/
humans)senseoccupancy.Reverberationisbothfrequencydependentandchangesb humans)senseoccupancy.Reverberationisbothfrequencydependentandchangesb

humans)senseoccupancy.Reverberationisbothfrequencydependentandchangesb - PDF document

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
403 views
Uploaded On 2016-05-20

humans)senseoccupancy.Reverberationisbothfrequencydependentandchangesb - PPT Presentation

Figure1Systemoverview21AcousticsSeminalworkinacousticshasshownthatpeopleinaspacesigni cantlyimpactreverberationandthatreverberationisfrequency2aswellasroomgeometrydependent4Overthelast120yearst ID: 327152

Figure1:Systemoverview2.1AcousticsSeminalworkinacousticshasshownthatpeopleinaspacesigni cantlyimpactreverberationandthatreverberationisfrequency[2]aswellasroomgeometrydependent[4].Overthelast120yearst

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "humans)senseoccupancy.Reverberationisbot..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

humans)senseoccupancy.Reverberationisbothfrequencydependentandchangesbasedontheroomgeometry,wallmaterialsandfurniturematerial.Makingaccurateandgeneralizablemodelsofre-verberationisquitechallenging.Forthisreason,weproposeanapproachwherethereverberationistrainedonaper-roombasisusingamachinelearningapproach.Insteadofmeasuringandclassifyingthereverberationatdiscretefre-quencieslikewhatisdoneforconcerthalls,weuseultrasonicchirpsthatsweepacrossafrequencyrangetorapidlymea-surethespacesincewearenotconcernedwithexactlyquan-tifyingreverberation.Chirpscanalsobeconstructedusingfade-inandfade-outperiodsthatpreventaudibleartifactsinlow-costspeakersthatcouldbedetectedbyhumans[3].Sincethere ectionscomingbackfromthesesignalsareroomspeci c,weapplyasemi-supervisedmachinelearningap-proachthatisabletomodelthecharacteristicsoftheroomundermultipleloadsinordertoestimatehowreverberationchangeswithrespecttonumberofpeople.Typicallythisrequirestakingsampleswhentheroomisemptyaswellaswhentheroomhasenoughpeopletomakeasigni cantdif-ferenceinreverberationtimes.Alternativesignalcharacter-isticslikeDopplershiftorsimplytimeofdayschedulescanbeusedtodeterminewhentheroomisemptyforperiodicre-calibrationofthezeropoint.Figure1showsanoverviewofourproposedsystemwhereatweetertransmitsanultrasonicchirpintoaroomandaco-locatedmicrophoneisusedtoreceivethere ectedsig-nal.Anelectronicspackageisresponsibleforgeneratingthesignalandthenprocessingthere ectedsignal.Ourproto-typesystemusesacomputerforthispurpose,butweshowthattheactualrun-timecomputationofthesystemissim-pleenoughtoexecuteentirelyfromaplatformbasedonamicro-controller.Therearefourmainresearchchallengesassociatedwithourproposedsystem.First,weneedtodesignanappropri-ateexcitationsignalthatisbothinaudibletohumansandalsoexcitestheroominamannerthatcanclearlydistin-guishchangesasthenumberofpeopleincrease.Second,weneedatechniquethatcansamplequicklyandecientlysothatoccupancycanbeestimatedbeforethedynamicsoftheroomchange.Thisapproachalsorequiresatransducerthatisabletouniformlydistributetheultrasonicsignal.Third,weneedalgorithmsthatcanclassifyreceivedsignalsinor-dertoestimateload.Finally,weneedanapproachthatcanperiodicallyretraininordertoadapttoslightchangesintheenvironmentovertime.2.RELATEDWORKInthissection,wediscussthebackgroundrelatedtoacous-ticsfollowedbysimilarapproachesthathavebeenusedtomeasurebothpresenceandoccupancy.Commoncommer-ciallyavailableoccupancysensorslikePIRmotiondetectors;ultrasonicmotiondetectorsandmicrowavesensorsusuallyonlydetectpresence(ifoneormorepeopleareinaroom).Camerasandmoreadvancedinfraredsystemsattempttoes-timatetheactualnumberofpeopleinaspace,butaretyp-icallyexpensive,diculttotrainandsu erfromocclusion.Ourproposedapproachiscomparativelylow-cost,relativelyeasytotrainandhastheadvantageof llinganentirespacewithsoundmakingitmoreimmunetoobstacles. Figure1:Systemoverview2.1AcousticsSeminalworkinacousticshasshownthatpeopleinaspacesigni cantlyimpactreverberationandthatreverberationisfrequency[2]aswellasroomgeometrydependent[4].Overthelast120yearstherehavebeencountlesse ortsproposedtomodeltheseacousticpropertiesinordertoimprovecon-certhallperformance.Recentworkinthisspacehasusedcomputersimulations[5{8].Itisclearfromthislargebodyofresearchthatcreatingsimplegeneralizablemodelsofre-verberationisquitechallenging.Forthisreason,wepro-poseusingmachinelearningtechniquestolearnandclassifythereverberationresponseonaper-installationbasis.Invariousrecentpro lesofreverberation[9],itisclearthatgivenaparticularroomgeometry,audienceabsorptionfol-lowsrelativelydistinctcurvesthatmakeitanidealfeatureforoccupancydetection.Activeacousticapproacheshaveshowngreatpotentialinmultipleformsofsensing.In[10],theauthorsuseasinglespeakerwithmultiplemicrophonestodeterminetheshapeofaroombasedonechoes.In[11],theauthorsshowhowre ectedDopplersignalscanbeusedtoclassifyanythingfromspeech,towalkingmotionandevengestures.Tothebestofourknowledge,thisisoneofthe rstsystemwhereultrasoundhasbeenusedtodirectlyestimateoccupancy.2.2OccupancyAsidefromtheconventionalsolutionofusingPIRsensorstodetectthepresenceofpeople,mostotherrelatedworkhasbeencarriedoutonusingcamerasormultiplesensorstomeasureoccupancylevel.Alloftheseapproachesgener-allyfallintotwocategoriesbasedonslightlydi erentgoals.Onegroupfocusesononlydetectingthepresenceofpeo-ple[12][13][14][15],whichoftencomeswithanalysisofmoredetaileduserbehaviorandactions.Theothercate-goriesfocusesonpeoplecounting[16][17][18][19],usuallyinvolvingmoresophisticatedalgorithmsforlearning.PresenceDetectionInthecategoryofpresencedetection,manyapproachesfusedatareadingsfromdi erentsensortypes.Forexamplein Figure6:Rawfeaturesforempty,half-full,andfullroomscenariosnamelythereverberationtime(RT),followsarectangularhyperbolacurveagainstthetotalabsorbingmaterial.Herec20isthespeedofsoundat20degreeCelsius,Visthevol-ume(m3)oftheroom,Sisthetotalsurfacearea(m2)ofaroom,andaistheaverageabsorptioncoecientofroomsurface.RT60=24ln10 c20V Sa'0:1611V Sa(2)SincetheRTisde nedbythetimeforasignaltodecaybyacertaindecibel(dB),weget(3)RT/log(A0 Am)(3)whereA0istheconstantinitialamplitudeofthesoundsourceandAmisthemeasuredamplitudeafterabsorption.Combiningequation(2)and(3),weobtaintherelationshipbetweentheobservedfrequencyamplitudeandnumberofpeopleas(4)Am/e�C0V Sa(4)Asplottedin7,wecanseethatwhenthevolumeoftheroomissmall,thecurvetendstobesimilartoanexponentialregression.However,asthevolumeoftheroomincreases,thecurvebecomessmootherandmorelinearinregression.Thesizeoftheroomcanbeestimatedtohelpchoosethebeststartingmodel.Tocalculatetheamplitudedi erence,we rstre-calibratethemeanoftheemptyroomdataastheneworiginoftheprojectedspace,andforeveryclusterswecalculatehowfartheyarefromtheorigin.WetestedwithmultipledistancemetricsanddecidedthatChebyshevdistanceprovidedthebest ttoregressionmodelshownacrossouroveralldata.WeusetheChebyshevdistancede nedas, Figure7:Theoreticalregressiontrendswithdi erentroomvolumesbasedonequation(4)Dchebyshev(a;b)=max1in(jai�bij)(5)wherea;baretwoarbitraryn-dimensionaldatapoints.Theunitdistanceisfurthercalculatebasedontheaverageofthepairwise-distancebetweenthetwotrainingdatasets,wheretheunitdistanceisnamelythereferencedistancebe-tweenNand(N+1)peopleinstance.Next,weestimateeachclusterby ttingitsdistancetotheorigintotheregres-sionmodel.By ndingthevariablethatchangesthemostamongallthedata,whichnotedhereisderivedfromalin-earcombinationofallthevariablesintheoriginalspace,wecapturethefeaturethatdi erentiatesthedatathemostanduseditasameasurementtoestimatetheoccupancylevel.Forroomswithasmallvolume,anexponentialregression Figure12:Estimationmadebyouralgorithmcomparedtogroundtruthinsmallandmediumsizerooms Figure13:Estimationcomparedwithgroundtruthaspeo-pleenteranauditoriumsigni cantlyimpacttheresult.Weperformtestsincludingopeningthedoortotheroom,openingwindowsintheroom,changingthevolumeofthetransmitter,andthentestinginthesameroomoneweeklater.AsshowninTable1,theerrorwasmoste ectedbychangesinvolumeandslightlybyopeningthewindows.Errorduetochangesinvolumearenotsurprisingsincetheregressionmodelisbuiltaroundmagnitudechangesindi erentfrequencies.Totestthesystem'sabilitytoautomaticallyretrainit-self,anexperimentiscarriedoutinthesameroomaweeklaterwithslightlydi erentpositionandvolume.Withoutself-retrainonthenewenvironment,theerrorincreasesby1:2%.Thiscouldaccumulateandpotentiallygrowworseovertime.However,ifthebaselineandtheunitdistanceiscorrectlycalibrated,whichcanbedoneifanemptyroomcanbedetected,thechangeinerrorisnegligible.TheresultagainshowsinTable1,lessthan1%di erencebetweenthecalibratedunitdistanceandtheidealone.Finally,theoverallperformanceofthesystemissumma-rizedinTable2,andthecomparisonwithrelatedapproachesinpeoplecountingisshowninTable3.Thecomparisonval-ueswereextractedfromeachpaper.Thenumberofpeopleestimatedbythesystemisnomorethan3peopledi erentfromtheactualnumberonaverage,andtheaverageerrorinpercentagetothemaximumcapacityoftheroomisaround5%. InterferenceType ErrorInc.(%) Dooropened 1.63 Windowsopened 2.38 Changevolume 5.38 Changepositionofthedevice 2.12 Datacollectedaweeklater(noretrain) 1.18 Datacollectedaweeklater(auto-retrained) 0.08 Table1:Systemperformancewitherrorsourcesinsmallroom SizesParm MaxCap. Avg.Error Error/MaxCap.(%) Smallroom 8 0.61 7.6 Mediumroom 30 1.6 5.3 Largeroom 150 2.6 1.7 Table2:Systemperformancewithdi erentroomsizes5.LIMITATIONSOurproposedtechniquehasafewdrawbacksassociatedwiththefactthatitisanactivesensingsystem.Ifmultipleofourtransducersareplacedinthesameroom,thereneedstobeamechanismtocoordinatetransmissionssothattheydonotexperiencecross-talk.Forlargespaces,thereneedstobeaproportionallypowerfultransmitterthatwilleventu-allyrequirealargerampli erandtransducer.Asthespaceincreasesinsize,theabilityto nelydistinguishtheexactnumberofpeoplediminishes.Forlargerspaces,thesystemalsorequiresacalibrationpointwithenoughpeopletoreg-isterasapproximately5-10%oftheroomloadforthebestresults.Thiscanalsobehardtocoordinateincertainen-vironments.Weimagineinthefuturethatthisapproachcouldbecoupledwithotherformsofpeoplecountingtohelpaidinautomaticcalibration.Finally,ultrasoundinourparticularfrequencyisstilldetectablebyanimals.Beyondtransducercost(whichbene tsfrombeingcompatiblewithcommodityaudioequipment)thereisnoreasonwhythisapproachcannotoperateathigherfrequencies.Athigherfrequenciessoundbecomesmoredirectional,sofurtherin-vestigationwouldberequiredtodetermineifreverberationisstillassensitivetopersoncount.6.CONCLUSIONInconclusion,thispaperintroducedanultrasonicap-proachforestimatingtheoccupancylevelofaroomus-ingreverberationacrossmultiplefrequencies.Thesystemconsistsofanomni-directionalultrasonictweeterwithaco-locatedmicrophonethat rsttransmitsanultrasonicchirp MethodProposed[16][17][19] Max.Counts5012355 Avg.Error1.60.41.30.7 Environ.indoorindooroutdoorindoor Complexitylowmediumhighmedium Costlowhighmediumlow Table3:Overallsystemperformancecomparisonofmultiplepeoplecountingapproaches