,soilphysicalprocessesandaerobicandanaerobicrespirationwillfurtherhelpunderstandingthehighspatialandtemporalvariabilityofpeatlandCuxestowaterwaysandtheatmosphere,inparticulartheproductionandoxida-tionofCH4(Sects.3and4)andgenerationandexportofdissolvedorganiccarbon(DOC,Sects.3and4).2.1BiogeochemistryThedecompositionofcomplexorganicmattertonalprod-ucts,i.e.CO2,CH4andDOC,istheresultofacloseinterac-tionofmicroorganismactivity,physicallycontrolledtrans-portprocessesofelectronacceptorsandnutrients,andthequalityoftheorganicmatteritself.Iaddition,thedecompo-sitionprocessisregulatedbytheavailabilityandefciencyofextracellularenzymes,whichbreakdowncomplexbio-moleculesintomonomersthatcanbeutilizedbymicroor-ganisms.Changesintheenvironmentcaneitherdirectlyaf-fectmicrobialactivitybyactingontheavailabilityofnu-trientsandelectronacceptorsorindirectlythroughchangesinvegetationorsoilphysicalstructure.Directimpactsare,forexample,causedbythedepositionofNandsulphur(S),oroxygenationafterwatertabledraw-downduringsummerdrought.Indirectimpactscomprisethechangetowardsplantspecieswithmoredecomposablelitterormorerootexudates(seeSect.2.2).2.1.1BiogeochemicalprocessesanddriversBelow-groundCcycling,irrespectiveofpeatlandtype,canbeconceptualizedintermsofelectrontransferprocesses(Fig.1a).Primaryproductionprovidesreducedcompoundsthatareburiedaslitterorreleasedbelow-groundbyvascularroots,creatingaredoxgradienttotheatmosphere.Thisgra-dientresultsinO2transferbygasdiffusion,advectionandaerenchymatictransportinrootsandalsoinuencesbelow-groundoxygen(O2/consumptionitself(ShannonandWhite,1994;ChantonandWhiting,1996).Oxidativecapacitycanfurtherbestoredintheformofnitrate,ferricironhydroxides,sulfate(SO4/,andhumicsubstancesthatcanbeusedasal-ternativesforO2inheterotrophicrespiration.Whichoxidantisusedbytheresidentmicrobialcommunityisbroadlyregu-latedbydifferencesintheGibbsfreeenergyoftherespectiverespirationprocesses(Fig.1d)andtheconcentrationsofelec-tronacceptorsanddonors(Achtnichetal.,1995;KellerandBridgham,2007).Inpeatlands,electrontransferprocessesproceedinastronglyverticallystructuredenvironment,whichisillus-tratedinFig.1b.Fromthepeatsurfacedownwardsfourmaincharacteristicschange:(1)therelativeimportanceofrootrespirationversusheterotrophicrespirationdecreaseswithdepth.Finerootsofshrubs,forexample,arelargely Biogeosciences,5,1475– 1491 ,2008www.biogeosciences.net/5/1475/2008/ J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis1479 2.2Vegetation-mediatedfeedbacksAtanecosystemscale,waterlevelandpHcontrolthevegeta-tioncomposition.InturnthevegetationcompositionaffectstheCbalancethroughitseffectsonnetprimaryproductivity(NPP),theamountandratioofCO2:CH4releasedintotheatmosphereandpeatphysicalproperties(Fig.5).Asplantsandvegetationtypesgenerallyformeasilyrecognizableunitsforbothland-basedandairborneassessmentsandarecloselycoupledtosoilprocesses,vegetationchangesarebothconve-nientpredictorsforenvironmentalchangestocomeaswellasmonitoringtoolsforchangesunderway.Plantsdifferinimportantcharacteristicssuchaspro-ductivity,litterdecomposabilityandassociationwithfungiwhichinturnaffectstheCbalanceofpeatlandsatlocaltoecosystemscales.Thisresultsinanumberofvegetation-biogeochemistryfeedbacks:(1)Thereisageneraltrade-offbetweenhummockandhollowinhabitingSphagnumspecies,withlowerdecomposabilityamongtheformer,andhigherproductivityamongthelatter(Rydinetal.,2006);(2)Om-brotrophicgrowingSphagnumspeciesareusuallydifculttodecomposecomparedwithmostco-inhabitingvascularplants(LimpensandBerendse,2003;Dorrepaaletal.,2005);(3)ThedecreaseinlitterC:NratiofollowingfromNdepo-sitionmayenhancedecomposition(LimpensandBerendse,2003;Bragazzaetal.,2006);(4)Plantsproducepeatwithdifferentstructureandhydraulicconductivity,featuresthatinturnaffectredoxstatusandotherphysico-chemicalcon-ditions.Forinstance,forthesamedegreeofhumica-tion,thehydraulicconductivitygenerallyincreasesintheor-derSphagnumpeatCarexpeatwoodypeat(P¨aiv¨anen,1982);(5)Plantdifferintherateanddegradabilityoftheir(root)exudates(CrowandWieder,2005);and(6)Anin-creasingsedgeorgraminoidcoverwillincreaseCH4emis-sionthroughaerenchymatictissue(Thomasetal.,1996;Nilssonetal.,2001).Onthewhole,thevegetationthatdominatesapeatlandwillnotonlyaffectphotosyntheticandrespirationrates,butalsotheamountofCavailableformobilisationasDOCfromthepeatland.Forexample,vegetationtypesinAlaskamaybemoreimportantthanregionalclimateindeterminingDOCuxesfrompeatlands(NeffandHooper,2002).Figure2presentsresultsfromasurveyacrossUKblanketpeatsshow-ingthatDOCconcentrationsaresignicantlygreaterwherewoodyCallunadominateswhencomparedtoEriophorum-dominatedsitesorSphagnum-Eriophorumsites.Finally,large-scalechangesinshrubandtreecover,goingfromtundratotaiga(Chapinetal.,2005)orfromtaigatobog(Vygodskayaetal.,2007),involvesmarkedchangesinalbedo,inturnaffectingtheamountofsolarenergyabsorbedbythesoil,withimportantpotentialfeedbackstopermafrostdepthandlocalwatertable. Fig.2.DOCconcentrationsinstreamwaterfromUKblanketpeat-landcatchments(meanSE)dominatedbyparticularvegetationtypes.Noburningoccurredonthecatchmentsusedtoderivedatainthegure.CollectionofthedatawasperformedbyDr.AlonaArmstrongandwasfundedbyYorkshireWater. 2.2.1VegetationresponsestoenvironmentalchangeApartfromtheobviousdestructionofpeatlandsbydrainage,climaticchangesthataffectwateravailabilityare,togetherwithNdeposition,themostimportantfactorsalteringpeat-landvegetationintemperateandborealregions.Thereisquiteagoodunderstandingfromecologicalexperimentshowdifferentpeatlandplantspeciesreacttowatertableposi-tion,wetness(RydinandJeglum,2006)andNdeposition(Limpensetal.,2006).Precipitationfrequencyduringthegrowingseasonisaparticularlyimportantfactorincontrol-lingSphagnumphotosynthesis(Robroeketal.,2008),whichconstitutesanimportantpartoftheNPPinmanypeatlands.Ingeneral,decreasingwetnessduringthegrowingseasonaswellasincreasesinNdepositionstimulatevascularplantgrowthatthecostofSphagnum,withthemagnitudeofef-fectsgreatlydependingonthestartingconditions.TheshiftfromaSphagnumdominatedtovascularplantdominatedvegetationtypecoincideswithincreasesinlitterdecom-posability(Dorrepaaletal.,2005),heterotrophicrespiration(Bubieretal.,2007),hydrologicalconductivityoftheupperpeatlayer(BelyeaandBaird,2006)andageneraldeclineofCsequestrationinthelongerterm.Thefuturechallengeistounderstandhowvariousclimatescenariosaffectthewet-nessofthepeatlands,andhowthisinturnleadstovegetationchangesthroughdifferentialgrowthandinterspeciccom-petition.HowthelatterisaffectedbydifferentNdepositionloadsisparticularlyofinterestinareaswithNdepositionincreasingabovec.1–1.5gm�2yr�1.Thisresearcheld,requiringdynamicvegetationmodelsthatallowforcontin-uousfeedbacksbetweenvegetationandenvironment,isjuststartingtoemerge(Heijmansetal.,2008;St-Hilaireetal.,2008).Ndepositionabovec.1–1.5gm�2yr�1generallyin-creasesvascularplantcover,anddecreasesSphagnumcover,althoughchangesmaybeslow,andexperimentallydifcult www.biogeosciences.net/5/1475/2008/Biogeosciences,5,1475– 1491 ,2008 J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis1481 Fig.3.Anaturalpeatlandpipeshowing(A)theoutletonastreambank(withcompassforscale)and(B)theinternalfeaturesofthepipechannelwhichis27cmtall. thatover30%ofrunoffinfensandblanketpeatsintheUKmovesthroughmacropores,resultinginwaterandnutrientsbeingtransferredbetweendeepandshallowlayersofthepeatprole.Thereisevenatheorythatpipescanexplainsomeoftheadditionaldegassingfrombogpoolsthatdoesnotseemtobeaccountedforbybogpoolsizealone.Manydrainedpeatpoolshavebeenfoundtohaveanaturalpeatpipeontheiroororwall(Rapsonetal.,2006).Whatisoftenignoredonalandscapescaleisthevariabil-ityinwatertableandrunoffthatcanoccurwhereverpeat-landsaresubjecttoanysignicanttopographicvariation.Underestimatedisalsothespeedwithwhichthedominantoverlandandnear-surfaceowinmanypeatlandsmayaccel-eratepeatexposureafterdegradationofthevegetationcover,resultinginenhancedPOCefuxandreducedNPPasare-sultofvegetationloss(Holdenetal.,2007a).3.1.1DOCuxesDOCisimportantinpeatlandsbecauseanychangeintheuxofDOCwillresultinasignicantregionalredistribu-tionofterrestrialC.Indownstreamecosystems,DOCexertssignicantcontroloverproductivity,biogeochemicalcyclesandattenuationofvisibleandUVradiation(Pastoretal.,2003).Inaddition,DOCimpactswaterqualityintermsofcolor,taste,safety,andaestheticvalue,aswellasalteringtheacid-baseandmetalcomplexationcharacteristicsofsoilwa-terandstreamwater.TogetherwiththeClossesconsiderablenutrientexportmayoccuraswell,potentiallyincreasingim-pactsonaquaticdiversitydownstream(Waldronetal.,2008).DOCaccumulatesinpeatporewatersandisushedoutbywatermovement,withconcentrationsoftengreatestfollow-ingperiodsofwarm,dryconditionswhenDOChashadtimetoaccumulate.DOCconcentrationsareusuallybetween20and60mgl�1innorthernpeatlands(Blodau,2002)butcon-centrationsarehigherduringlowowperiods.DespitethisthetotaluxofDC(DC=DOC+DIC)exportedislikelytobehigherduringstormowsbutmanysamplingpro-grammesdonottakethisintoaccount(Schiffetal.,1998).Recentstronginterestinwater-borneCexportsfrompeat-landshasfocusedmainlyonconcentrationsanduxesofC,especiallyDOCwithinthedrainagesystemofpeatdomi-natedcatchments(Dawsonetal.,2002;Billettetal.,2006).Buffametal.(2007)reportedDOCexportfor15Swedishpeatlandstreamsat2–10gCm�2yr�1whileDICwasbe-tween0.2and2gCm�2yr�1.However,westillknowlit-tleaboutwhatcontrolsthetransportofDOCandparticulateCreleasewithinpeatlandsthemselvesandthehydrologicalprocessesleadingtotheirdeliverytorivers.3.2Land-atmosphereCuxesThemassexchangeofCbetweenpeatlandsandtheatmo-sphereisdominatedbytheuxesofCO2andCH4,butbe-causeofthedifferentradiativepropertiesofCO2andCH4themuchsmallermassexchangeofCH4canhaveadispro-portionaleffectonclimateforcing.3.2.1NetEcosystemExchangeofCO2(NEE)NEEfrombogs,asdeterminedbyeddyco-variancesystems,rangesfromanetlossof�100gCm�2yr�1forapermafrostdominatedSiberianbog(Friborgetal.,2003)andRussianEuropeanborealbogs(Arnethetal.,2002)tolargeuptakesofabout90gCm�2yr�1(Almetal.,1997).However,moststudiesreportmeanannualNEEinamuchsmallerrangewithmultipleyearaveragesbetween20and60gCm�2yr�1(SottocornolaandKiely,2005;Dunnetal.,2007;Rouletetal.,2007).TheNEEfromminerotrophicpeatlands(fens),particularlymineralpoorfens,showsasimilarrangeandin-terannualvariabilityasthatofbogs(Shurpalietal.,1995;Joineretal.,1999;Aurelaetal.,2001,2007).Whileallthesestudiesshowlargedifferencesamongyearsandpeat-landtypesinannualNEEtheobservedrangesarerelativelysmallerthanthoseobservedamongothermajorecosystemtypes.Humphreysetal.(2006)didacomparativeanalysisofNEEfromsevencontrastingbogsandfensandfoundthat,despitelargedifferencesinwatertabledepth,waterchem-istry,andplantcommunitystructure,thatthesummerdailyNEEwasabout1.5gCm�2yr�1forallpeatlands.Thisre-sultimpliesthatthedifferencesincumulativeannualNEEbetweenindividualpeatlandsaremoreafunctionofbroadscalegeographiclocationandphysicalsettingratherthaninternalfactorssuchasthehydrology,communitystruc-tureandbiogeochemistry.Morelong-termandcontinuousrecordsofNEEforawiderrangeofpeatlandtypesandge-ographicallocationsarerequiredtosupporttheabovecon-clusion.AnanalysisbyLindrothetal.(2007)forfourdiffer-entpeatlandsinSwedenandFinlandshowsthatphotosyn-theticradiation(PAR)wasthedominantcontrolonthegrossandnetuptakeofCO2.Frolkingetal.(1998)foundthatin www.biogeosciences.net/5/1475/2008/Biogeosciences,5,1475– 1491 ,2008 1482J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis comparisonwithotheruplandecosystems(e.g.closedforest,grasslandsandcroplands),oneNEE-PARrelationshipwithsmallerecosystemrespirationandNEEratesappliedtothetwobroadgroupsofombrotrophicandminerotrophicpeat-lands.Atalandscapescale,internalfactorssuchasmois-ture,temperature,vegetationcompositionandnutrientstatusallseemtoplaysecondaryroles.ThismaybepartlyduetotheconfoundingeffectsthatsomeenvironmentalfactorshaveonthecomponentsofNEE.Amodestincreaseintem-perature,forexample,maybothstimulateCassimilationandCrespiration,diminishingorevencancellingoutitsnetef-fectonNEE.IfitisconrmedthattherangeofNEEamongpeatlandtypesismuchsmallerthaninitiallyexpectedthenitwillsimplifythetaskofmodelingpeatlandCO2exchangeatcoarsescalesinglobalmodels.3.2.2ExchangeofCH4betweenpeatlandsandtheatmo-sphereTherearemanycomprehensivereviewsofCH4uxfrompeatlands(Mooreetal.,1998).Theseshowthatthetem-poralandspatialvariabilityofCH4exchangeismuchmorevariable,byseveralordersofmagnitude,thanthatofpeat-landCO2-NEE.Drierbogswithpersistentlylowwaterta-bles,withorwithoutpermafrost,haveverysmallCH4uxoflessthan1gCm�2yr�1(Rouletetal.,2007;Christensenetal.,2004)whilewetterbogscanhaveintermediateuxesof5–8gCm�2yr�1(Laineetal.,2007).Inwetterfens,particu-larlywhenthereissignicantcoverofsedges,theannualuxcanexceed15gCm�2yr�1(Shurpalietal.,1993;Suykeretal.,1996).Inaboreallandscape,Bubieretal.(2005)estimatedaregionalCH4uxof7gCm�2yr�1,buttheuxesfromindividualpeatlandstypesdifferedbyafactor10ormore(seealsoSchrieretal.,2008).Backcalculat-ingfromtherecentestimatesoftheatmosphericburdenofCH4fromhighlatitudewetlands(8–201012gCH4yr�1,MikaloffFletcheretal.,2004;ChenandPrinn,2006)yieldsanaverageemissionof2–5gCm�2yr�1.3.3Puttingtheuxestogether:theannualCbudgetofpeat-landsThereareveryfewexamplesofnetecosystemCbalances(NECB)forpeatlands,whereboththeatmosphericuxesofCO2andCH4andthewaterborneuxesofDOC,POCandDIChavebeenmeasuredatthesametime.InthisassessmentoftheCbalanceofapeatlanditisimportanttobeveryclearontheterms.NECBrequiresacleardenitionofterminol-ogyandweadoptinthispapertheterminologydiscussedbyLovettetal.(2006)andChapinetal.(2006):1orgC(Lovettetal.,2006)orNECB(Chapinetal.,2006)istheaccumula-tionofCinthesedimentsofanecosystemafteralltheinputsandoutputsarebalanced.TheNECBfornorthernpeatlandsfrommeasurementsisquiteconservativerangingbetween10to30gCm�2yr�1.NEEisthelargesttermrangingbetween0and100gCm�2yr�1inputsandtheapproximatelossesviatheCH4uxandDCrangerespectivelybetween0and12,and2and70gCm�2yr�1(Fig.4).However,thehighendoftherangeofDCexportcomesfrompeatlandsthathavebeendisturbedorusedextensivelythroughoutpartoftheirhistoryforgrazingand/orsubjectedtootherformsofland-use(Wor-ralletal.,2003).ExaminingtheNECBwithallitstermsmakesitclearthattheexclusionofCH4andDClossescouldleadtoanerrorinexcessof100%.ThismeansnotonlydoestheCH4andDCuxneedtobemeasuredbutthesimulationoftheresponseofnorthernpeatlandstoenvironmentalchangeswillalsoneedtoincludetheselossmechanismstomakethepredictionsofuse.3.4PerturbationsMainperturbationsofpeatlandCstorageandsequestrationinvolvelarge-scaleland-usechanges,particularlyforthetropicalpeatlands,changesinaerialnutrientinput,suchasNforthetemperatepeatlands(discussedinSect.2.2)andclimatechangeforpeatlandsinthenorthernhighlatitudes.Furthermore,combinedperturbationsmayhaveanadditionalaggravatingeffect,leadingtohigherlossesthanexpectedfromeachdisturbanceseparately.Fortropicalpeatlands,forexample,theinteractionbetweendrought(broughtbytheSouthernOscillation),deforestation,andreisrespon-sibleforthedramaticlossesofCtotheatmosphere.Like-wise,feedbacksbetweenpermafrostmelting,re,vegetationchangesandtheireffectsonalbedomayhavefar-reachingconsequencesforsoilCstoresinpermafrostpeatlandsattheothersideoftheequator.3.4.1LandusechangesCurrently,peatlandsinmanypartsoftheworldareun-dergoingmajortransformationduetohumanalteration,of-teninvolvingdrainageandburning,particularlypeatswampforestsinSoutheastAsia.Thesepeatlandsstoreatleast42Pg(1Petagram=1015g)ofsoilCbutareincreasinglyun-derthreatfromdrainageandresassociatedwithplantationssuchaspalmoilcrops(Pageetal.,2002)andAcaciaforpulp.Hooijeretal.(2006)estimatedthatcurrentCO2emissionre-sultingfromthedestructionofpeatlandsinSoutheastAsia(90%emittedbyIndonesia)throughdrainageandburningaloneisequalto8%ofglobalfossilfuelemissions.Further-more,theburningofpeatandvegetationinIndonesiaduringtheElNi˜no-SouthernOscillation(ENSO)in1997releasedanestimated0.81–2.57PgC,anequivalentamountof13to40%ofthemeanannualglobalCemissionsfromfossilfuels(Pageetal.,2002).Manytemperatepeatlandshavebeendrainedforcommer-cialexploitationsuchasagriculture,forestryormorere-centlywindmillfarming(Waldronetal.,2008).Thishasresultedinprofoundeffectsonpeatlandbiogeochemistry, Biogeosciences,5,1475– 1491 ,2008www.biogeosciences.net/5/1475/2008/ 1484J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis 1998).TheeffectsofpermafrostthawingonpeatlandC-accumulationisequallyuncertain.Ontheonehandthewaterreleasedbythemeltingoftheicemayincreasewaterresi-dencetime(seeSect.2.1.3),promotingpeatformationandthuslocalC-accumulationbutincreasingCH4emission.In-deed,theC-sequestrationrateofcollapsescarsisamongthehighestreportedforpeatlands(Meyers-Smithetal.,2008).Ontheotherhand,ifthepermafrostlayeractsasawaterim-permeablelayer,thethawingwillleadtodrainage,stimulat-ingdecompositionprocesses(seeSect.2.1.3).Inpeatlandswithdiscontinuouspermafrost,severereeventsmaycon-tributetopermafrostthawingleadingtomorepermanentveg-etationchanges,potentiallyincreasingC-accumulationinthelongerterm(Kuhry,1994;Myers-Smithetal.,2008;Schuuretal.,2008).3.4.3RestorationManydegradedpeatlandsarethesubjectofrestorationprojects.Managementpracticesarevariedbutincluderais-ingthewatertablethroughgullyandditchblocking(Evansetal.,2005)andreseedingorplantingbaresurfaces(Petroneetal.,2004).ThesemanagementinterventionscanhaveanimmediateimpactontheexportofCtostreamsandrivers.Holdenetal.(2007b)forexample,demonstratedanalmosttwoordersofmagnitudedecreaseinPOCexportforarestorationprojectinnorthernEnglandwhileWallageetal.(2006)andWorralletal.(2007)haveshownthatDOCuxesaresignicantlyreducedthroughdrainblockingandwatertablerecovery.Quickre-vegetationofdegradedpeatisoftenpossibleandpeatformationcanbefastingulliesanddrains,evenwithoutwatertablerestorationmeasures,therebystillhavingpositiveeffectsonecosystemCstorage(EvansandWarburton,2007).Re-vegetationoutsidegulliesisoftenaimedatrestoringavascularplantcover(oftenEriophorumsp.),orapplyingalayerofstrawmulchtoprovideasuitablemicroclimateforSphagnummossestore-establish(Grosvernieretal.,1995;Rochefortetal.,2003).Thiscreatesnewbiomassbutalsoprimesthepeatthroughinputoffreshorganicmatter,leadingtoatransientincreasesinpeatdecompositionandincreasedmethaneemissionrates(Chojnickietal.,2007),beforethenormalcoverofmossesandshrubsdevelops.4PeatlandsandclimateClimatechangeislargelydrivenbytheaccumulationofCintheatmospherewhichisthenetbalancebetweenemis-sionsfromhumanactivitiesandtheremovalofCbynaturalsinksonlandandintheocean.Overthelast50years,theefciencyofnaturalCO2sinkshasbeendeclining(Canadelletal.,2007)andmodelprojectionsshowafurtherdeclinethroughoutthe21stcentury(Friedlingsteinetal.,2006).HighlatitudeandtropicalpeatlandshavebeenidentiedaspotentialkeyvulnerabilitiesoftheterrestrialCcyclelikelytoleadtopositivefeedbackstoclimatechange(Freemanetal.,1993;Fenneretal.,2005;Canadelletal.,2004).GlobalwarmingforthehighlatitudepeatlandsanddeforestationintropicalpeatlandsaremajordriversofthenetCbalanceoftheseregions.4.1Modellingvegetation–climatefeedbacksOverthelasteightyearstherehasbeenconsiderableefforttocoupleglobalclimatemodelswithglobalCmodelstoexam-inethemagnitudeandrateofpotentialfeedbacksasaresultofchangesinthecyclingofCintheterrestrialbiosphereandtheoceans.Untilnow,allthesimulationsagreeonapos-itivefeedbackbetweentheterrestrialbiosphere,theoceansandclimate.Thestrengthofthisfeedback,however,variesconsiderably,andresultsrangebetween20and200ppmofadditionalatmosphericCO2by2100,usingtheA2-IPCCemissionscenario(Friedlingsteinetal.,2006).Climate-carbonmodelersacknowledgethattherearemajorcompo-nents,suchasdynamicland-usechange,Ncycling,re,andwetlandsthatcanleadtolargefeedbacksbutarecurrentlyignored.Theuncertaintyintheprojectionscausedbytheseomissionsisconsiderable.Recentcarbon-nitrogen-climatesimulationsforexampleshowthatresultsaredramaticallydifferentbetweenrunsthatincludeNandthosethatdonot(Thorntonetal.,2007).IfNavailabilityisincluded,theca-pacityoftheterrestrialbiospheretotakeupCandrespondtochangesintemperatureandprecipitationvariationsisre-duced,makingthecarbon-climatefeedbackmorepositive.Thefeedbackpotentialofwetlandsisequallylarge.Apre-liminaryestimatesuggeststhatupto100PgCofCO2equiv-alentscouldbereleasedtotheatmospherefromwetlandsandpeatlandsoverthenext100years(Gruberetal.,2004).4.1.1IncludingpeatlandsinearthsystemmodelsTheinclusionofwetlands,particularlypeatlands,inglobalmodelsisseverelyconstrainedbythewayhydrologyistreatedbythemodels,andlessbytheuncertaintyconcerningtheirexactlocation(Krankinaetal.,2008).Ingeneral,theyareconcentratedinareaswhereprecipitationexceedsevapo-transpiration.However,theactualhydrologyofwetlandsthatcontrolsecosystemstructureandfunctionislargelyafunc-tionofphysicalsetting,substrates,andtopographiclocationatalandscapelevel.Atpresent,thesefactorsaretoolocaltobeincluded,andtheresearchcommunityisstillsearchingforanadequatewaytoparameterizetheissue.Therehavebeenattemptstouseatopographicwetnessindextosimu-latenorthernpeatlanddistribution(Kirkbyetal.,1995)andthishasbeenextendedgloballybyGedneyandCox(2003).However,thisapproachonlysimulateswheresurfacesatura-tionoccurs,whereasmuchofthebiogeochemicalprocessesinwetlandsareafunctionoftheseasonalwatertablechangesoverarangeof0.3–0.4m(Mooreetal.,1998). Biogeosciences,5,1475– 1491 ,2008www.biogeosciences.net/5/1475/2008/ 1486J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis 5.1Waysforward – Betterunderstandingofthecouplingbetweensoilphys-icalstructureandaerobicandanaerobicrespiration,withfurthermodeldevelopmentatlocalandregionalscales. – DetermininghowvegetationchangealterstheCcy-cleandCmobilizationindifferentforms(DOC,POC,gases). – Understandinghowvariousclimatescenarioswillaffectthehydrologyofpeatlands,andhowthiswillleadtovegetationchangesandassociatedchangesinCuxesandstocks. – Analyzingandestablishingprocessstudiesincombina-tionwithecosystemuxmeasurementstounderstandthekeycontrolsonuxesinandoutoftheecosystems(watertable,temperature,etc.). – IncorporatinginbiogeochemicalmodelskeyprocessescontrollinglandscapeCuxessuchasresregimesandvegetationshifts. – IdentifyingpossiblethresholdsinCdynamicsofpeat-landstopreventlargescalevulnerabilityofCstocksandassociatedpositivefeedbackstotheclimatesystem. – DeterminingamoreaccurateglobalrepresentationofthespatialdistributionofC-poolsandstocksinpeat-lands,withparticularfocusonpeatdepth,peatbulkdensityandthedifferentiationbetweenombrotrophicandminerotrophicpeatlands. – Includingthetreatmentoforganicsoils,andparticularlypeat,intheCcyclecomponentsoffullycoupledclimatemodels. Acknowledgements. WeareindebtedtotheEditorsofBiogeo-sciencesfortheircontinuoussupportinputtingtogetherthisspecialissue.WeacknowledgePeatnet( www.peatnet.siu.edu )andtheGlobalCarbonProject( www.globalcarbonproject.org )forco-sponsoringtheFirstInternationalSymposiumonCarboninPeatlandsheldinWageningen,theNetherlands,inApril2007,andfortheirnancialcontributiontothisspecialissue.Finally,wethanktwoanonymousreviewersandTimMooreforhelpfulcommentstoimprovetherstdraft.Editedby:T.LaurilaReferences Achtnich,C.,Bak,F.,andConrad,R.:Competitionforelectron-donorsamongnitratereducers,ferricironreducers,sulfatere-ducers,andmethanogensinanoxicpaddysoil,Biol.Fert.Soils,19,65–72,1995. Albers,D.,Migge,S.,Schaefer,M.,andScheu,S.:Decomposi-tionofbeechleaves(Fagussylvatica)andspruceneedles(Piceaabies)inpureandmixedstandsofbeechandspruce,SoilBiol.Biochem.,36,155–164,2004. Alm,J.,Talanov,A.,Saarnio,S.,Silvola,J.,Ikkonen,E.,Aaltonen,H.,Nykanen,H.,andMartikainen,P.J.:Reconstructionofthecarbonbalanceformicrositesinaborealoligotrophicpinefen,Finland,Oecologia,110,423–431,1997. Arneth,A.,Kurbatova,J.,Kolle,O.,Shibistova,O.B.,Lloyd,J.,Vygodskaya,N.N.,andSchulze,E.D.:Comparativeecosystem-atmosphereexchangeofenergyandmassinaEuropeanRussianandacentralSiberianbogII.Interseasonalandinterannualvari-abilityofCO2uxes,TellusB,54,514–530,2002. Asplund,D.:Energyuseofpeat,in:PeatlandsinFinland,editedby:Vasander,H.,FinnishPeatlandSociety,Helsinki,107–113,1996 Aurela,M.,Laurila,T.,andTuovinen,J.P.:SeasonalCO2balancesofasubarcticmire,J.Geophys.Res.-Atmos.,106,1623–1637,2001. Aurela,M.,Riutta,T.,Laurila,T.,Tuovinen,J.P.,Vesala,T.,Tuit-tila,E.S.,Rinne,J.,Haapanala,S.,andLaine,J.:CO2exchangeofasedgefeninsouthernFinland–theimpactofadroughtpe-riod,TellusB,59,826–837,2007. Backeus,I.:Bogvegetationre-mappedafter60years–studiesonSkagershultamossen,centralSweden,Oikos,23,384–393,1972. Baird,A.J.:Fieldestimationofmacroporefunctioningandsurfacehydraulicconductivityinafenpeat,Hydrol.Process.,11,287–295,1997. Bay,R.R.:Runofffromsmallpeatlandwatersheds,J.Hydrol.,9,90–102,1969. Beer,J.andBlodau,C.:Transportandthermodynamicsconstrainbelowgroundcarbonturnoverinanorthernpeatland,Geochim.Cosmochim.Ac.,71,2989–3002,2007. Benoit,R.E.andStarkey,R.L.:Inhibitionofdecompositionofcelluloseandsomeothercarbohydratesbytannin,SoilSci.,105,291–296,1968. Berendse,F.,VanBreemen,N.,Rydin,H.,Buttler,A.,Heijmans,M.,Hoosbeek,M.R.,Lee,J.A.,Mitchell,E.,Saarinen,T.,Vasander,H.,andWallen,B.:RaisedatmosphericCO2levelsandincreasedndepositioncauseshiftsinplantspeciescompo-sitionandproductioninSphagnumbogs,Glob.ChangeBiol.,7,591–598,2001. Belyea,L.R.andBaird,A.J.:Beyondthelimitstopeatboggrowth:cross-scalefeedbackinpeatlanddevelopment,Ecol.Mon.,76,299–322,2006. Billett,M.F.,Deacon,C.M.,Palmer,S.M.,Dawson,J.J.C.,andHope,D.:Connectingorganiccarboninstreamwaterandsoilsinapeatlandcatchment,J.Geophys.Res.-Bio.,111,G02010,doi:10.1029/2005JG000065,2006. Blodau,C.:Carboncyclinginpeatlands–areviewofprocessesandcontrols,Environ.Rev.,10,111–134,2002. Blodau,C.,Basiliko,N.,andMoore,T.R.:Carbonturnoverinpeatlandmesocosmsexposedtodifferentwatertablelevels,Bio-geochemistry,67,331–351,2004. Biogeosciences,5,1475– 1491 ,2008www.biogeosciences.net/5/1475/2008/ J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis1487 Blodau,C.,Roulet,N.T.,Heitmann,T.,Stewart,H.,Beer,J.,Laeur,P.,andMoore,T.R.:Belowgroundcarbonturnoverinatemperateombrotrophicbog,GlobalBiogeochem.Cy.,21,GB1021,doi:10.1029/2005GB002659,2007. Bragazza,L.,Freeman,C.,Jones,T.,Rydin,H.,Limpens,J.,Fen-ner,N.,Ellis,T.,Gerdol,R.,Hajek,M.,Lacumin,P.,Kutnar,L.,Tahvanainen,T.,andToberman,H.:AtmosphericNdepositionpromotescarbonlossfrompeatbogs,P.Natl.Acad.Sci.USA,103,19386–19389,2006. Bubier,J.,Moore,T.,Savage,K.,andCrill,P.:Acom-parisonofmethaneuxinaboreallandscapebetweenadryandawetyear,GlobalBiogeochem.Cy.,19,GB1023,doi:10.1029/2004GB002351,2005. Bubier,J.L.,Moore,T.R.,andBledzki,L.A.:Effectsofnutrientadditiononvegetationandcarboncyclinginanombrotrophicbog,Glob.ChangeBiol.,13,1168–1186,2007. Buffam,I.,Laudon,H.,Oquist,M.,Wallin,M.,Agren,A.,andBishop,K.:SpatialandtemporaldynamicsofuvialCexportfromSwedishborealpeatlands,in:Proceedingsofthe1stInter-nationalSymposiumonCarboninPeatlands,Wageningen,TheNetherlands,15–18April,2007,p.29,2007. Burke,R.M.andCairney,J.W.G.:Laccasesandotherpolyphenoloxidasesinecto-andericoidmycorrhizalfungi,Mycorrhiza,12,105–116,2002. Buytaert,W.,C´elleri,R.,DeBievre,B.,Cisneros,F.,Wyseure,G.,Deckers,J.,andHofstede,R.:HumanimpactonthehydrologyoftheAndeanp´aramos,Earth-Sci.Rev.,79,53–72,2006. Canadell,J.G.,Ciais,P.,Cox,P.,andHeimann,M.:Quantify-ing,understandingandmanagingthecarboncycleinthenextdecades,Clim.Change,67,147–160,2004. Canadell,J.G.,LeQuere,C.,Raupach,M.R.,Field,C.B.,Buiten-huis,E.T.,Ciais,P.,Camill,P.,andClark,J.S.:Climatechangedisequilibriumofborealpermafrostpeatlandscausedbylocalprocesses,Am.Nat.,151,207–222,1998 Carey,S.K.andWoo,M-K.:Theroleofsoilpipesasasloperunoffmechanism,SubarcticYukon,Canada,J.Hydrol.,233,206–222,2000 Conway,T.J.,Gillett,N.P.,Houghton,R.A.,andMarland,G.:ContributionstoacceleratingatmosphericCO2growthfromeco-nomicactivity,carbonintensity,andefciencyofnaturalsinks,P.Natl.Acad.Sci.USA,104,18866–18870,2007. Chanton,J.P.,Bauer,J.E.,Glaser,P.A.,Siegel,D.I.,Kelley,C.A.,Tyler,S.C.,Romanowicz,E.H.,andLazrus,A.:RadiocarbonevidenceforthesubstratessupportingmethaneformationwithinnorthernMinnesotapeatlands,Geochim.Cosmochim.Ac.,59,3663–3668,1995. Chanton,J.P.andWhiting,G.J.:Methanestableisotopicdistri-butionsasindicatorsofgastransportmechanismsinemergentaquaticplants,Aquat.Bot.,54,227–236,1996. Chapin,F.S.,Woodwell,G.M.,Randerson,J.T.,Rastetter,E.B.,Lovett,G.M.,Baldocchi,D.D.,Clark,D.A.,Harmon,M.E.,Schimel,D.S.,Valentini,R.,Wirth,C.,Aber,J.D.,Cole,J.J.,Goulden,M.L.,Harden,J.W.,Heimann,M.,Howarth,R.W.,Matson,P.A.,McGuire,A.D.,Melillo,J.M.,Mooney,H.A.,Neff,J.C.,Houghton,R.A.,Pace,M.L.,Ryan,M.G.,Run-ning,S.W.,Sala,O.E.,Schlesinger,W.H.,andSchulze,E.D.:Reconcilingcarbon-cycleconcepts,terminology,andmethods,Ecosystems,9,1041–1050,2006. ChapinIII,F.S.,Sturm,M.,Serreze,M.C.,McFadden,J.P.,Key,J.R.,Lloyd,A.H.,McGuire,A.D.,Rupp,T.S.,Lynch,A.H.,Schimel,J.P.,Beringer,J.,Chapman,W.L.,Epstein,H.E.,Euskirchen,E.S.,Hinzman,L.D.,Jia,G.,Ping,C.-L.Tape,K.D.,Thompson,C.D.C.,Walker,D.A.,andWelker,J.M.:Roleofland-surfacechangesinarcticsummerwarming,Science,310,657–660,2005. Chen,Y.H.andPrinn,R.G.:Estimationofatmosphericmethaneemissionsbetween1996and2001usingathree-dimensionalglobalchemicaltransportmodel,J.Geophys.Res.-Atmos.,111,D10307,doi:10.1029/2005JD006058,2006. Chojnicki,B.H.,Augustin,J.,andOlejnik,J.:Impactofreoodingongreenhousegasexchangeofdegradedfenpeatlands,in:Pro-ceedingsofthe1stInternationalSymposiumonCarboninPeat-lands,Wageningen,TheNetherlands,15–18April,2007,p.33,2007. Christensen,T.R.,Johansson,T.R.,Akerman,H.J.,Mas-tepanov,M.,Malmer,N.,Friborg,T.,Crill,P.,andSvens-son,B.H.:Thawingsub-arcticpermafrost:Effectsonvegeta-tionandmethaneemissions,Geophys.Res.Lett.,31,L04501,doi:10.1029/2003GL018680,2004. Claus,H.:Laccases:Structure,reactions,distribution,Micron,35,93–96,2004. Clymo,R.S.,Turunen,J.,andTolonen,K.:Carbonaccumulationinpeatland,Oikos,81,368–388,1998. Coles,J.R.P.andYavitt,J.B.:Linkingbelowgroundcarbonalloca-tiontoanaerobicCH4andCO2productioninaforestedpeatland,NewYorkState,Geomicrobiol.J.,21,445–455,2004. Conrad,R.:Contributionofhydrogentomethaneproductionandcontrolofhydrogenconcentrationsinmethanogenicsoilsandsediments,Fems.Microbiol.Ecol.,28,193–202,1999. Cox,P.M.,Betts,R.A.,Jones,C.D.,Spall,S.A.,andTotterdell,I.J.:Accelerationofglobalwarmingduetocarbon-cyclefeed-backsinacoupledclimatemodel,Nature,408,184–187,2000. Crawford,D.L.:LignocellulosedecompositionbyselectedStrep-tomycesstrains,Appl.Environ.Microbiol.,35,1041–1045,1978. Criquet,S.,Tagger,S.,Vogt,G.,Iacazio,G.,andLePetit,J.:Lac-caseactivityofforestlitter,SoilBiol.Biochem.,31,1239–1244,1999. Crow,S.E.andWieder,R.K.:SourcesofCO2emissionfromanorthernpeatland:Rootrespiration,exudation,anddecomposi-tion,Ecology,86,1825–1834,2005. Dawson,J.J.C.,Billett,M.F.,Neal,C.,andHill,S.:Acomparisonofparticulate,dissolvedandgaseouscarbonintwocontrastinguplandstreamsintheUK,J.Hydrol.,257,226–246,2002. Dillon,P.J.andMolot,L.A.:Effectoflandscapeformonexportofdissolvedorganiccarbon,iron,andphosphorusfromforestedstreamcatchments,WaterResour.Res.,33,2591–2600,1997. Dorrepaal,E.,Cornelissen,J.H.C.,Aerts,R.,Wallen,B.,andVanLogtestijn,R.S.P.:Aregrowthformsconsistentpredictorsofleaflitterqualityanddecomposabilityacrosspeatlandsalongalatitudinalgradient?,J.Ecol.,93,817–828,2005. Dunn,A.L.,Barford,C.C.,Wofsy,S.C.,Goulden,M.L.,andDaube,B.C.:Along-termrecordofcarbonexchangeinaborealblackspruceforest:Means,responsestointerannualvariability,anddecadaltrends,Glob.ChangeBiol.,13,577–590,2007. Endo,K.,Hayashi,Y.,Hibi,T.,Hosono,K.,Beppu,T.,andUeda,K.:EnzymologicalcharacterizationofEpoA,alaccase-likephe-noloxidaseproducedbyStreptomycesgriseus,J.Biochem.,133, www.biogeosciences.net/5/1475/2008/Biogeosciences,5,1475– 1491 ,2008 J.Limpensetal.:Peatlandsandthecarboncycle–asynthesis1489 Heitmann,T.,Goldhammer,T.,Beer,J.,andBlodau,C.:Electrontransferprocessesofdissolvedorganicmatterandtheirpotentialsignicanceforanaerobicrespirationinanorthernbog,Glob.ChangeBiol.,13,1771–1785,2007 Holden,J.,Burt,T.P.,andCox,N.J.:Macroporosityandinltra-tioninblanketpeat:Theimplicationsoftensiondiscinltrome-termeasurements,Hydrol.Process.,15,289–303,2001. Holden,J.andBurt,T.P.:Hydraulicconductivityinuplandblanketpeat:Measurementandvariability,Hydrol.Process.,17,1227–1237,2003b. Holden,J.andBurt,T.P.:Runoffproductioninblanketpeatcoveredcatchments,WaterResour.Res.,39,1191,doi:10.1029/2003WR002067,2003a. Holden,J.,Evans,M.G.,Burt,T.P.,andHorton,M.:Impactoflanddrainageonpeatlandhydrology,J.Environ.Qual.,35,1764–1778,2006. Holden,J.,Shotbolt,L.,Bonn,A.,Burt,T.P.,Chapman,P.J.,Dougill,A.J.,Fraser,E.D.G.,Hubacek,K.,Irvine,B.,Kirkby,M.J.,Reed,M.S.,Prell,C.,Stagl,S.,Stringer,L.C.,Turner,A.,andWorrall,F.:Environmentalchangeinmoorlandlandscapes,Earth-Sci.Rev.,82,75–100,2007a. Holden,J.,Gascoign,M.,andBosanko,N.R.:Erosionandnat-uralrevegetationassociatedwithsurfacelanddrainsinuplandpeatlands,EarthSurf.Proc.Land.,32,1547–1557,2007b. Hooijer,A.,Silvius,M.,Woesten,H.,andPage,S.:Peat-CO2:As-sessmentofCO2emissionsfromdrainedpeatlandsinSEAsia,DelftHydraulicsreportQ3943,41pp.,2006. Hornibrook,E.R.C.,Bowes,H.L.,Culbert,A.,andGallego-Sala,A.V.:Methanotrophypotentialversusmethanesupplybyporewaterdiffusioninpeatlands,BiogeosciencesDiscuss.,5,2607–2643,2008, http://www.biogeosciences-discuss.net/5/2607/2008/ . Hullo,M.F.,Moszer,I.,Danchin,A.,andMartin-Verstraete,I.:CotAofBacillussubtilisisacopper-dependentlaccase,J.Bac-teriol.,183,5426–5430,2001. Humphreys,E.R.,Laeur,P.M.,Flanagan,L.B.,Hedstrom,N.,Syed,K.H.,Glenn,A.J.,andGranger,R.:Summercarbondiox-ideandwatervaporuxesacrossarangeofnorthernpeatlands,J.Geophys.Res.-Bio.,111,G04011,doi:10.1029/2005JG000111,2006. IPCC:Climatechange,2007:Thephysicalsciencebasis,Con-tributionofworkinggroupItothefourthassessmentreportoftheintergovernmentalpanelonclimatechange,editedby:Solomon,S.,Qin,D.,Manning,M.,Chen,Z.,Marquis,M.,Averyt,K.B.,Tignor,M.,andMiller,H.L.,CambridgeUni-versityPress,Cambridge,UKandNewYork,USA,996pp., http://www.ipcc.ch/ipccreports/ar4-wg1.htm ,2007. Jauhiainen,J.,Vasander,H.,andSilvola,J.:Nutrientconcentra-tioninSphagnaatincreasedN-depositionratesandraisedatmo-sphericCO2concentrations,PlantEcol.,138,149–160,1998. Joiner,D.W.,Laeur,P.M.,McCaughey,J.H.,andBartlett,P.A.:InterannualvariabilityincarbondioxideexchangesataborealwetlandintheBOREASnorthernstudyarea,J.Geophys.Res.-Atmos.,104,27663–27672,1999. Joosten,H.:TheIMCGGlobalPeatlandDatabase, www.imcg.net/gpd/gpd.htm ,2004. Keller,J.K.andBridgham,S.D.:Pathwaysofanaerobiccarboncyclingacrossanombrotrophic-minerotrophicpeatlandgradient,Limnol.Oceanogr.,52,96–107,2007. Kirkby,M.J.,Kneale,P.E.,Lewis,S.L.,andSmith,R.T.:Mod-ellingtheformanddistributionofpeatmires,in:HydrologyandhydrochemistryofBritishwetlands,editedby:Heathwaite,J.M.R.andHeathwaite,A.L.,JohnWiley,NewYork,USA,83–93,1995. Knorr,K.-H.,Glaser,B.,andBlodau,C.:Fluxesand13Ciso-topiccompositionofdissolvedcarbonandpathwaysofmethano-genesisinafensoilexposedtoexperimentaldrought,Biogeo-sciences,5,1457–1473,2008, http://www.biogeosciences.net/5/1457/2008/ . Krankina,O.N.,Pugmacher,D.,Friedl,M.,Cohen,W.B.,Nel-son,P.,andBaccini,A.:Meetingthechallengeofmappingpeatlandswithremotelysenseddata,BiogeosciencesDiscuss.,5,2075–2101,2008, http://www.biogeosciences-discuss.net/5/2075/2008/ . Kristjansson,J.K.,Schonheit,P.,andThauer,R.K.:DifferentKs-valuesforhydrogenofmethanogenicbacteriaandsulfatereducingbacteria–anexplanationfortheapparentinhibitionofmethanogenesisbysulfate,Arch.Microbiol.,131,278–282,1982. Kuhry,P.:TheroleofreinthedevelopmentofSphagnum-dominatedpeatlandsinwesternborealCanada,J.Ecol.,82,899–910,1994. Laeur,P.M.,Roulet,N.T.,Bubier,J.L.,Frolking,S.,andMoore,T.R.:Interannualvariabilityinthepeatland-atmospherecarbondioxideexchangeatanombrotrophicbog,GlobalBiogeochem.Cy.,17,1036,doi:10.1029/2002GB001983,2003. Laine,A.,Wilson,D.,Kiely,G.,andByrne,K.A.:MethaneuxdynamicsinanIrishlowlandblanketbog,PlantSoil,299,181–193,2007. Lappalainen,E.:Globalpeatresources,InternationalPeatSociety,Jysk¨a,Finland,1996. Li,W.H.,Dickinson,R.E.,Fu,R.,Niu,G.Y.,Yang,Z.L.,andCanadell,J.G.:Futureprecipitationchangesandtheirimplica-tionsfortropicalpeatlands,Geophys.Res.Lett.,34,L01403,doi:10.1029/2006GL028364,2007. Limpens,J.andBerendse,F.:HowlitterqualityaffectsmasslossandNlossfromdecomposingSphagnum,Oikos,103,537–547,2003. Limpens,J.,Berendse,F.,andKlees,H.:Howphosphorusavail-abilityaffectstheimpactofnitrogendepositiononSphagnumandvascularplantsinbogs,Ecosystems,7,793–804,2004. Limpens,J.,Heijmans,M.M.P.D.,andBerendse,F.:Nitrogeninpeatlands,in:Borealpeatlandecosystems,editedby:Wieder,R.K.andVitt,D.H.,EcologicalStudiesSeries,SpringerVerlag,Berlin,195–230,2006. Lindroth,A.,Lund,M.,Nilsson,M.,Aurela,M.,Christensen,T.R.,Laurila,T.,Rinne,J.,Riutta,T.,Sagerfors,J.,Strom,L.,Tuovi-nen,J.P.,andVesala,T.:EnvironmentalcontrolsontheCO2exchangeinnorthEuropeanmires,TellusB,59,812–825,2007. Lovett,G.,Cole,J.,andPace,M.:Isnetecosystemproductionequaltoecosystemcarbonaccumulation?,Ecosystems,9,152–155,2006. McLatchey,G.P.andReddy,K.R.:Regulationoforganicmatterdecompositionandnutrientreleaseinawetlandsoil,J.Environ.Qual.,27,1268–1274,1998. Myers-Smith,I.H.,Harden,J.W.,Wilmking,M.,Fuller,C.C.,McGuire,A.D.,andChapinIII,F.S.:Wetlandsuccessioninapermafrostcollapse:interactionsbetweenreandthermokarst, www.biogeosciences.net/5/1475/2008/Biogeosciences,5,1475– 1491 ,2008

Related Contents


Next Show more