/
2DENNISGAITSGORYLemma1.1.1.ForC1;C2asabove,anyF2Functcont(C1;C2)admits 2DENNISGAITSGORYLemma1.1.1.ForC1;C2asabove,anyF2Functcont(C1;C2)admits

2DENNISGAITSGORYLemma1.1.1.ForC1;C2asabove,anyF2Functcont(C1;C2)admits - PDF document

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
371 views
Uploaded On 2016-12-24

2DENNISGAITSGORYLemma1.1.1.ForC1;C2asabove,anyF2Functcont(C1;C2)admits - PPT Presentation

4DENNISGAITSGORY135AssumethatintheabovesettingthefunctorsG alsobelongtoFunctcontCjCiAssumealsothatforeverydiagramAi1 ji2thecategoryIAiscontractibleThishappensegwhenIis lteredLemma1 ID: 505539

4DENNISGAITSGORY1.3.5.AssumethatintheabovesettingthefunctorsG alsobelongtoFunctcont(Cj;Ci).AssumealsothatforeverydiagramA=i1 j!i2 thecategoryIA=iscontractible.(Thishappens e.g. whenIis ltered.)Lemma1.

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2DENNISGAITSGORYLemma1.1.1.ForC1;C2asabo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2DENNISGAITSGORYLemma1.1.1.ForC1;C2asabove,anyF2Functcont(C1;C2)admitsarightadjointinFunct(C2;C1).Thefullsubcategoryof(Funct(C2;C1))opobtainedasrightadjointsofobjectsfromFunctcont(C1;C2)isFunctcocont(C2;C1)Funct(C2;C1);whichconsistsoffunctorsthatcommutewithlimits.1.2.The2-categoryofDGcategories.We'dliketoviewthetotalityofDGcategoriesasan(1;2)-categoryin2ways,denotedDGCatcontandDGCat,respectively,whereinbothcasestheobjectsareDGcategories,andthe1-morphismsareFunctcont(C1;C2)andFunct(C1;C2);respectively.Forthemostpart,however,we'llbeworkingwithDGCatcont.Inthiscase,we'llalsousethenotationHom(C1;C2):=Functcont(C1;C2):1.2.1.Thetroubleis,however,thatthetheoryof(1;2)-categorieshasn'tbeenadequatelydocumentedatthetimeofwriting.Thepaper[Lu3]developsthenotionof(1;2)-category,butdoesn'tshowthatDGcategoriesanditsvariantsconsideredinthesequelforma(1;2)-category.Apossiblewayoutisasfollows:formostapplications(suchascomputationoflimitsandcolimits),itwouldbesucienttoviewDGCatcontandDGCatasjust1-categories(i.e.,(1;1)-categories),bydiscradingnon-invertible2-morphisms,i.e.,byconsideringas1-morphismsthecorrespondingmaximalsub-groupoidsFunctcont(C1;C2)Functcont(C1;C2)andFunct(C1;C2)Funct(C1;C2):1.2.2.Byde nition,whenconsideringDGCatcontorDGCatasan(1;1)-category,weonlyconsidernaturaltransformationsthatareisomorphisms.However,onecanrecoverallnaturaltransformationsasfollows.Namely,let(0!1)betheDG-categorygeneratedbytwoobjects0and1withauniquearrow0!1.ThenforC1andC2asabove,wecanconsiderFunctcont(C1 (0!1);C2).The bersofthemapFunctcont(C1 (0!1);C2)!Functcont(C1;C2)Functcont(C1;C2)correspondingtothetwofunctorsVect(0!1),overagivenpairF0;F002Functcont(C1;C2)isthegroupoidofallnaturaltransformationsF0)F00.AsimilarremarkappliestoDGCatcontreplacedbyDGCat.1.3.LimitsandcolimitsinDGCatcontandDGCat.Lemma1.3.1.(1)The1-categoriesDGCatcontandDGCatadmitlimitsandcolimits.(2)TheforgetfulfunctorDGCatcont!DGCatcommuteswithlimits.Thisisdonein[Lu1,Sect.5.5.3].Note,however,thattheforgetfulfunctorDGCatcont!DGCatdoesnotcommutewithcolimits. 4DENNISGAITSGORY1.3.5.AssumethatintheabovesettingthefunctorsG alsobelongtoFunctcont(Cj;Ci).AssumealsothatforeverydiagramA=i1 j!i2,thecategoryIA=iscontractible.(Thishappens,e.g.,whenIis ltered.)Lemma1.3.6.Undertheabovecircustamstances,thefunctorCj0insj0�!colimj2I;GCj'limi2Iop;GCievi0�!Ci0iscanonicallyisomorphictocolimk2I; :j0!k; :i0!kG F ;wherethecolimitistakeninFunctcont(Cj0;Ci0).Proof.Considerthecategory0C:=lax:lim �i2Iop;GCiofallassignments(1)i7!(ci2Ci);( :i!i0)7!(G (ci0) �!ci2Ci);equippedwiththedataofmakingthemaps coherentlyassociative.However,themaps arenotrequiredtobeisomorphisms.WehaveafullyfaithfulembeddingC:=lim �i2Iop;GCj,!lax:lim �i2Iop;GCi=:0Cwhoseessentialimageconsistsofthoseobjects(1),forwhichthemaps areisomorphisms.Foragivenindexjandcj2Cj,theassignment(2)i7!colimk2I; :j!k; :i!kG F naturallyupgradestoanobjectof0C.Indeed,for :i!i0,thecorrespondingmapis(3)G colimk2I; :j!k; 0:i0!kG 0F (cj)'colim�!k2I; :j!k; 0:i0!kG G 0F (cj)''colim�!k2I; :j!k; 0:i0!kG 0 F (cj)!colim�!k2I; :j!k; :i!kG F (cj);wherethe rstisomorphismresultsfromthecontinuityofthefunctorG ,andthelastarrowcorrespondstothefunctorofindexcategories(4)fk2I; :j!k; 0:i0!kg!fk2I; :j!k; :i!kg;givenbypre-compositionwith .Itisclearthattheassignment(2)de nesafunctorCj!0C.Denotethisfunctorby0insj.Itfollowsfromtheconstructionthatforcj2Cjandc2C0C,wehaveacanonicalisomorphismMaps0C(0insj(cj);c)'MapsCj(cj;evj(c)):Hence,bythe(insj;evj)-adjunction,itremainstoshowthatwhenIsatis estheassumtionofthelemma,theessentialimageofthefunctor0insjbelongstoC0C. 6DENNISGAITSGORY2.1.Dualitydatum.LetCbeaDG-category.WesaythatCisdualizable,ofthereexistsanotherDG-categoryC_endowedwithmorphismsinDGCatcont:Vect!C_ Cand:C C_!Vect;satisfyingtheusualdualityaxioms,i.e.,thecompositionsCIdC �!C C_ C IdC�!CandC_ IdC�!C_ C C_IdC �!C_areisomorphictotheidentityfunctor.2.1.1.Tautologically,onecansaythatCisdualizableifitissuchasa0-objectofthe(1;1)-categoryDGCatcont,seee.g.Sect.5forareminderwhatitmeanstobeadualizableobjectinamonoidalcategory.2.1.2.Alternatively,CisdualizableifthereexistsaDG-categoryC_endowedwithapairingC C_!VectinDGCatcontwhichinducesanequivalence(5)C_ D!Functcont(C;D)foranyD2DGCatcont.Inparticular,C_canbeidenti edwithFunctcont(C;Vect).2.1.3.Equivalently,thereshouldexistafunctorVect!C_ CinDGCatcontwhichforanyD1;D2inducesanequivalence(6)Functcont(C D1;D2)'Functcont(D1;C_ D2):2.1.4.SincethetensorproductonDGCatcontissymmetric,wehavethatC_isthedualofCifandonlyifCisthedualofC_.2.1.5.Dualizablecategoriesenjoynicepropertiesregardinglimitsandcolimits:Lemma2.1.6.Leti7!CibeafunctorI!DGCatcont.LetDbedualizable.(1)ThenaturalfunctorD limICi!limI(D Ci)isanequivalence.(2)ThenaturalfunctorcolimIFunctcont(D;Ci)!Functcont(D;colimICi)isanequivalence,i.e.,DiscompactasanobjectofDGCatcont(thecolimitinLHSistakenwithinDGCatcont).Proof.Forpoint(1),theLHScanberewrittenasFunctcont(D_;limICi)'limIFunctcont(D_;Ci);whichisequivalenttotheRHS.Point(2)followsfromequation(5).2.2.Dualfunctors.IfC1;C2aredualizable,thereexistsacanonicalequivalenceFunctcont(C1;C2)'C_1 C2'Functcont(C_2;C_1);whichwe'lldenoteF7!F_. 8DENNISGAITSGORYinducedby(8)isanequivalence.Tothisend,onechecksthattheabovefunctorisisomorphictothecompositionoftheequivalences(lim �i2Iop;GCi) D'(colim�!i2I;FCi) D'colim�!i2I;(F Id)(Ci D)'lim �i2Iop;(G Id)(Ci D)''lim �i2IopFunctcont(C_i;D)'Functcont0@(colim�!i2I;G_C_i);D1A;wherethe rstandthirdequivalenceareobtainedbyapplyingLemma1.3.3,andthelimitofFunctcont(C_i;D)istakenwithrespecttothefunctorsFunctcont(C_j;D)�!Functcont(C_i;D);F7!FG_ ; :i!j:Thecharacterizationoftheequivalence(10)givenby(7)followsfromthede nitionofthepairing(8).2.2.3.It'salsoeasytoseethatif,undertheabovecircumstances,eachofthecategoriesCiiscompactlygenerated,thensoisC:=colimI;FCi.Indeed,thefunctorsi:Ci!Csendcompactobjectstocompactones.2.3.Compactlygeneratedcategories.AssumenowthatCiscompactlygenerated.I.e.,wecanwriteC'Ind(Cc),whereCcisasmall(non-cocomplete)DGcategoryconsistingofcompactobjectsofC.ForanyDG-categoryDwehavethatFunctcont(C;D)isequivalenttothecategoryFunct(Cc;D)ofjustk-linearfunctorsCc!D.NotethatwehaveacanonicalpairinginDGCatcont:Ind(Cc) Ind((Cc)op)!Vect;givenbytheYonedapairingCc(Cc)op!Vect.Proposition2.3.1.TheabovepairingmakesInd((Cc)op)intoadualofC.Inparticular,anycompactlygeneratedDG-categoryisdualizable.Proof.We'llcheckthatforanyDtheabovepairingde nesanequivalenceInd((Cc)op) D!Functcont(C;D)'Funct(Cc;D):ItwillbeconvenienttousethefollowingcharacterizationofthethetensorproductoperationonDGCatcont:D1 D2'(Functcont(D1;Dop2))op:Hence,weobtainthatInd((Cc)op) D'(Funct((Cc)op;Dop))op'Funct(Cc;D);asrequired. 10DENNISGAITSGORY3.2.Monadsandtensorproducts.LetC1;C2beDG-categories,andletAi:Ci!Ci,i=1;2bemonadsthatbelongtoFunctcont(Ci;Ci).LetC:=C1 C2,andletA=A1 A2.Proposition3.2.1.ThenaturalfunctorA1-modC1 A2-modC2!A-modCisanequivalence.Proof.LetFi;GidenotethepairofadjointfunctorsFi:Ai-modCiCi:Gi:ConsidertheforgetfulfunctorG1 G2:A1-modC1 A2-modC2!C1 C2'C:ItsleftadjointisF1 F2,andtheresultingmonadonCisA.BySect.3.1.2,itsucestoshowthatG1 G2isconservative.ThelatterisequivalenttotheimageofF1 F2generatingA1-modC1 A2-modC2.However,thisfollowsfromthefactthattheimageofFigeneratesAi-modCi,sinceGiisconservativebyassumption.4.Modulecategories4.1.Theset-up.LetObeamonoidalcategory.We'llalwaysbeassumingthatthemonoidaloperationmultO:O O!ObelongstoFunctcont(O O;O).ByanO-modulewe'llmeanacategoryCendowedwithanassociativeactionactO;C:O C!C,suchthatthisfunctorbelongstoFunctcont(O C;C).FortwoO-modulecategoriesC1andC2,weshalldenotebyHomO-mod(C1;C2)theDGcategoryoffunctorsC1!C2thatarecompatiblewiththeO-action,andbelongtoFunctcont(C1;C2).4.1.1.WemakeO-modulecategoriesintoan(1;2)-category,denotedO-mod,bysetting1-morphismstobeHomO(C1;C2).However,thesamereservationpertainingtothenotionof(1;2)-categoryasinthecaseofDGCatcont(seeSect.1.2.1)applies.AsinthecaseofDGCat,wecanalternativelyviewO-modasan(1;1)-category,bydiscardingthenon-invertible2-morphisms,i.e.,byconsideringthemaximalsub-groupoidHomO-mod(C1;C2)HomO-mod(C1;C2):AsforDGCat,the(1;2)-categorystructurecanbeessentiallyrecoveredfromthe(1;1)-categorybyconsideringthearrowscategory,usingthefactthatO-modistensoredoverDGCat.Whenconsideringafunctor:O1-mod!O2-modas(1;1)-categories,wecanrecoveritasa2-functorbetweenthecorresponding(1;2)-categoriesonceisendowedwithastructureofbeingtensoredoverDGCat. 12DENNISGAITSGORYProof.LetG:A-modO!OandGop:Aop-modOop!Odenotetheforgetfulfunctors,andletFandFopdenotetheiradjoints.WehaveapairofmutuallyadjointfunctorsF Fop:O'O OOA-modO OAop-modOop:G Gop:TheresultingmonadonOcorrespondstothecategoryA-bimodO.Hence,byProposition3.1.2,itsucestocheckthatthefunctorG Gopisconservative.ThelatterisequivalenttothefactthattheimageofF FopgeneratesA-modO OAop-modOop.However,thelatterfollowssincetheimageofF(resp.,Fop)generatesA-modO(resp.,Aop-modOop),sincethefunctorsGandGopareconservative.4.7.LetOandAbeasabove.Proposition4.7.1.ThecategoriesA-modOandAop-modOoparemutuallyO-dual.Proof.Thepairing:Aop-modOop A-modO!OistheusualHochschildhomlogyfunctor.Thefunctor:Vect!A-modO Aop-modOopcorrespondstotheobjectA2A-bimodO'A-modO Aop-modOop:Corollary4.7.2.ForaleftO-modulecategoryC,wehaveanaturalequivalence:HomO-mod(Aop-modOop;C)'A-modO OC:4.8.LetCbealeftO-modulecategory.ForAasabove,wecanconsiderthemonadAConCgivenbytensorproductwithA.LetA-modCdenotethecorrespondingcategoryofmodules.Proposition4.8.1.ThenaturalfunctorA-modO OC!A-modCisanequivalence.Proof.TheprooffollowsagainfromProposition3.1.2:itsucestoobservethattheforgetfulfunctorA-modO OC!O OC'Cisconservative.4.9.Compactgenerationoftensorproducts.LetObeamonoidalDGcategory,andletC1andC2beleftandrightO-modulecategories,respectively.AssumenowthatOandthatthemonoidaloperationO O!Oadmitsacontinuousrightadjoint,andthatsodotheactionfunctorsO C1!C1andC2 O!C2.Proposition4.9.1.Undertheabovecircumstances,therightadjointtothetautologicalfunctorC2 C1!C2 OC1iscontinuous. 14DENNISGAITSGORY5.2.LetusnowconsiderOasamoduleoveritself.RecallthatanobjectX2Oissaidtobeleft-dualizableifthereexistsanobjectX_2Oendowedwiththe1O!X X_andX_ X!1O;satisfyingtheusualaxioms.Recallalsothefollowing:Lemma5.2.1.(1)IfXisdualizable,wehaveHom(Y;X Z)'Hom(X_ Y;Z)andHom(Z X;Y)'Hom(Z;Y X_):(2)IfeitherXorYisleft-dualizable,thenHom O(X;Y)'Y Hom (X;1O):(3)AnobjectXisleft-dualizableifandonlyifthereexistsanobjectX_endowedwithafunctorialisomorphismHom O(X;Y)'Y X_.5.2.2.Evidently,ifanobjectXisleft-dualizable,thenit'srelativelycompact.Proposition5.2.3.SupposethatOisgeneratedbyleft-dualizableobjects.Theneveryrelativelycompactobjectisleft-dualizable.Proof.LetXberelativelyO-leftcompact.WeneedtoestablishtheisomorphismY Hom O(X;1O)'Hom O(X;Y):Byassumption,bothsidescommutewithcolimitsinY.Hence,it'senoughtoestablishitforageneratingsetofY's.However,theisomorphismdoesholdwheneverYisleft-dualizable.6.Rigidmonoidalcategories6.1.LetObeamonoidalcategory.LetmultOdenotethetensorproductfunctorO O!O,andunitO:Vect!Otheunit.WeshallsaythatOisrigidifthefollowingconditionshold:TherightadjointofmultO,denotedmultO,belongstoFunctcont(O;O O).ThefunctormultO:O!O OiscompatiblewiththeleftandrightactionsofO.1TherightadjointofunitO,denotedunitO,belongstoFunctcont(O;Vect)(equivalently,theobjectunitO(k)2Oiscompact).Ifthishappens,it'seasytoseethatthedataof:O OmultO�!OunitO�!Vectand:VectunitO�!OmultO�!O Ode neanisomorphismO!O_;let'sdenotethisisomorphism1O.6.1.1.NotethatwhenOiscompactlygenerated,theconditionthatOberigidisequivalenttoOcbeingarigidmonoidalcategoryintheusualsense(i.e.,everyobjectadmitsaleftandarightdual). 1Apriori,it'sonlylaxcompatible 16DENNISGAITSGORYwrittenabove,andtheotheris(multO).WeconsiderbothsidesasendowedwithanactionofOontheright.TheassumptiononOsaysthatbothfunctorsarecompatiblewiththisaction.Hence,itisenoughtoidentifythetwocompositionsVectunitO!OO Ocoincide.Butthisiseasytoseethatbothidentifywith.Asacorollary,weobtain:Corollary6.2.4.LetOberigid,andletF:C1!C2beafunctorbetweenO-modulecat-egories.SupposethatF,whenviewedasafunctorbetweenjustDGcategoriesadmitsaleft(resp.,continuousright)adjointG.ThenthediagramO C1IdO F �����O C2actO;C1??y??yactO;C2C1 ����C2;thataprioricommutesuptoanaturaltransformation,actuallycommutes.Inparticular,GhasanaturalstructureoffunctorbetweenO-modulecategories.6.3.Hohschildhomologyandcohomology.LetObeamonoidalcategoryandKabi-modulecategory.Recallthatinthiscasewecanformthe"Hochschildhomology"categoryHHO(K),de nedasthegeometricrealizationofthesimplicialcategoryKO K:::Inparticular,ifK=C1 C2withC1beingarightmoduleandC2aleftmodule,wehaveHHO(C1 C2)=:C1 OC2,thetensorproductofC1andC2overO.LetOandKbeasbefore.Wecanalsode nethe"Hochschildcohomology"categoryCHO(K),de nedasthetotalizationoftheco-simplicialcategoryKO_ K:::Inparticular,fortwoleftmodulecategoriesC1;C2,bysettingK=Hom(C1;C2),wehaveCHO(Hom(C1;C2))'HomO-mod(C1;C2).ForC1aleftO-moduleandC2arightO-module,wewillusethenotationC1O C2:=CHO(C1 C2):6.3.1.AssumenowthatOisrigid.FromLemma1.3.3andProposition6.2.3,weobtain:Proposition6.3.2.HHO(K)'HCO(K0),whereK0isthesameasKasarightO-module,andtheleftO-modulestructureistwistedby'.Corollary6.3.3.LetObearigidmonoidalcategory.(1)LetC1andC2betwoleftO-moduleswithC1dualizableasacategory.ThenHomO-mod(C1;C2)'C_1 OC02;whereC02isobtainedfromC2bytwistingtheactionby'.(2)LetC1andC2berightandleftO-modules,bothdualizableascategories.ThenC1 OC2isdualizableanditsdualidenti eswithC02_ OC_1.