/
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING VOL IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING VOL

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING VOL - PDF document

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
493 views
Uploaded On 2014-12-12

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING VOL - PPT Presentation

5 NO 3 JULY 2008 Stochastic Modeling of an Automated Guided Vehicle System With One Vehicle and a ClosedLoop Path Aykut F Kahraman Abhijit Gosavi Member IEEE and Karla J Oty Abstract The use of automated guided vehicles AGVs in mate rialhandling p ID: 22332

JULY

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON AUTOMATION SCIENCE ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

etal.:STOCHASTICMODELINGOFANAUTOMATEDGUIDEDVEHICLESYSTEMWITHONEVEHICLEANDACLOSED-LOOPPATH517SomeoftheadvantagesoftheMarkovchainapproachareasfollows:1)Itiseasytounderstand;thetransitionprobabilitiesarecharacterizedby12simpleconditions.2)Itissimplecon-ceptuallybecausealloneneedsis (where denotestheofthejobinterarrivaltime),whichcanbeeasilycalculatedforanydistributionfortheinterarrivaltimeofjobs.3)Itproducesastate-spacecollapsetherebymakingitfeasibletocomputethelimitingprobabilities.Andnally,4)itisquiteaccurate;thisisreectedbyfavorablecomparisonswithasimulationbenchmark.Themainthemeofthispaperwastodevelopasimple,al-thoughapproximate,Markovchaintohelpstudytheperfor-manceofanAGVsystem(withonevehicleandaclosed-loopoptimizeitscapacity.ThecostandcapacityoftheAGVaretwoparametersthatareinextricablylinkedtoeachother,andthiswasanattempttoquantifyandanalyzethisre-lationship.ExtendingthismodeltodropoffAGVs,multipleAGVs,orsystemsthatdosharesomeofthepropertiesas-sumedhereshouldmakeforexcitingtopicsforfurtherresearch.TheoremA.1:Iftheinterarrivaltimeistriangularlydis-tributedwith ,Properties1and2aresatisProof:Forthetriangulardistribution,for Also,for and Sinceweareinterestedinobtainingthelimitsfor tendingtozero,wedonotconsiderthecasefor .Then Then,itfollowsthat Property1isthussatised.Similarly,forproperty2,wehave applyingL'Hospital'sruletwice CKNOWLEDGMENTTheauthorswouldliketothankallthereviewersfortheirdetailedcomments;inparticular,theyexpressgratitudetothereviewerwhosuggestedanewtitleforthepaperandmadesev-eralothercommentsthatwereusedtoimprovethequalityofthiswork.[1]O.Bakkalbasi,Flowpathnetworkdesignandlayoutconformaterialdeliverysystems,Ph.D.dissertation,GeorgiaInst.Tech-nology,Atlanta,GA,1989.[2]Y.A.BozerandJ.H.Park,NewpartitioningschemesfortandemAGVsystems,ProgressinMaterial-HandlingResearch,1992AnnArbor,MI:Braun-Brunled,1993,pp.317[3]Y.A.BozerandM.M.Srinivasan,TandemAGVsystems:Apar-titioningalgorithmandperformancecomparisonwithconventionalAGVsystems,Eur.J.OperationalRes.,vol.63,pp.173191,1992.[4]P.Chevalier,Y.Pochet,andL.Talbott,Designofa2-stationsautomatedguidedvehiclesystems,QuantitativeApproachestoDistributionLogisticsandSupplyChainManagement,A.Kolse,M.Speranza,andL.W.Eds,Eds.Berlin,Germany:Springer,2002,pp.[5]J.DuanandJ.Simonato,AmericanoptionpricingunderGARCHbyaMarkovchainapproximation,J.EconomicDynamicsContr.,vol.25,no.11,pp.16891718,2001.[6]P.J.Egbelu,Theuseofnon-simulationapproachesinestimatingvehiclerequirementsinanautomatedguidedvehiclebasedtransportMater.Flow,vol.4,pp.1732,1987.[7]P.J.EgbeluandJ.M.A.Tanchoco,Characterizationofautomaticguidedvehicledispatchingrules,Int.J.ProductionRes.,vol.22,no.3,pp.359374,1984.[8]GendreauandM.Etude,Approfondidunmodeledequilibrepouraffectationdespassagersdanslesreseauxdetransportencommun,Ph.D.dissertation,Univ.deMontreal,Montreal,Canada,1984.[9]S.Heragu,FacilitiesDesign.Boston,MA:PWS,1997.[10]M.E.JohnsonandM.L.Brandeau,Stochasticmodelingforauto-matedmaterialhandlingsystemdesignandcontrol,Transportation,vol.30,no.4,pp.330348,1996.[11]P.Koo,J.Jang,andJ.Suh,EstimationofpartwaitingtimeandsizinginAGVsystems,Int.J.FlexibleManuf.Syst.,vol.16,pp.228,2005.[12]H.J.KushnerandP.Dupuis,NumericalMethodsforStochasticCon-trolProblemsinContinuousTime,2nded.NewYork:Springer,2001.[13]A.M.LawandW.D.Kelton,SimulationModelingandAnalysisNewYork:McGraw-Hill,2000.[14]L.Leung,S.K.Khator,andD.Kimbler,AssignmentofAGVswithdifferentvehicletypes,Mater.Flow,vol.4,no.12,pp.6572,1987.[15]B.MahadevanandT.T.Narendran,EstimationofnumberofAGVsforFMS:Ananalyticalmodel,Int.J.ProductionRes.,vol.31,no.7,pp.16551670,1993.[16]W.L.MaxwellandJ.A.Muckstadt,Designofautomatedguidedve-hiclesystems,IIETrans.,vol.14,no.2,pp.114124,1982.[17]W.B.Powell,Iterativealgorithmsforbulkarrival,bulkservice,andnon-Poissonarrivals,TransportationSci.,vol.20,pp.6579,1986.[18]S.M.Ross,IntroductiontoProbabilityModels.SanDiego,CA:Aca-demic,1997.[19]J.J.Solberg,AmathematicalmodelofcomputerizedmanufacturingProc.5thInt.Conf.ProductionRes.,Tokyo,Japan,Aug.[20]M.M.Srinivasan,Y.A.Bozer,andM.Cho,Trip-basedhandlingsys-tems:Throughputcapacityanalysis,IIETrans.,vol.26,no.1,pp.89,1994.[21]Subramaniam,J.S.Stidham,Jr,andC.J.Lautenbacher,Airlineyieldmanagementwithoverbooking,cancellationsandno-shows,Trans-portationSci.,vol.33,no.2,pp.147167,1999.[22]J.M.A.Tanchoco,P.J.Egbelu,andF.Taghaboni,ofthetotalnumberofvehiclesinanAGV-basedmaterialtransportMater.Flow,vol.4,no.12,pp.3351,1987.[23]T.Tansupawuth,OptimizingthecapacityofanAGVusingasto-chasticsimulation,M.S.thesis,ColoradoStateUniv.,Pueblo,2002.[24]T.U.M.I.Wrandeau,Designingasingle-vehicleautomatedguidedvehiclesystemwithmultipleloadcapacity,TransportationSci.,vol.30,no.4,pp.351353,1996. etal.:STOCHASTICMODELINGOFANAUTOMATEDGUIDEDVEHICLESYSTEMWITHONEVEHICLEANDACLOSED-LOOPPATH515TABLEXVIXV(VERAGEUMBEROFAITINGATACHACHINEFORISTRIBUTEDNTERARRIVAL TABLEXVIIROBABILITYHATAGVLEAVESWOORRRIVALS TABLEXVIIIXVII(ROBABILITYHATAGVLEAVESWOOREHINDFORRRIVALS showsthecostvaluesforthedifferentcapacitiesandtheneedforoptimization.Figs.5and6showtheeffectofabiggervalueof onthevalueof forSystems30and31,respectively.Figs.7and8showtheeffectofthesameon forSystems30and31,respectively.Asseenfromthesegraphs,theaccu-racyoftheMarkovmodeldecreasesas increases.Clearly,as decreases,thediscrete-timeapproximationgetsclosertoitscontinuouslimit[see(2)and(4)].TABLEXIXROBABILITYHATAGVLEAVESWOORISTRIBUTEDNTERARRIVAL TABLEXXXX().PROBABILITYHATAGVLEAVESWOOREHINDFORISTRIBUTEDNTERARRIVAL TABLEXXIAPACITY )ANDOPTIMALCOST(C ACHINES =$300 =$550 =$10000 TABLEXXIIAPACITY )ANDOPTIMALCOST(C ACHINES =$300 =$550 =$10000 ThemajorconclusionfromourexperimentsisthattheMarkovchainmodelproducesasolutionwithagoodqualityanddoessoinaveryreasonableamountofcomputertime,whichislessthan2minutesonaPentiumprocessorPCwith2-GHzCPUfrequencyand250-MGRAMsize.Thesimulationmodelincomparisontakesaboutfourtimesasmuchtime. 506IEEETRANSACTIONSONAUTOMATIONSCIENCEANDENGINEERING,VOL.5,NO.3,JULY2008 Fig.1.Schematicviewof-machinesystem.Theperformancemetricsthatweexploreforevaluationandoptimizationofthesystemare:1)averagenumberofjobswaitingateachmachine;2)probabilitythatthenumberofjobswaitingatamachinewhentheAGVdepartsfromthesamemachineexceedsagivenvalue;3)averagelong-runcostofrunningthesystem.III.MARKOVA.SystemStateWeintroduceaMarkovchainmodelforanalyzingthesystem.Lettheset denotetheentiresystemthatcontains (orpick-uppoints).Then Dropoffpoint,Machine1,Machine2 Machine Asubsetof ,called ,canbedenedasfollows: Dropoffpoint,Machine (1)for .Thebehavioroftheabove-describedsystemcanbemodeledwithasequenceofMarkovchainsassociatedwiththefollowing: TheMarkovchainassociatedwith willbereferredtoas thMarkovchain.Becauseeachmachinewillbeanalyzedindependently,weconsider Markovchains,oneforeachma-chine.Also,aniceproperty(Theorem4.2)ofthesystemisthatonecanusetheinvariantdistribution(limitingprobabilities)of thMarkovchaintocomputethesameforthe Markovchain.Thisprovidesforasimplerecursiveschemethatcanbeusedtodeterminesomeimportantsystemperformancemeasuresassociatedwiththeentiresystemfromtheinvariantdistributions.Inordertoconstructadiscrete-timeMarkovchain,i.e.,,wemustdiscretizetime.Welet denoteapositiveandsmallunitoftime.Wethenhavethefollowingde1)DeÞnition3.1:For ,let denotethemax-imumlengthofthetimeintervalduringwhichtheprobabilityoftwoormorearrivalsofjobs,atthe thmachine,islessthan ,i.e., (2)where isthenumberofarrivalsatthe thmachineduringatimeintervaloflength Nextweintroducesomenotation. Maximumnumberofjobsthatcanwaitatthe thmachine. TimespentbytheAGVintravelingfrom tomachine wheremachine0isthedropoffpoint.Thisalsoincludestheloadingtimeonmachine when andtheunloadingtime . Anintegermultipleof suchthat (3) Probabilitythat jobsarriveatthe thmachineinatimeintervaloflength . Numberofstatesinthe thMarkovchain.(StatesaredenedbelowinDenition3.2.) capacityoftheAGV. availablecapacityoftheAGV.(Itisarandomvariableforallmachinesbuttherstforwhichitequals .)Let denotethetimebetweenthe thandthe( arrivalofjobsatmachine .Then,sincejobscontinuallyarriveateachmachine,forany Wewillobservethesystemafterunittime,i.e., ,fol-lowingastandardconventionintheliterature(see[18,p.435]),andafterunittime,anewepochwillbeassumedtohavebegun.Thus,ifonespeci ,thelength(timeduration)ofanyepochinthe thMarkovchainwillequal Thefollowingphenomenawillbetreatedaseventsforthe thMarkovchain:1)Ajobarrivesatamachine;2)theAGVdepartsfromthe thmachine;and3)theAGVarrivesatthe machine.Aneventwillsignalthebeginningofanewepoch.Theprobabilityoftwoormorearrivalsinoneepochwillbeas-sumedtobenegligibleforsmall ,andthedenitionof ensuresthat.Furthermore,wewillassumethatifajobarrivesduringanepoch,wewillmovethateventforwardintimetocoincidewiththeendofthatepoch.Since isasmallquantity,when issmall,thisshouldnotposeseriousproblems.ThisapproximationisnecessarytoensuretheMarkovproperty etal.:STOCHASTICMODELINGOFANAUTOMATEDGUIDEDVEHICLESYSTEMWITHONEVEHICLEANDACLOSED-LOOPPATH509Case4:If , , , , , ,and ,then Case5:If , , , , , ,and ,then ConsiderthescenarioinwhichtheAGVtravelsfromthedropoffpointtomachine duringthe thepoch,arrivesatma- bytheendofthe thepoch,andthebufferatmachine isfull.Then,wehavethefollowing.Case6:If , , , , , ,and ,then ConsiderthescenarioinwhichtheAGVtravelsfrommachine tothedropoffpointduringthe thepoch,thearrivaltothedropoffpointdoesnotoccurbytheendoftheepochandthebufferatmachine isnotfull.Then,ifnojobarrivesduringthe thepoch,wehaveCase7,andifajobdoesarrivewehaveCase8.Case7:If , , , , , ,and ,then Case8:If , , , , , ,and ,then ConsiderthescenarioinwhichtheAGVtravelsfrommachine tothedropoffpointduringthe thepoch,thearrivaltothedropoffpointdoesnotoccurbytheendofthe thepochandthebufferatmachine isfull.Then,wehavethefollowing.Case9:If , , , , , ,and ,then ConsiderthescenarioinwhichtheAGVtravelsfrommachine tothedropoffpointduringthe thepoch,itarrivesatthedropoffpointbytheendoftheepoch,andthebufferatmachine isnotfull.Then,ifnojobarrivesduringthe thepoch,wehaveCase10.Ifajobarrivaloccursduringthe thepoch,wehaveCase11.Case10:If , , , , , ,and ,then Case11:If , , , , , ,and ,then Finally,considerthescenarioinwhichtheAGVtravelsfrom tothedropoffpointduringthe thepoch,itarrivesatthedropoffpointbytheendoftheepoch,andthebufferat isfull.Then,wehavethefollowing.Case12:If , , , , , ,and ,then IV.PEASURESANDPTIMIZATIONFromDenition3.2,thenumberofstatesinthe thMarkovchain,i.e., ,canbecomputedas Thefollowingwell-knownresultallowsustodeterminetheinvariantdistribution(limitingprobabilities)oftheunderlyingMarkovchains.1)Theorem4.1: denotetheone-steptransitionprob-abilitymatrixofaMarkovchain.Ifthematrixisaperiodicandirreducible,andif ,whose thelementisdenotedby ,de-notesacolumnvectorofsize ,thensolvingthefollowingsystemoflinearequationsyieldsthelimitingprobabilitiesoftheMarkovchain: and Fromthedenitionofourtransitionprobabilities,itisnothardtoshowthateachstateispositiverecurrentandaperiodicandthatthereisasinglecommunicatingclassofstates.Then,theaboveresultholdsandwemayuseittocomputethelimitingWenextdeneafunction, ,thatassignsanintegervalueintheset toeachstateinthe thMarkovchain where denotesthestateinthe thMarkovchainatagivenepoch, .Notethat ,theepochindex,issuppressedherefromthenotationof(5)toincreaseclarity.Ourtransitionprobabilitiesforthe thMarkovchainwerecomputedunderthe etal.:STOCHASTICMODELINGOFANAUTOMATEDGUIDEDVEHICLESYSTEMWITHONEVEHICLEANDACLOSED-LOOPPATH511 machinestobeservedbyanAGVwhosecapacityis ,isgivenby (13)where and areconstantsrepresentingtheoperatingcostperunittimeofanAGVhavingunitcapacityandtheholdingcostperaunittimeforonejob,respectively; denotesthexedcostofthevehicleIntheuniformizationprocedure,theprobabilityoftwoormorearrivalsinoneepochisneglected.Thus,afewarrivalsareunaccountedfor.Thiscausesareductioninthevaluesofbothperformancemeasures,i.e., and fortherstmachine.ThiserroraffectsthecapacitydistributionandresultsinareducedavailablecapacityfortheAGVwhenitvisitsthesubsequentmachines.Thiserrorinthecapacitydis-tributionpartlynegatestheerrorintroducedbyuniformization.Hence,atallmachinesbuttherst,wherethereisnoerrorines-timatingthecapacity,theoverallerrorintheperformance-mea-surevaluesislow.Attherstmachine,thecapacityisequaltothemaximumcapacity,andsothisreductiondoesnotoccur,therebyproducingahighererror.Thisisreectedinthenumer-icalresultspresentedlater.Alsonotethatonehastondthelimitingprobabilitiesof differentMarkovchains,onechainassociatedwithaspecimachineinthesystem.However,tondthelimitingprobabilityofthespecicstateinaMarkovchainassociatedwithmachine ,where ,onehastondthelimitingprobabilitiesofthe differentMarkovchainsassociatedwithmachine (seeTheorem4.2),sincetheavailablecapacityoftheAGVcanassumeanyvaluebetweenzeroand whenitarrivesatanymachinebuttherstmachine.(Notethatsincetheavail-ablecapacityoftheAGVis whenitarrivesattherstma-chine,thelimitingprobabilitiesoftheMarkovchainassociatedwiththerstmachinecanbefoundwithouttheuseofTheorem4.2.)Hence,thecomputationalworkassociatedwithanygivenmachinebuttherstconstitutesofthecomputationalworkofcalculatingthelimitingprobabilitiesof MarkovchainsplusthelimitingprobabilitiesoftheMarkovchainassociatedwiththegivenmachineviaTheorem4.2.Therefore,thecom-plexityoftheMarkovchainmodelisarst-orderpolynomialinthenumberofmachines Theadvantageofourcomputa-tionalschemeisthatthestatespacecollapsesforeachMarkovchain,therebymakingthecomputationofthelimitingprobabil-itiesfeasible.6)AGVCapacityOptimization:Weareinterestedinopti-mizingtheAGVscapacitywithrespecttothecostofoperatingthesystem.Theoptimizationproblemconsideredinthispaperistodetermine tominimizetheexpressionin(13).Otherwaysforoptimizationcouldbeconsidereddependingonwhatthemanagerdesires.Oneexampleisto suchthat where and aresetbymanagerialpolicy.OptimizationisperformedbyanexhaustiveenumerationoftheAGVsmaximumcapacityvariable, .Sincethestatespaceofthisdiscreteoptimizationproblem,whichhasasingledecisionvariable,isverysmall,anexhaustiveenumerationisV.COMPUTATIONALESULTSSimulationisbyfarthemostextensivelyusedtoolforperfor-manceevaluationofAGVsystems,becauseitprovidesuswithveryaccurateestimatesofperformancemeasures.Asaresult,itisessentialthatwecompareourresultstothoseobtainedfromasimulationmodel.A.SimulationModelConsideraprobabilityspace ,where denotesthe(universal)setofallpossibleroundtripsoftheAGV, thesigmaeldofsubsetsof ,and denotesaprobabilitymea-sureon .Usingadiscrete-eventsimulator,itispossibletogeneraterandomsamples fromthemeasur-ablespace.Thesamplescanthenbeusedtoestimatevaluesofalltheperformancemeasuresderivedintheprevioussection. denotethenumberofjobswaitingnearthe machineattime inthesimulationsample .Then,fromthestronglawoflargenumbers,withprobability1 Also,withprobability1 (15)where denotesthenumberofoccasionsinwhichthenumberofjobsleftbehindatmachine (i.e.,jobsnotpickedupbytheAGVbecauseitisfull)equalsorexceeds in tothemachineinthesimulationsample B.PerformanceTestsforMarkovModelWeconductednumericalexperimentswithourmodeltode-terminethepracticalityoftheapproachandtobenchmarkitsperformancewithasimulationmodelthatisguaranteedtoper-formwellbutisconsiderablyslower.TheerrorofourmodelwithrespecttothesimulationestimateisdenedbyError(%) where denotestheestimatefromtheMarkovchainmodel denotesthesamefromthesimulationmodel.Wepresentresultsontwo-machineandve-machinesystems,alongwithasimpleexampletoillustrateourmethodology.TablesIandIIdenetheparametersforthesystemswithtwomachines,andTablesXIandXIIdenetheparametersforthesystemswithvemachinesstudied.InTableI, notestherateofarrivalofjobsatmachine .Weusedtheexpo-nentialandgammatomodelthedistributionoftheinterarrivaltimeofjobs.TheperformancemetricsofthesystemswithtwomachinesandvemachinesareshowninTablesIIIVIIIandTablesXIIIXX,respectively.Thesetablesalsoshowthesimu-lationestimatesandthecorrespondingerrorvalueswhicharecalculatedasdenedabove.Convergencewasachievedwith etal.:STOCHASTICMODELINGOFANAUTOMATEDGUIDEDVEHICLESYSTEMWITHONEVEHICLEANDACLOSED-LOOPPATH505theexpensesincurredinbuyingahighercapacityvehicle.Re-ducinginventoryleadstoreducedinventory-holdingcostsandcongestion.ThecostofanAGVmostcertainlydependsonitscapacity.AttachingatrailertoanAGVincreasesitscapacity,andhencevariable-capacityAGVsareseeninmanyreal-worldsystems.Althoughattachingatrailercanconstrainitsmove-mentsinsomeways,buyinganewAGVisaconsiderablymoreexpensiveproposition.BecauseofthecomplexityinastochasticAGVsystem,an-alyticalmodelsforperformanceevaluationarenotcommonlyfoundintheliterature.Thereare,ofcourse,importantexcep-tions,someofwhichwediscussnext.MaxwellandMuckstadt[16]presentedananalyticaldeterministicmodeltondthemin-imumnumberofAGVsrequiredinagivensystem,whichwasextendedbyLeungetal.[14]toconsideradditionalvehicletypes.Egbelu[6]describedfouranalyticalmodelsforasystemsimilartothatofMaxwellandMuckstadt[16].Tanchocoetal.[22]presentamodelbasedontheCAN-Qsoftware(Computer-izedAnalysisofNetworkofQueues,seeSolberg[19])forde-terminingthenumberofAGVsneeded.CAN-Qusessophisti-catedqueuingtheoryconcepts,butitsblack-boxnaturehasper-hapspreventedfurtheruse.Similarly,Wysketal.[27]presentaCAN-Q-basedanalyticalmodeltoestimatethenumberofAGVsinwhichemptyvehicletravelisconsidered.Bakkalbasi[1]formulatestwoanalyticalmodels;oneofhismodelspro-videslowerandupperboundsofemptytravelingtime.Anan-alyticalmodelisprovidedinMahadevanandNarendran[15]fordeterminationofthenumberofAGVsinaexiblemanu-facturingsystem.Srinivasanetal.[20]presentaqueuingmodeltodeterminethethroughputcapacityofanAGVsystem.Kooetal.[11]useaqueuingmodeltodeterminetheAGVeetsizeunderavarietyofvehicleselectionrules.Visetal.[26]developamodelthatcanbeusedatanautomatedcontainerterminal.Chevalieretal.[4]addressaprobleminasystemthatcontainstwostations.JohnsonandBrandeau[10]presentanexcellentoverviewofmodelinganddesignissuespertinenttostochasticmaterial-handlingsystems.ThonemannandBrandeau[24]usequeuingapproximationsfromGendreau[8]andPowell[17]tostudyanAGVsysteminwhichthereisonedepotandmultiplemachinesthatrequirematerialfromthedepot.Markovchainap-proximationsarepopularinuniformizationofcontinuous-timeMarkovchains[21],diffusionapproximations(see[12,Ch.4]),nancialengineering[5]buthavenotbeenusedintheanal-ysisofmaterial-handlingsystemsorqueuing,tothebestofourknowledge.Contributionsofthispaper:ThecapacityoftheAGVisanimportantdesignissuefromamanagerialperspective.Inthispaper,wepresentforthersttime,tothebestofourknowl-edge,aMarkovchainapproximationmodelfordetermining:1)anumberofimportantperformancemeasuresofanAGVsystemwithonevehicleandaclosedlooppathand2)theop-timalcapacityoftheAGV.Efcacyofthemodelisdemon-stratedwithnumericalexperiments.Thelatterindicatethatitsperformanceiscomparabletothatofasimulationmodel;notethatsimulationmodelsareusuallyguaranteedtobeexactinanalmostsuresense.OurMarkovchainmodelrequireslesscom-putationtimeincomparisontothesimulationmodel,therebymakingitusefulforoptimizationpurposes(optimizationofthevehiclescapacity).Also,wewereabletoprovethattheun-derlyingMarkovchainhasaspecialstructurewhichfacilitatesdecompositionoftheMarkovchainassociatedwiththeclosed-loopsystemintoanitenumberofMarkovchainsthathaveasmallerstatespace.ThespecialstructuremakestheanalysiseasierandsimpliesthecomputationsconsiderablybecauseitiseasiertohandlethesmallerMarkovchainsassociatedwiththesubsystems.Furthermore,themodelcanbeusedforsomedis-tributionsinthearrivalofjobsatmachinesthatsatisfyaprop-ertythatweidentify.Dependingonthenatureofthesystem,thepick-uppointscouldeitherbeproductionmachines(jobs)orofces(paperwork),andthedropoffpointcouldbeacon-veyorbeltorthemainofce.TheworkofThonemannandBran-deau[24]isclosesttoourworkinspiritbecausetheyalsoan-alyzeasinglevehicleinaclosedlooppath,buttheyprimarilydealwithadropoffsystem,i.e.,asysteminwhichtheAGVdropsoffmaterialateachpointandpicksupmaterialatadepot.Therandomnessintheirsystemisinthearrivalofjobstothedepot.TheydonotoptimizetheAGVscapacityandconsideronlyPoissonarrivals.Wefocusonapick-upAGV,(foundinlocalindustriesinColorado)i.e.,anAGVthatpicksuploadsatvariousstationsanddropsthemoffatonepoint.TheMarkovchainapproachenablesustocomputesomeQoSmeasures,e.g.,theprobabilityoftheAGVdepartingfromastationleaving numberofjobsstranded,anddeterminetheoptimalcapacityoftheAGV.Tothebestofourknowledge,thisistherstattemptatbothofthesetasksintheliterature.Therestofthispaperisorganizedasfollows.SectionIIdescribestheproblem.SectionIIIdevelopstheMarkovchainmodel.TheperformancemeasuresandtheoptimizationmodelaredescribedinSectionIV.NumericalresultsarepresentedinSectionV.ThelastsectionpresentssomeconclusionsdrawnfromourworkandsomedirectionsforfurtherresearchinthisII.PROBLEMrstdiscusssomeimportantfeaturesoftheproblemunderconsideration.TheAGVtravelsinaxedcircuitfromadropoffpoint(e.g.,conveyorbelt)toeachmachineinasequence(Ma-chine1,thenMachine2,andsoonuntilallthemachineshavebeenvisited)pickingupjobsfromeachofthemachines.TheAGVthenreturnstothedropoffpointtodropthejobsoffandthenrepeatsthecircuit.TheAGVtakesaxed(deterministic)amountoftimetotravelfromonelocationtoanother;thistimeincludestheunloadingorloadingtime.TheAGVemptiesitselfcompletelyatthedropoffpoint.Also,weassumethattherouteoftheAGVisnotinuencedbywhetheritisfull,althoughwhenitisfull,itcannotpickupanymorejobsinthattrip.Jobsarriveateachlocationwithrandominterarrivaltimesthatareinde-pendentandidenticallydistributed;theamountofspace(outputbuffer)nearthepick-uppoint(machine)isxed.Inotherwords,whenthisbufferisfull,themachinestopsproducingandthusthenumberofjobswaitingateachmachinehasanupperlimit.Althoughtheamountofspace(buffer)atthemachineisxed,itisassumedthatthebufferisofasufcientsizethatthemax-imumnumberofjobsthatcanbewaitingatthemachineisrarelyreached.Fig.1presentsaschematicofthesystem. etal.:STOCHASTICMODELINGOFANAUTOMATEDGUIDEDVEHICLESYSTEMWITHONEVEHICLEANDACLOSED-LOOPPATH507forthesystemweconsider.However,numericalresults(pre-sentedlater)willdemonstratethatwiththeapproximationwestillhavereasonablyaccurateresults.Moreover,theapproxima-tionallowsustousethepowerfulframeworkofMarkovchains.2)Denition3.2: .Astateofthe thMarkovchaininthe thepochisdenedbythefollowing4-tuple: (5)where denotesthenumberofjobswaitingatmachine whenthe thepochbegins, denotestheavailablecapacityintheAGVwhenthe thepochbegins,and iftheAGVistravelingfromthedropoffpointtoanymachinewhile iftheAGVistravelingfromthe thmachinetothedropoffpointwhenthe thepochbegins.Sincethe epochcouldbeginwhiletheAGVistravelingeitherbetweenthedropoffpointandthemachine orbetweenthemachine thedropoffpoint,welet denotethenumberofmultiplesof thathaveelapseduntilthebeginningofthe thepochsincetheAGVsdeparture.Clearly,theAGVsdeparturecouldeitherbefromthedropoffpointorthe thmachine.B.TransitionProbabilitiesWiththeabovediscretizationoftime,wehavethefollowingproperty.Foranysmallvalueof andforany ,itisapproximatelytruethat Thisimpliesthatfornonzero,butsmall, ,oursystemcanbeapproximatelymodeledbyaMarkovchain.ItistobenotedthattheMarkovchainsconstructedareessentiallyparametrizedbythenon-negativescalar .However,tokeepthenotationsimple,andbecause xed,wewillsuppressthisparameter.Thus, willbedenotedby .Bythedenition,the Markovchainisconcernedwithjobarrivalsatthe thma-Thedenitionof requiresustoanalyzewhethertheprobabilityoftwoormorearrivalsinanepochcanbeignoredincomparisontothatofzerooronearrival.Wejustifytheuseofasmall withthefollowingproperties.Considerthefollowingtwopropertiesassuming tobethedurationofanepoch.Property1: Property2: Whenthearrivaldistributionsatisesthesetwoproperties,onecanignoretheprobabilityoftwoormorearrivalsincomparisontothoseofzeroarrivalsandonearrivalas tendstozerobecausetheprobabilityoftwoormorearrivalsconvergestozerothaneitheroftheothertwoprobabilities.Inotherwords,forasmallvalueof ,onemaypracticallyignoretheeventassociatedwithmorethantwoarrivals.Withasmall ,wehaveforevery asmallenough ,i.e., inthetwopropertiesabove.Thus,withasufcientlysmalldurationoftheepoch,onecansafelyignoretheprobabilityoftwoormorearrivalsforcertaindistributions.Wewillprovethiswhentheinterarrivaltimeisexponentiallydistributedanduniformlydistributed.Note,how-ever,thatevenforthesedistributions,e.g.,exponential,ourap-proachremainsapproximate.1)Theorem3.1:Iftheinterarrivaltimeisexponentiallydis-tributedwithmean ,Properties1and2aresatisProof: therebysatisfyingProperty1.Similarly byL'Hospital'srule 2)Theorem3.2:Iftheinterarrivaltimeisuniformlydis-tributedwith ,Properties1and2aresatisProof:Fornon-Poissonarrivals,todeterminetheproba-bilitydistributionofthenumberofarrivals,onehastocompute ,the -foldconvolutionofthedistributionoftheinterarrivaltime.If denotesthetimeofthe tharrival(ofjob),thenfortheuniformdistribution Also and Then Then,itfollowsthat: 512IEEETRANSACTIONSONAUTOMATIONSCIENCEANDENGINEERING,VOL.5,NO.3,JULY2008TABLEI.)PALUEOFACHYSTEMANDACHYSTEMHASACHINES TABLEII.)P TABLEIIIVERAGEUMBEROFAITINGATACHINERRIVALS TABLEIVVERAGEUMBEROFAITINGATACHINERRIVALS TABLEVVERAGEUMBEROFAITINGATACHINEISTRIBUTEDNTERARRIVAL 1000tripsperreplicationandweusedtenreplications.Themeanestimatewasassumedtohaveconvergedwhenitremainedwithin0.05%inthenextiteration.Themeanreportedisanav-erageoverallreplications.Thestandarddeviationwasnomorethan0.1%ofthemeanineachcase.1)2-MachineSystems:TablesIIIandIVprovide forPoissonarrivalsfor and ,respectively.Sim-ilarly,TablesVandVIshowthecorrespondingvaluesforagamma-distributedinterarrivaltime.Inthesesystems,i.e.,inthesystemswithtwomachines,forthegammadistribution weusedthesamearrivalrate,buttheparameter wassettoeight.TablesVIIandVIIIshowthevaluesof Poissonarrivalsfor and ,respectively;TablesIXandXshowthecorrespondingvaluesforagamma-distributedinterarrivaltime. 508IEEETRANSACTIONSONAUTOMATIONSCIENCEANDENGINEERING,VOL.5,NO.3,JULY2008Property1isthussatised.Similarly,forProperty2,wehave byL'Hospital'srule Weshowthattheconditions(6)and(7)holdforthetriangulardistributioninAppendixI.Forinterarrivaldistributions(ofjobs)thatsatisfy(6)and(7),wecandevelopexpressionsforthetransitionprobabilitieswithnitebutsmallvalueof .Thetransitionsarecharacterizedby12conditions.ForeachMarkovchainthatweconsider,wewillassume,forthetimebeing,thattheavailablecapacity known.Subsequently,wewillpresentaresult(Theorem4.2)tocomputethedistributionof .Thestateinthe thepochwillbedenotedby .Theone-steptransitionprobabilitywillbedenotedby Fig.2presentsapictorialrepresentationoftheunderlyingMarkovchaininourmodel.TheavailablecapacityoftheAGV, ,equals whenitar-rivesattherstmachineandisarandomvariableforallothermachines.Then, , if , if see3.2 and .ThetransitionprobabilitiesforthisMarkovchainwillnowbede-nedfor12conditions(cases).Cases16(712)areassociatedwiththeAGVtravelingfromthedropoffpointtoamachine(fromamachinetothedropoffpoint).Wenowdescribeallthecasesindetail.Considerthefollowingscenario:theAGVtravelsfromthedropoffpointtomachine duringthe thepoch,thearrivaloftheAGVatmachine doesnotoccurbytheendoftheepoch,andthebufferatmachine isnotfull.Then,ifnojobarrivesduringthe thepoch,wehavethefollowing.Case1:If , , , , , ,and ,then Sincenojobarrivaloccursinunittime,theabovetransi-tionprobabilityisequaltotheprobabilityofnojobarrival.Similarly,ifajobarrivaldoesoccur,wehavethefollowing.Case2:If , , , , , ,and ,then Sincejobarrivaloccursinunittime,theabovetransitionprobabilityisequaltotheprobabilityofjobarrival.Considerthefollowingscenario:theAGVtravelsfromthedropoffpointtothemachine duringthe thepoch,thearrivaloftheAGVatmachine doesnotoccurbytheendoftheepochandthebufferatmachine isfull.Then,wehavethefollowing. Fig.2.Markovchainunderlyingourmodel.BingurestandsforCase3:If , , , , , ,and ,then Sincethebufferatmachine isfull,wedonottakejobarrivalsintoconsideration.Considerthefollowingscenario:theAGVtravelsfromthedropoffpointtothemachine duringthe thepoch,itarrivesatmachine bytheendoftheepoch,andthebufferatmachine isnotfull.Then,ifnojobarrivesduringthecurrentepoch,wehaveCase4,andifajobarriveswehaveCase5. 510IEEETRANSACTIONSONAUTOMATIONSCIENCEANDENGINEERING,VOL.5,NO.3,JULY2008 Fig.3.ComputationalschemebasedonTheorem4.2.assumptionthatcapacityoftheAGVwhenitarrivesatthe machineisknown( ).Wenowneedtocomputethetransitionprobabilitiesoftheentiresystemthetransitionprobabilitiesthatweneedforourperformanceevaluationmodel.Wewillprovidearesult,Theorem4.2,tothisend.Themainideaunder-lyingtheresultisasfollows.Thetransitionprobabilitiesofthe thMarkovchainyieldthedistributionoftheAGVsavailablecapacityofthe thMarkovchain.BecausetheAGVstartsempty,fortherstMarkovchain,theavailablecapacityisknowntobe .Fromthatpointonwards,onecancomputethetransitionprobabilitiesinarecursivestyle.ThecomputationalschemebasedonthenextresultisdepictedinaowchartinFig.3.2)Theorem4.2:Letthelimitingprobabilityofstate inthe thMarkovchainbedenotedby .Let denotetheavailablecapacityoftheAGVwhenitarrivesatthe thma-chine,andfurtherlet denotethelimitingprob-abilityforthestate inthe thMarkovchainwhen Then,wehavethat (8)and (9)for , ,where inwhich and aredenedasfollows: and Proof:Fortheproof,weneedtojustify(8)(10).Equa-tion(8)followsfromthefactthattheAGVemptiesitselfatthedropoffpoint(seeFig.1).Hence,whenitcomestoMachine1,theavailablecapacityisnotarandomvariablebutaconstantequalto ,whichisthemaximumcapacityoftheAGV.Equa-tion(9)followsfromthefactthatwhentheAGVarrivesatsta-tionsnumbered2through ,itscapacityisarandomvariablewhosedistributionhastobecalculated.Thedistributionisgivenin(10).Forthelaststatement,weargueasfollows:WhentheAGVarrivesatthe thstation,for ,itsca-pacityistheavailablecapacityoftheAGVwhenitleavesthe thstation.ThedistributionfortheavailablecapacityontheAGVwhenitleavesthe thstationcanbecomputedfromthelimitingprobabilitiesassociatedwiththe MarkovchainofthosestatesinwhichtheAGVhasdeparted thmachineandisonthewaytothe thmachine.(Notethat denotesthesetofstatesinthe thMarkovchaininwhichtheAGVhasdepartedthe thmachineanditsavailablecapacityis .Similarly, denotesthesetofstatesinthe thMarkovchaininwhichtheAGVhasdepartedfromthe thmachineanditsavailablecapacityassumesallpossiblevalues.) Exploitingthetransitionprobabilities,onecanderiveexpres-sionsforsomeusefulperformancemeasuresofthesystem.Theyareconsiderednext.3)AverageInventoryatEachMachine: theaveragenumberofjobswaitingatthe thmachine,then (11)where and if if 4)QoSPerformanceMeasureAssociatedWithDownsideTheprobabilitythatthenumberofjobswaitingatthe thmachine,denotedby ,whentheAGVdepartsfrom thmachineexceeds canbecalculatedasfollows: (12)where 5)AverageLong-RunCost:Theaveragelong-runcostofrunningthesystemiscomposedoftwoelements,whichare:theholdingcostofthejobsnearthemachineandthecostofoperatingtheAGV.Tocalculatetheholdingcost,wewillneedtheaveragenumberofjobswaitingateachmachine.Then,theaveragecostforoperatingasystemdescribedinthispaper,with 516IEEETRANSACTIONSONAUTOMATIONSCIENCEANDENGINEERING,VOL.5,NO.3,JULY2008 Fig.4.TotalcostversuscapacityofAGVforSystem2. Fig.5.Effectofabigger W(n)]insystem30.Errorsinotherparam-eters,i.e., [W W(5)]areevensmallerforplottedvaluesof Fig.6.Effectofabigger W(n)]inSystem31.Errorsinotherparam-eters,i.e., [W(4)]and W(5)]areevensmallerforplottedvaluesofThesimulationmodelandthetheoreticalmodelmakeidenticalassumptionsaboutthesystem.Thecomputercodescanberequestedfromtherstauthor. Fig.7.EffectofabiggerbiggerD(n)�1]inSystem30.Errorsinotherparameters,i.e.,i.e.,D(1)�1],P[D(2),andandD(5)�1]areevensmallerforplottedvaluesof Fig.8.EffectofabiggerbiggerD(n)�1]inSystem31.Errorsinotherparameters,i.e.,i.e.,D(1)�1],P[D(2)�1],P[D(4)�1],andandD(5)�1]areevensmallerforplottedvaluesofVI.CInthispaper,westudiedaversionofaproblemcommonlyfoundinsmall-scalemanufacturingindustries,e.g.,pharmaceu-rms,whichrequirenomorethanoneAGVthatoperatesinaclosed-looppath.WeusedaMarkovchainapproachforde-velopingtheperformance-analysismodel.Somespecialproper-tiesofthesystemwereexploitedtodeneasimplestructuretothecompleteproblem;thestructureallowsustodecomposethe -machinesystem(Markovchain)into individualsystems(Markovchains)andprovidesuswithamechanismtosimplifythecomputations.Thisleadstoastate-spacecollapsethatiscomputationallyenjoyable.Also,thediscretizationofthestatespaceinourapproachyieldedsimpleexpressionsforthetransi-tionprobabilities;acommoncriticismofmanytransition-prob-abilitymodelsisthattheyhavecomplicatedexpressionswithmultipleintegrals(thatrequirenumericalintegration,whichisslow)astransitionprobabilities. 504IEEETRANSACTIONSONAUTOMATIONSCIENCEANDENGINEERING,VOL.5,NO.3,JULY2008StochasticModelingofanAutomatedGuidedVehicleSystemWithOneVehicleandaClosed-LoopPathAykutF.Kahraman,AbhijitGosavi,Member,IEEE,andKarlaJ.OtyTheuseofautomatedguidedvehicles(AGVs)inmate-rial-handlingprocessesofmanufacturingfacilitiesandwarehousesisbecomingincreasinglycommon.AcriticaldrawbackofanAGVisitsprohibitivelyhighcost.CostconsiderationsdictateaneconomicdesignofAGVsystems.ThispaperpresentsananalyticalmodelthatusesaMarkovchainapproximationapproachtoevaluatetheperformanceofthesystemwithrespecttocostsandtheriskassociatedwithit.Thismodelalsoallowstheanalyticoptimization 518IEEETRANSACTIONSONAUTOMATIONSCIENCEANDENGINEERING,VOL.5,NO.3,JULY2008[25]J.A.Tompkins,J.A.White,Y.A.Bozer,E.H.Frazelle,J.M.A.Tanchoco,andTrevino,FacilitiesPlanning.NewYork:Wiley,1995.[26]I.Vis,R.deCoster,K.Roodbergen,andL.Peeters,DeterminationofthenumberofAGVsrequiredatasemi-automatedcontainerterminal,J.OperationalRes.Soc.,vol.52,no.4,pp.409417,2001.[27]R.A.Wysk,P.J.Egbelu,C.Zhou,andB.K.Ghosh,UseofspreadsheetanalysisforevaluatingAGVsystems,Mater.Flow,vol.4,pp.64,1987. AykutF.KahramanreceivedtheB.S.degreefromtheElectricalandElectronicsEngineeringDepartment,BilkentUniversity,in2002,theM.S.degreefromtheIndustrialandSystemsEngineeringDepartment,ColoradoStateUniversity,Pueblo,in2003,andthePh.D.degreefromtheIndustrialandSystemsEngineeringDepartment,StateUniversityofNewYork,Buffalo,in2006.Hisresearchinterestsincludelogistics,serviceandmanufacturingsystems,andperformanceevaluationinstochasticsystems.Applicationdomainsthatin-teresthimareprimarilyintheaviationindustryandthemanufacturingindustry.Intheeldofstochasticoptimization,hehasspecializedintheareaofdis-crete-timeMarkovchains,Markovdecisionprocesses,semi-Markovdecisionprocesses,andstochasticdynamicprogramming.Currently,heisworkingasanOperationsResearchDeveloperatDeccanInternational,SanDiego,CA. AbhijitGosavi06)receivedtheB.S.degreefromJadavpurUniversity,theM.S.degreefromtheIndianInstituteofTechnology,Madras,andthePh.D.de-greeinindustrialengineeringfromtheUniversityofSouthFlorida,in1999.HeiscurrentlyanAssistantProfessorintheDepartmentofIndustrialandSystemsEngineering,StateUniversityofNewYork,Buffalo.Hisresearchinterestsincludetheapplicationsandmethodsofcontroltheoryandsimulation-basedoptimization.HispublicationshaveappearedinleadingjournalslikeManagementScience,Automatica,MachineLearning KarlaJ.OtyreceivedtheB.S.degreeinmath-ematicsfromTrinityUniversity,SanAntonio,TX,andthePh.D.degreefromtheUniversityofColorado,Boulder,underthedirectionofProf.A.Ramsay.Herdissertationinanalysiswasen-Fourier-StieltjesAlgebrasforR-discreteHavingtaughtfor13yearsatschoolsinOklahomaandColorado,sheiscurrentlyservingasInterimDeanoftheSchoolofScienceandTechnology,CameronUniversity,Lawton,OK.Dr.OtyhasreceivedvariousawardsincludingCameronUniversityfessoroftheYearfortheacademicyear2005 etal.:STOCHASTICMODELINGOFANAUTOMATEDGUIDEDVEHICLESYSTEMWITHONEVEHICLEANDACLOSED-LOOPPATH513TABLEVIVERAGEUMBEROFAITINGATACHINEISTRIBUTEDNTERARRIVAL TABLEVIIROBABILITYHATAGVLEAVESWOORRRIVALS 2)Example:ConsiderSystem5,whoseparametersaregiveninTablesIandII.Inthissystem,jobsarriveattherateof2perunittimeateachmachine.Wechoose .Here, for .TheAGVtravelsfromthedropoffpointtoMachine1,fromMachine1toMachine2,andfromMachine2tothedropoffpointintimeequaling , ,and ,respectively.ThemaximumcapacityoftheAGVis2,andthebuffercapacitiesofeachmachineare4.Weprovidesomesampletransitionproba-bilitiesfortheMarkovchainassociatedwithMachine1Case1: Case3: Case5: Case10: TABLEVIIIROBABILITYHATAGVLEAVESWOORRRIVALS TABLEIXROBABILITYHATAGVLEAVESWOOREHINDFORISTRIBUTEDNTERARRIVAL ThecapacityoftheAGVwhenitarrivesatmachine1is andthecapacitydistributionoftheAGVwhenitarrivesatMa-chine2iscalculatedusingTheorem4.2 and Then,thetransitionprobabilitiesforthesecondMarkovchaincanbecalculatedfromthedistributionof .Thelimitingprob-abilitiescanthenbeusedtocalculatethevaluesoftheperfor-mancemeasures,suchastheaverageinventoryandthedown-siderisk. 514IEEETRANSACTIONSONAUTOMATIONSCIENCEANDENGINEERING,VOL.5,NO.3,JULY2008TABLEXROBABILITYHATAGVLEAVESWOORISTRIBUTEDNTERARRIVAL TABLEXI.)PALUEOFACHNTERARRIVALi.i.d.,EXPONENTIALLYISTRIBUTEDACHACHINES TABLEXII.)PALUEOFACHNTERARRIVALi.i.d.,GISTRIBUTEDANDACHACHINESENOTES 3)Five-MachineSystems:TablesXIIIandXIVlistthevaluesof for ,andTablesXVIIandXVIIIlistthevaluesof for TABLEXIIIVERAGEUMBEROFAITINGATACHACHINERRIVALS TABLEXIVXIII(VERAGEUMBEROFACHACHINEFORRRIVALS TABLEXVVERAGEUMBEROFAITINGATACHACHINEFORISTRIBUTEDNTERARRIVAL Poissonarrivals.Thecorrespondingvaluesforagamma-dis-tributedinterarrivaltimeareshowninTablesXVandXVI(fortheaveragenumberwaiting)andTablesXIXandXX(fortheprobability).TablesXXIandXXIIpresenttheresultsfromoptimizationperformedwiththeMarkovchainmodel.Fig.4