/
Multirate Digital Signal Processing Part I Dr Multirate Digital Signal Processing Part I Dr

Multirate Digital Signal Processing Part I Dr - PDF document

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
517 views
Uploaded On 2015-01-19

Multirate Digital Signal Processing Part I Dr - PPT Presentation

Deepa Kundur University of Toronto Dr Deepa Kundur University of Toronto Multirate Digital Signal Processing Part I 1 42 Chapter 11 Multirate Digital Signal Processing DiscreteTime Signals and Systems Reference Sections 111113 of John G Proakis and ID: 33331

Deepa Kundur University

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Multirate Digital Signal Processing Part..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chapter11:MultirateDigitalSignalProcessing11.1IntroductionImplementationofSamplingRateConversiony(mTy)=1Xn=�1x(nTx)gTxmTy Tx�n =1Xn=�1x(nTx)g(Tx(km+m�n)) letk=km�n =1Xk=�1x((km�k)Tx)g(Tx(k+m)) =1Xk=�1g((k+m)Tx)x((km�k)Tx)| {z }weightedlinearcombinationoforigsamples Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI13/42 Chapter11:MultirateDigitalSignalProcessing11.1IntroductionImplementationofSamplingRateConversiony(mTy)=1Xk=�1g((k+m)Tx)x((km�k)Tx) Im:determinesthesetofweightsIkm:speci esthesetofinputsamples Irepresentsadiscrete-timelineartime-varyingsystemIeveryoutputsamplemrequiresuseofadi erentimpulseresponse/ceocientset:gm(nTx)=g((n+m)Tx) m =mTy Tx�mTy Tx2[0;1) Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI14/42 Chapter11:MultirateDigitalSignalProcessing11.1IntroductionImplementationofSamplingRateConversiony(mTy)=1Xk=�1g((k+m)Tx)x((km�k)Tx) =1Xk=�1g((k+m)Tx)x((km�k)Tx) Igm(nTx)mayhavetoberetrievedorcomputedIingeneral,thereareasmanyweights/coecientsrequiredasinputsamplesoutputvaluestocomputeIingeneral,nosimpli cationispossiblemakingcomputationofy(mTy)fromx(nTx)impractical Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI15/42 Chapter11:MultirateDigitalSignalProcessing11.1IntroductionLinearPeriodicallyTime-VaryingImplementationIsigni cantsimpli cationpossibleforTy Tx=Fx Fy=D IwhereD;I2Z+andGCD(D;I)=1m=mTy Tx�mTy Tx =mD I�mD I =1 ImD�mD II =1 I(mD)modI =1 I(mD)I Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI16/42 Chapter11:MultirateDigitalSignalProcessing11.1Introduction y(mTy)=1Xn=�1g((n+m)Tx)x((km�n)Tx) =1Xn=�1g((n+0)Tx)x((mD�n)Tx) =1Xn=�1g(nTx)x((mD�n)Tx)| {z }dst-timeconvolution Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI21/42 Chapter11:MultirateDigitalSignalProcessing11.1Introduction y(mTy)=1Xn=�1g(nTx)x((mD�n)Tx) =1Xn=�1sin(n) nx((mD�n)Tx) =1Xn=�1(n)x((mD�n)Tx) =x(mDTx) See Figure11.1.3oftext. Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI22/42 Chapter11:MultirateDigitalSignalProcessing11.1IntroductionInterpolation/Upsampling Tx=ITy=)Ty Tx=1 I;I2Z+ km =mTy Tx=jm Ikm=mTy Tx�mTy Tx=m I�jm Ik2f0;1=I;2=I;:::;(I�1)=Ig Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI23/42 Chapter11:MultirateDigitalSignalProcessing11.1IntroductionInterpolation/Upsamplingy(mTy)=1Xn=�1x(nTx)g(mTy�nTx) =1Xn=�1x(nTx)g(mTx I�nTx) =1Xn=�1x(nTx)sin(m I�n) m I�n =1Xn=�1x(nTx)sin( I(m�nI))  I(m�nI)| {z }sinccenteredatn=m=I See Figure11.1.4oftext. Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI24/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorDDownsamplingwithAnti-AlaisingFilter IDownsamplingalonemaycausealiasing,therefore,itisdesirabletointroduceananti-aliasing lterHd(!x) Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI25/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorD v(n)=1Xk=�1h(k)x(n�k) y(m) =v(mD)=1Xk=�1h(k)x(mD�k)| {z }lineartime-varyingsystem Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI26/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorDDownsampling:FrequencyDomainPerspectiveGoal :determinerelationshipbetweeninput-outputspectra Createanintermediatesignal~v(n)atrateFxbutwiththeequivalentinformationasy(m).~v(n)=v(n)n=0;D;2D;:::0otherwise =v(n)p(n)wherep(n)=1Xk=�1(n�kD) Note :y(m) =v(mD) 1= v(mD)p(mD) =~v(mD) y(m) !~v(n)(equivinfo) See Figure11.2.2oftext. Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI27/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorDAside:ImpulseTrainp(n)p(n)=1Xl=�1(n�lD)(periodicwithperiodD) ck =1 DD�1Xn=0p(n)ej2kn=D =D�1Xn=01Xl=�1(n�lD)| {z }zeroforl6=0ej2kn=D =1 DD�1Xn=0(n)ej2kn=D =1 D p(n) =D�1Xk=0ckej2km=D=1 DD�1Xk=0ej2km=D Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI28/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorDDownsampling:FrequencyDomainPerspectiveY(z)=1Xm=�1y(m)z�m=1Xm=�1~v(mD)z�m=+~v(�D)z1+~v(0)z0+~v(D)z�1+ =1Xm0=�1~v(m0)z�m0=Dsince~v(m)=0form62f0;D;2D;:::g=1Xm0=�1v(m)p(m)z�m=D=1Xm=�1v(m)1 DD�1Xk=0ej2km=Dz�m0=D =1 DD�1Xk=01Xm=�1v(m)(e�j2k=Dz1=D)�m| {z }V(e�j2k=Dz1=D) =Hd(e�j2k=Dz1=D)X(e�j2k=D) =1 DD�1Xk=0Hd(e�j2k=Dz1=D)X(e�j2k=Dz1=D) Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI29/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorD Intheprecedinganalysis,weemployed:v(n)Z !V(z)hd(n)Z !Hd(z)x(n)Z !X(z)V(z)=1Xm=�1v(m)z�mV(z)=Hd(z)X(z)Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI30/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorDLetz=ej!y:Y(z)=1 DD�1Xk=0Hd(e�j2k=Dz1=D)X(e�j2k=Dz1=D) Y(ej!y) =1 DD�1Xk=0Hd(e�j2k=Dej!y1=D)X(e�j2k=Dej!y1=D)=1 DD�1Xk=0Hd(ej(!y�2k)=D)X(ej(!y�2k)=D) Y(!y) =1 DD�1Xk=0Hd!y�2k DX!y�2k D Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI31/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorDY(!y)=1 DD�1Xk=0Hd!y�2k DX!y�2k D For�!y,� D!y�2k D Dfork=0�3 D!y�2k D� Dfork=1......�2+ D!y�2k D�2+3 Dfork=D�1 Note :For�!y,Hd!y�2k D=1fork=00fork=1;2;:::;D�1 Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI32/42 Chapter11:MultirateDigitalSignalProcessing11.2DecimationbyaFactorDTherefore,for�!y,Y(!y)=1 DD�1Xk=0Hd!y�2k DX!y�2k D =1 DHd!y D| {z }=1X!y D+1 DD�1Xk=1Hd!y�2k D| {z }=0X!y�2k D Y(!y)=1 DX�!y D Note:!y=Ty Tx!x=D!x. � D!x DofX(!x)isstretchedinto�!yforY(!y).See Figure11.2.3oftext. Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI33/42 Chapter11:MultirateDigitalSignalProcessing11.3InterpolationbyaFactorIInterpolationbyaFactorI IInterpolationonlyincreasesthevisibleresolutionofthesignal.INoinformationgainisachieved.AtbestHu(!y)maintainsthesameinformationiny(n)asexistsinx(n). Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI34/42 Chapter11:MultirateDigitalSignalProcessing11.3InterpolationbyaFactorIGoal :determinerelationshipbetweeninput-outputspectra Consideranintermediatesignalv(n)atrateFybutwiththeequivalentinformationasx(m). v(m)=x(m=I)m=0;I;2I;:::0otherwise V(z) =1Xm=�1v(m)z�m =+v(�I)zI+v(0)z0+v(I)z�I+ =1Xm=�1x(m)z�mI=1Xm=�1x(m)(zI)�m=X(zI) V(ej!y) =X(ej!yI)=)V(!y)=X(!yI) Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI35/42 Chapter11:MultirateDigitalSignalProcessing11.3InterpolationbyaFactorIV(!y)=X(!yI)See Figure11.3.1oftext. Hu(!y)=I0j!yj=I0otherwiseY(!y)=Hu(!y)V(!y)=IX(!yI)0j!yj=I0otherwise Y(!y)=IX(!yI)0j!yj=I0otherwise Note :!y=Ty Tx=!x I.�!xiscompressedinto�=I!y=I Dr.DeepaKundur(UniversityofToronto)MultirateDigitalSignalProcessing:PartI36/42