/
No Direction Home The True Cost of Routing Around Deco No Direction Home The True Cost of Routing Around Deco

No Direction Home The True Cost of Routing Around Deco - PDF document

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
404 views
Uploaded On 2015-05-25

No Direction Home The True Cost of Routing Around Deco - PPT Presentation

Wong Meraki Inc Vitaly Shmatikov The University of Texas at Austin Abstract Decoy routing is a recently proposed approach for censorship circumvention It relies on cooperating ISPs in the middle of the Internet to deploy the so called decoy routers ID: 74502

Wong Meraki Inc Vitaly

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "No Direction Home The True Cost of Routi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

NoDirectionHome:TheTrueCostofRoutingAroundDecoysAmirHoumansadrTheUniversityofTexasatAustinEdmundL.WongMeraki,Inc.VitalyShmatikovTheUniversityofTexasatAustinAbstract—Decoyroutingisarecentlyproposedapproachforcensorshipcircumvention.ItreliesoncooperatingISPsinthemiddleoftheInternettodeploythesocalled“decoyrouters”thatproxynetworktrafcfromusersinthecensorshipregion.Arecentstudy,publishedinanaward-winningCCS2012paper[ 24 ],suggestedthatcensorsinhighlyconnectedcountrieslikeChinacaneasilydefeatdecoyroutingbyselectingInternetroutesthatdonotpassthroughthedecoys.Thisattackisknownas“routingarounddecoys”(RAD).Inthispaper,weperformanin-depthanalysisofthetruecostsoftheRADattack,basedonactualInternetdata.OuranalysistakesintoaccountnotjusttheInternettopology,butalsobusinessrelationshipsbetweenISPs,monetaryandperformancecostsofdifferentroutes,etc.WedemonstratethatevenforthemostvulnerabledecoyplacementassumedintheRADstudy,theattackislikelytoimposetremendouscostsonthecensoringISPs.Theywillbeforcedtoswitchtomuchmorecostlyroutesandsufferfromdegradationinthequalityofservice.Wethendemonstratethatamorestrategicplacementofdecoyswillfurtherincreasethecensors'costsandrendertheRADattackineffective.WealsoshowthattheattackisevenlessfeasibleforcensorsincountriesthatarenotasconnectedasChinasincetheyhavemanyfewerroutestochoosefrom.TherstlessonofourstudyisthatdefeatingdecoyroutingbysimplyselectingalternativeInternetroutesislikelytobeprohibitivelyexpensiveforthecensors.Thesecond,evenmoreimportantlessonisthatane-grained,data-drivenapproachisnecessaryforunderstandingthetruecostsofvariousrouteselec-tionmechanisms.AnalysesbasedsolelyonthegraphtopologyoftheInternetmayleadtomistakenconclusionsaboutthefeasibilityofdecoyroutingandothercensorshipcircumventiontechniquesbasedoninterdomainrouting.I.INTRODUCTIONWithrecentadvancesincensorshiptechnologies,evadingcensorshipisbecomingmorechallenging.Newcircumventionsystemsaimtomaketheirtrafcunobservableinorderto(1)protecttheirusers,and(2)preventtheirservicesfrombeing ResearchdescribedinthispaperwasperformedatTheUniversityofTexasatAustinblockedbycensors.Decoyroutingisanewapproachtoun-observablecensorshipcircumvention,proposedindependentlyinsystemscalledDR[ 17 ],Telex[ 26 ],andCirripede[ 15 ].Incontrasttotraditionalcircumventiontoolsinwhichcircumven-tionproxiesrunonend-hostservers,decoyroutingplacestheseproxies—calleddecoyrouters—attheroutersofvolunteerISPs(intherestofthispaper,wewillusethetermsISPand“autonomoussystem”interchangeably).Touseadecoyroutingsystem,aclientconnectstoanon-blockeddestinationviaaroutecontainingadecoyrouter;thedecoyrouteractsasaman-in-the-middlefortheconnectionandproxiesthetrafctotheblockeddestinationsrequestedbytheclient.Schuchardetal.[ 24 ]proposedthe“routingaroundde-coys”attackagainstdecoyrouting.Intherestofthispaper,wewillusetheterms“RADattack”and“RADpaper”torefer,respectively,tothisattackandthepaperinwhichitwaspublished.ThebasisoftheRADattackistheobservationthatISPsinthecensorshipregionarelikelytohavemultiplepathstoanygivendestination.Therefore,censorscaninstructtheISPsundertheirinuencetoexclusivelyselectroutesthatdonotpassthroughtheISPsknowntodeploydecoyrouters.TheRADattackisconsideredsuccessfulonlyifitmanagestoavoidthedecoyswhile(mostly)maintainingtheconnectiv-ityofthecensoringISPstotherestoftheInternet.Schuchardetal.analyzetheInternettopologyandshowthat—assumingthatthedecoyroutersareplacedinasmallnumberofrandomlyselectedautonomoussystems—theRADattackwillmaintainthecensors'connectivity.Ourcontributions.Inthispaper,wetakeacloserlookatthetruecostsoftheRADattack.WestartbyestimatingthequalityofthealternativeroutesselectedbytheRADadversary,asopposedtotheirmereexistence.Inthisanalysis,wemakethesamerandomplacementassumptionastheRADpaper,eventhoughitisheavilybiasedinfavoroftheRADadversary(arandomautonomoussystemisunlikelytotransitothers'trafc,thusplacingdecoyroutersinitserveslittlepurpose).TheshortsummaryofourndingsisthattheRADattackislikelytoimposehugemonetaryandperformancecostsonthecensoringISPs.TheRADpaperobservesthatifdecoyroutersareplacedat2%ofallautonomoussystems,China—byfartheeasiestcasefortheRADattackduetoitshighconnectivity—wouldgetdisconnectedonlyfrom4%oftheInternet[ 24 ,Fig.2a].Whiletrue,thisisnotthewholestory.Oursimulationsshowthat:Onaverage,theestimatedlatencyofChina'sInternetrouteswillincreasebyafactorof8.Permissiontofreelyreproduceallorpartofthispaperfornoncommercialpurposesisgrantedprovidedthatcopiesbearthisnoticeandthefullcitationontherstpage.ReproductionforcommercialpurposesisstrictlyprohibitedwithoutthepriorwrittenconsentoftheInternetSociety,therst-namedauthor(forreproductionofanentirepaperonly),andtheauthor'semployerifthepaperwaspreparedwithinthescopeofemployment.NDSS'14,23-26February2014,SanDiego,CA,USACopyright2014InternetSociety,ISBN1-891562-35-5http://dx.doi.org/doi-info-to-be-provided-later 44ofChina'scustomerautonomoussystemswillhavetobecome“transit”autonomoussystems,requiringvastre-organizationandinvestmentintheirnetworkinfras-tructure.Bycomparison,Chinatodayhasonly30transitautonomoussystems.TherewillbedramaticchangesinloadsonChina'stransitautonomoussystems.Forexample,transitloadswillin-creasebyafactorof2800foroneautonomoussystem,whiledecreasingby32%foranother.39%ofChina'sInternetrouteswillbecomelonger;12%willbecomemoreexpensive.Amorestrategicplacementofdecoyroutersfurtheram-pliesthecensors'costs,evenintermsofbasicInternetcon-nectivity.Ifdecoyroutersareplacedin2%ofallautonomoussystems,butthesystemsarechosenstrategicallyratherthanrandomly,Chinawillbedisconnectedfrom30%ofallInternetdestinations,not4%ascalculatedintheRADpaper.WealsoanalyzethefeasibilityoftheRADattackforotherstate-levelcensors.Asintuitivelyexpected,thecostsoftheRADattackdependonthecensoringcountry'snetworkinfras-tructure.CountrieswithlessconnectivityintheglobalInternetgraphincurhighercosts.Forinstance,aRADattackagainstdecoyroutersstrategicallyplacedin1%ofallautonomoussystemswilldisconnectChinafrom18%ofallInternetdes-tinations,whereasVenezuelaandSyriawillbedisconnectedfrom54%and87%ofalldestinations,respectively.Inadditiontoshowingthat“routingarounddecoys”islikelytobeverycostly,ourstudyprovidesseverallessonsandrecommendations.Animportantmethodologicallessonisthat,whenanalyzingthefeasibilityandcostsofattacksanddefensesbasedonInternetrouting,itisnotenoughtosimplylookatthetopologyoftheInternetgraph.Theedgesinthisgrapharenotallequal,theyhavevastlydifferentcostsandperformancecharacteristics.Relationshipsbetweenautonomoussystems,suchascustomer-provider,peer,etc.,matteralot.Therefore,anyanalysisofdecoyroutingandalternativesmustbebasedonallavailablene-graineddataaboutindividualnodesandedgesintheInternetgraph.Organization.InSection II ,weprovidebackgroundinforma-tionontheInternetASes,decoyrouting,andtheRADattack.InSection III ,wedescribehowtheRADattackworks.InSection IV ,weexplainthecoststhatmustbeincurredbycensorstocarryoutaRADattack.InSection V ,wesuggeststrategicdecoyplacements.InSection VI ,wedescribeourdatasourcesandthesimulationsetup.InSection VII ,weestimatethecostsoftheRADattack.WeconcludewithlessonsandrecommendationsinSection VIII .II.BACKGROUNDA.InternettopologyTheInternetisagloballydistributednetworkcomposedofmorethan44;000[ 3 ]autonomoussystems.Anautonomoussystem(AS)is“aconnectedgroupofoneormoreIPprexesrunbyoneormorenetworkoperatorswhichhasasingleandclearlydenedroutingpolicy”[ 14 ].WhilethedetailsofbusinessagreementsbetweenASescanbecomplex,thewidelyacceptedGaomodel[ 11 ]ab- ! " # $ % & !"#$%&'()*++(%,-.'(/%0'123%4 565765765765765765 Fig.1:Asub-treeoftheInternettopologygraph.       \r      \n Fig.2:TheCDFofcustomerconesize(themaximumcus-tomerconesize,whichis22,664,isnotshown).stractsbusinessrelationshipsintothefollowingthreemaintypes[ 1 ]:Customer-to-provider(c2p):AnASAisacustomerofaconnectedneighborASB(theprovider)ifApaysBtotransitA'strafctoInternetdestinationsthatAcannotreachotherwise.Similarly,Bhasaprovider-to-customer(p2c)relationshipwithA.Peer-to-peer(p2p):TwoASesarepeersiftheyexchangeInternettrafcbetweeneachotherandeachother'scus-tomersfreeofcharge,duetoamutualbusinessagreement.Sibling-to-sibling(s2s):TwoASesaresiblingsiftheybelongtothesameorganization.SiblingASesdonotchargeeachotherforthetransittrafc.Figure 1 illustratestheserelationships.AnAS'scustomerconeincludestheASitselfplusallASesthatcanbereachedfromthatASthroughprovider-to-customerlinks. 1 Inotherwords,A'scustomerconeincludesA,A'scustomers,A'scustomers'customers,andsoon.Figure 2 showstheCDFofcustomerconesizeforall44,064InternetASes.AnedgeASisanASwhosecustomerconehassize1,i.e.,ithasnocustomers.AtransitASisanASwhosecustomerconeisgreaterthan1,i.e.,ittransitsotherASes'trafctotherestoftheInternet.InternetroutesarebasedonpathsbetweenASes(inter- 1 http://as-rank.caida.org/?mode0=as-intro#customer-cone 2 domainroutes)whichareestablishedviaBGP,theBorderGatewayProtocol[ 22 ].ApathisasequenceofneighborASesthatconnectthesourceAStothedestinationASintheInternettopologygraph.Apathisvalidif,foreverytransitASonthepath,thereexistsacustomer[ 1 ]whoisitsimmediateneighbor.ApathisinvalidifatleastonetransitASisnotpaidbyaneighborinthepath[ 1 , 10 ].Validpathsarealsoreferredtoasvalley-free(VF).Correspondingly,werefertoinvalidpathsasnon-valley-free(NVF).Figure 3 showsexamplesofvalidandinvalidpaths.Valley-freenessisnotarequirementoftheBGPprotocol,i.e.,BGProutersaretechnicallyabletoadvertiseNVFpaths.However,asdescribedabove,aNVFpathwillimposeunde-siredmonetarycostsonsometransitISPbecauseitwillnotearnmoney(ormayevenhavetopaymoney)fortransitingthetrafcofanotherISP.Therefore,ISPswidelyrefrainfromadvertisingNVFpaths.B.DecoyroutingDecoyroutingisanewarchitectureforcensorshipcir-cumventionwhichwasproposedinthreeindependentworks:DR[ 17 ],Telex[ 26 ],andCirripede[ 15 ].Incontrasttotra-ditionalcircumventiontechniques[ 2 , 5 , 7 , 8 , 9 , 16 , 20 , 25 ]thatoperateoncomputerserverslocatedoutsidecensorshipregions,decoyroutingsystemsaredeployedonanumberofroutersinthemiddleoftheInternet,calleddecoyrouters,byASesthatwerefertoasdecoyASes.Insteadofmakingdirectconnectionstothecircumventionendpoints,e.g.,proxies,adecoyroutingclientmakesaTLS[ 6 ]connectiontoarbitrary,non-blockedInternetdestinations,knownasovertdestinations.Theclientselectsovertdestinationssothattheroutestothesedestinationspassthroughdecoyroutersandstegano-graphicallysignalsthedecoyroutertotreattheseconnectionsascircumventionconnections.Thedecoyrouterinterceptstheclient'strafcandproxiestheconnectiontothecovertdestinationrequestedbytheclient.Toacensorobservingtheclient'strafc,theclientappearstobecommunicatingwithanon-blocked,overtdestination,whiletheclientisactuallycommunicatingwithaforbidden,covertdestination.InDR[ 17 ]andTelex[ 26 ],thedecoyrouteritselfproxiescovertconnections,whereasinCirripede[ 15 ]decoyroutersdeectthetrafctoexternalproxies.Also,whileTelexandCirripederequireclientstoprobeforovertdestinationsthathappentohavedecoyroutersonroutesleadingtothem,DRassumesthatclientsobtainthesecretlocationsofdecoyroutersthroughout-of-bandchannels.Theproposeddecoyroutingdesignsalsousedifferentsignalingtechniques:Cirri-pedeusestheinitialsequencenumberoftheTLSconnection,whereasTelexusestheTLSnonce.Furtherdetailsonthedesignofdecoyroutingsystemscanbefoundintheoriginalpapers[ 15 , 17 , 26 ].HowtoselectASesfordecoyplacementhasbeenstudiedinthreepapers.Houmansadretal.[ 15 ]andCesareoetal.[ 4 ]analyzedtheplacementofdecoyroutersinanon-adversarialsetting,whileSchuchardetal.[ 24 ]analyzedtheplacementofdecoyroutersinthepresenceofacensorcapableofchangingroutingdecisions—seeSection II-C .C.Routingarounddecoys(RAD)Schuchardetal.[ 24 ]introducedthe“routingarounddecoys”(RAD)attackagainstdecoyroutingsystems.TheRADattackisconductedbyarouting-capableadversary,i.e.,acensoringregimewhocanmodifythestandardroutingdecisionsoftheISPsunderitsinuenceinordertoensurethattheirInternettrafcdoesnotpassthroughanydecoyASes.TheASescontrolledbyaRADadversarydiscardallBGPpathsthatcontainevenonedecoyASandchoosealternative,decoy-freepaths.InordertolaunchtheRADattack,theRADadversaryneedstoknowwhichASesdeploydecoyrouters.Thiscanbedone,forexample,viaprobingschemesproposedintheRADpaper.ThemainintuitionbehindtheRADattackisasfollows.Foranygivensourceanddestination,theInternettopologyislikelytoprovidemultipleinterdomainpaths.Consequently,aRADadversarycancompelitsASestoavoidpathsthatcontaindecoyASeswithoutsacricingmuchofitsInternetconnectivity.IfcensorshipresultsinasignicantlossordegradationofInternetconnectivityinthecensorshipregion,itcausessignicantcollateraldamageandislesslikelytobeinthecensors'interest.Therefore,theRADattackisconsideredsuccessfulonlyiftheRADadversarycanavoidalldecoyASeswhilemaintainingitsconnectivitywithmostoftheInternet.ToimprovetheRADadversary'sconnectivity,theRADpaperassumesthattheASesundertheadversary'scontrolshareinterdomainpathswitheachotherregardlessoftheirbusinessrelations.Inotherwords,anAScontrolledbyaRADadversarycanusethepathsknowntoanyotherAScontrolledbythesameRADadversary.TheRADpaperconsidersseveralcensoringregimesaspossibleRADadversaries,includingChina,Iran,andSyria.AstheRADpapersuggests,ChinaisthemostpowerfulRADadversaryduetoitssignicantconnectivity.III.INTERDOMAINROUTINGINRADTheBGP[ 22 ]protocolisthedefactostandardusedbyASestoconstructinterdomainpaths.TheRADattackforcesASesundertheRADadversary'scontroltochangehowtheymakeBGProutingdecisions.WerefertotheresultingprotocolasRBGP. 2 A.BGProutingABGProutermaintainsadatabasewiththepathstodifferentInternetdestinationsandadvertisessomeofthesepathstotheroutersoftheneighborASes,asdeterminedbytheASes'businessrelationships(seeSection II-A ).Forinstance,aBGProuterofatransitASadvertisesallknownpathstoitscustomers'routersinordertoearnmoneybytransitingtheirtrafc.Ontheotherhand,aBGProutershouldnotadvertiseitspathstotheproviderASes,otherwisetheASthatownstherouterwouldenduppayingitsprovidersfortransitingtheirtrafc(suchpathsareNVF,asexplainedinSection II-A ).ABGProuterislikelytoknowmultiplepathstoagivenInternetdestination(identiedbyitsIPaddressprex).BGP 2ThenameshouldnotbeconfusedwiththeR-BGPprotocolofKushmanetal.[ 18 ].3 ! " # $ % & ' ! " # $ % & ' (a)Validpaths(VF) ! " # $ % & ' ! " # $ % & ' (b)Invalidpaths(NVF)Fig.3:SampleASpaths.routersusealistofdecisionfactors,showninTable I ,toidentifythebestpath.Thesefactorsareappliedinorder,witheachfactorlteringoutthesetofpathsleftbythepreviouslyappliedfactor.Forexample,theB2factorisappliedonlytothepathsthatareconsideredbestaccordingtotheB1factor.Therouterappliesthefactorsuntilonlyonepathremains,i.e.,thebestpath.Forinstance,supposethatforacertaindestinationaBGProuterknowsfourpaths,twoofwhichpassthroughitsproviderneighborsandtheothertwopassthroughitspeerneighbors(weexplainthedifferencebetweenprovidersandpeersinSection II-A ).Inthiscase,theB3factorltersoutthetwopathsthatroutethroughproviders,andtheB4factorisappliedonlytothetwopathsthatroutethroughpeers.WeonlyfocusontwoofthedecisionfactorsfromTable I sincetheyarehighlyinuencedbytheRADattack.ThedescriptionoftheotherfactorscanbefoundintheBGPspecication[ 22 ].B3Businesspreference(highestLocal-Pref)Thisfactorselectsrouteswiththebestbenetfortherouter'sAS.Thisbenetisusuallymonetary.Typically,B3preferspathsthatroutethroughacustomer,thenthosethatroutethroughapeer,andnallythosethatroutethroughaprovider.ThisisduetotheASbusinessrelationshipsdescribedinSection II-A ,e.g.,routingthroughapeerisfreewhileroutingthroughaprovidercostsmoney.B4ShortestASpathThefourthdecisionfactoristhepathlength,i.e.,thenumberofASesinthepathfromthesourceAStothedestinationprex.Pathlengthaffectsthequalityofserviceoftheconnection,henceitcomesimmediatelyafterthebusinesspreferencefactor.ApathcomposedofmoreASesissusceptibletohighernetworklatencies,lowerthroughputs,andmorefrequentnetworkfailures.B.RBGProutingTheRADattackchangeshowBGProuterschooseASpaths.BGProuterscontrolledbyaRADadversaryuseamodiedlistofdecisionfactorstoselectthebestpathtoagivendestination;wecallsuchroutersRBGProuters.AnRBGProuterhastwoobjectivesthatdistinguishitfromastandardBGProuter.Avoidingdecoyrouters:BecausethemainintentionofaRADadversaryistoavoidpathsthatcontaindecoyrouters,anRBGProutersimplydiscardsallpathsthatpassthroughatleastonedecoyAS.Trafcre-routing:IfaRADASdoesnothaveadecoy-freepathtoagivendestination,theRADpapersuggeststhatitcanusedecoy-freepathsknowntootherRADASes,regardlessofthebusinessrelationbetweentheseASes.Inotherwords,aRADASwhoknowsadecoy-freepathtoagivendestinationtransitsthetrafcofotherRADASestothatdestinationevenifthiscontradictsthestandardBGPdecisionfactors.Forinstance,ifaChineseASdoesnothaveadecoy-freepathtoacertaindestination,itcanre-routetrafctothatdestinationthroughoneoftheother198ASesinChina,e.g.,acustomerASoranASwithwhichithasnobusinessrelationship.ThisisakeyfactorinthesuccessoftheRADattack,becauseitincreasesthenumberofalternativepathsavailabletotheRADASes.Theresultingroutesmaybeinvalid(NVF)routes,asdenedinSection II-A .WhiletheRADpaperdoesnotdescribeindetailhowre-routingisperformed,itsuggeststheuseofnetworkengineeringtoolssuchasMPLSVPNtunnels[ 23 ,Section3.1]acrossallASescontrolledbytheRADadversary.Intherestofthispaper,wewillarguethat,regardlessofthenetworkingtechniqueusedtoimplementre-routing,itwillbeextremelycostlytotheASesinvolved.Toachievethetwoobjectivesdescribedabove,anRBGProuterusesadifferentlistofdecisionfactors(comparedtoBGP)forndingthebestpathtoagivenInternetdestination.ThislistisshowninTable II .Itaddstwonewdecisionfactors:R1(IgnoreiftherouteincludesdecoyASes)andR2(PreferVFroutesoverNVFroutes).ThelatterfactorisnecessarybecauseNVFroutesaremuchmorecostlythanVFroutes.IV.THECOSTSOFRADROUTINGThenon-standarddecisionfactorsusedbyRBGPimposeadditionalcostsontheASescontrolledbytheRADadversary.Thesecostsfallintoseveralcategories:(1)collateraldamage(e.g.,socialunrest)causedbythefactthatsignicantpartsoftheInternetbecomeunreachable;(2)collateraldamageduetothesignicantlyloweredqualityofserviceforthecustomersoftheRAD-controlledASes;3)monetarycostsforbuyinganddeployingnewnetworkingequipment;and4)monetarycostsduetoswitchingtomoreexpensiveInternetroutes.Intuitively,allofthesecostsstemfromonemainreason.ThestandardlistofdecisionfactorsusedbyconventionalBGProutersaimstominimizeASes'routingcostsandtomaximizethequalityofservicefortheirnetworktrafc.Therefore,anychangetothesedecisionfactorsislikelytoincreasetheircosts,decreasequalityofservice,orboth.Inthefollowing,wedescribethenegativeimpactsofRADrouting,arrangedbytype.1.DegradedInternetreachability(Reachability)Avoidingpathsthatcontaindecoyroutersmaydisconnect4 TABLEI:BGP'sdecisionfactorsforchoosingthebestpath(inorder). B1IgnoreifnexthopunreachableB2PreferlocallyoriginatednetworksB3Businesspreference(highestLocal-Pref)B4ShortestASpathB5PreferlowestOriginB6PreferlowestMEDB7PrefereBGPoveriBGPB8PrefernearestnexthopB9PreferlowestRouter-IDorOriginator-IDB10PrefershortestCluster-ID-ListB11Preferlowestneighboraddress TABLEII:RBGP'sdecisionfactorsforchoosingthebestpath(inorder). R1IgnoreiftherouteincludesdecoyASesR2PreferVFroutesoverNVFroutesR3IgnoreifnexthopunreachableR4PreferlocallyoriginatednetworksR5Businesspreference(highestLocal-Pref)R6ShortestASpathR7PreferlowestOriginR8PreferlowestMEDR9PrefereBGPoveriBGPR10PrefernearestnexthopR11PreferlowestRouter-IDorOriginator-IDR12PrefershortestCluster-ID-ListR13Preferlowestneighboraddress RAD-controlledASesfromanInternetdestinationunlesstheRADadversarycanndadecoy-freepathtothatdestination.Bydenition,alargenumberofdisconnecteddestinationsmeansthattheattackhasfailed(seeSection II-C ).2.Less-preferredpaths(Business)AsexplainedinSection III-A ,oneoftherstdecisionfactorsthatstandardBGProutersconsideristhebusinessrelationshipbetweentherouter'sASandtherstASofacandidateinterdomainpath(thedecisionfactorB3).InRBGP,however,twootherdecisionfactors,R1andR2,havehigherpriority.Asaresult,itislikelythatforsomedestinationtheRBGProuterselectsapathwithalowerbusinesspreferencecomparedtowhatastandardBGProuterwouldhaveselected.Forexample,supposethatarouterchoosesbetweentwopathstosomedestination:pathAgoesthroughaproviderandcontainsnodecoyASes,whilepathBgoesthroughapeerandcontainsadecoyAS.AstandardBGProuterwouldhaveselectedpathBbecauseitischeaper,butanRBGProuterwillselectthemoreexpensivepath,A.3.Longerpaths(Length)AsexplainedinSection III-A ,oneofthetopstandarddecisionfactorsofBGPisthelengthoftheavailablepaths(factorB4).Basedonthisfactor,astandardBGProuterprefersthepaththatcontainsthefewesttransitASes.Thishelpsmaximizequalityofserviceforroutedtrafcbecauselongerpathsmayhavehigherlatencyandaremoresusceptibletonetworkfailures.ForRBGProuters,B4islowerinthepreferenceorder,whichmaycausethemtoselectlongerpathsthanBGProuters.4.Higherpathlatencies(Latency)Longerroutesarenottheonlycauseofhigherlatencies.ThealternativepathsselectedbyRBGParelikelytopassthroughlesspopulartransitASesthatofferlowercapacity,causingpacketstoexperiencehigherlatencies.ThisisconrmedbyoursimulationsinSection VII ,whichshowthat,evenwhenanRBGPpathhasthesamelengthasthecorrespondingBGPpath,itusuallyhashigherlatency.5.Non-valley-freeroutes(Valley)Asexplainedabove,RBGProutersmaybeforcedtoselectednon-valley-free(NVF)pathsinordertoavoiddecoyASes.Suchpathsareextremelyexpensive,whichiswhytheyareshunnedbynormalBGProuters.SupposethatforagivenInternetdestination,aRADASAhasnodecoy-freeBGPpathandmustusethepathknowntoanotherRADASB.Inthisexample,eitherAhastopayBfortransitingA'strafc(AwouldnothavehadtopayBifAhadusedstandardBGP),orelseBhastopaytheexpensesfortransitingA'strafc(e.g.,toB'sprovider).Additionally,thesourceASAmayhavetopayitsownproviderinordertotransittrafctoB.ThemonetarycostsofValleyarelikelytobemuchworsethanBusinesscosts.6.NewtransitASes(NewTransit)TheRADattackreliesonthefactthattheASesundertheadversary'scontroltransittrafcforeachother(seeSection II-C ).However,onlyasmallfractionofASesunderthecontrolofatypicalRADadversaryaretransitASesandthushavetherequisitenetworkequipmentandresources.Forinstance,Chinahas199ASes,butonly30ofthemaretransitASes.FortheRADattacktobesuccessful,theRADadversaryneedstotransformmanyoftheedgeASesintotransitASes.ChangingatypicaledgeAStoatransitASisextremelycostlysinceitrequiresthepurchaseandinstallationofsophisticatednetworkingequipment.7.Massivechangesintransitload(TransitLoad)TransitASesearnmoneybytransitingotherASes'trafc.Ontheotherhand,transitingthistrafcimposessignicantxedandvariablecosts,includingequipment,networkmanagement,etc.OursimulationsinSection VII showsthattheRADattacksignicantlychangesthetransitloadofthetransitASesundertheRADadversary'scontrol.DuetotheroutingchangescausedbytheRADattack,sometransitASeslosealargefractionoftheirtransittrafc(andthuslosemoney),whileothertransitASesmusthandletremendousincreasesintheirtransitload.5 V.PLACINGDECOYROUTERSForadecoyroutingsystemtobecomeoperational,itmustbedeployedbyseveralautonomoussystems(decoyASes)whoareeconomicallyorpoliticallymotivatedtoassistincensorshipcircumvention.ThenumberofthedecoyASesaswellastheirlocationintheInternetareimportantfactorsdeterminingwhetheradecoyroutingsystemcanwithstandtheRADattack.TheoriginalRADpapersimulatedtheRADattackfortwospecicplacementsofdecoyASes:top-tierandrandom.Theformerplacementassumesthatthedecoysaredeployedintop-tierInternetASes,whilethelatterassumesthattheASesfordecoydeploymentarechosenrandomlyfromthesetofall44,000ASes.AnalysisintheRADpapersuggeststhattheRADattackfailsagainstthetop-tierplacementbecauseitresultsindisconnectingtheRADadversaryfromlargepartsoftheInternet.TheRADpaperobserves,however,thattop-tierplacementisexpensiveandmaynotbepracticallyfeasible.Fortherandomplacement,theRADpapershowsthatifdecoysaredeployedinasmall,randomfractionofallASes,theRADadversaryisdisconnectedonlyfromasmallpartoftheInternet—mainlyfromthedecoyASesthemselves—thustheRADattackisconsideredsuccessful.Webelievethattherandomdecoyplacementanalyzedin[ 24 ]isbiasedinfavoroftheRADadversaryanddoesnotreecthowtheRADattackwouldfareagainstarealisticdecoydeploymentstrategy.BasedontheASrankingstatistics,availablefromCAIDA, 3 weobservethat86.2%ofallASesareedgeASes,i.e.,thesizeoftheircustomerconeis1(seeSection II-A ).Therefore,therandomdecoyplacementconsideredin[ 24 ]islikelytoplacedecoysprimarilyintoedgeASes.Obviously,evadinganedgeASdisconnectstheRADadversaryonlyfromthatASbecauseitisnotonthepathtoanyotherAS.Wearguethat,inanyrealisticdeployment,decoyroutersshouldbeplacedintransitASes,notedgeASes,evenintheabsenceofaRADadversary.ThelargerthecustomerconeofanAS,thebetteritservesasadecoyAS,fortworeasons:(1)anASwithalargercustomerconeisonthepathtomoreASes,thustheRADattackislikelytodisconnecttheadversaryfromthese“downstream”ASes,too,and(2)evenintheabsenceofaRADadversary,placingdecoysonASeswithlargercustomerconesprovidesbetterunobservabilityfordecoyroutingclientsandgivesthemmoreoptionsforchoosingtheirovertdestinations.Forexample,supposethatadecoyroutingsystemisinstalledonlyinasingleedgeAS.Inthiscase,itsclients'optionsforovertdestinationsarelimitedtothedestinationsbelongingtothatsingleAS.Therefore,auserwhofrequentlyvisitsdestinationswithinthedecoyASmayraisethecensor'ssuspicionthattheuserisengagingindecoyrouting.Ontheotherhand,ifdecoysareinstalledinatransitASwithacustomerconeof5,thenadecoyroutingclientcanchooseovertdestinationsfrom5ASes,resultinginbetterconnectivityandbetterunobservability.Basedontheseobservations,weproposethefollowingstrategicdecoyplacementstrategies,whicharemuchmore 3 http://as-rank.caida.org/ likelytodefeattheRADattackthantherandomplacementconsideredin[ 24 ].Sortedplacement(sorted):Inthisapproach,decoyASesarechosenfromamongtheASesthattransitmoretrafcfortheRADadversary.Specically,wesortASesbasedonthenumberoftimestheyappearontheBGProutesoftheRADadversary'sASes.WethenchoosedecoyASesfromthetopofthissortedlist.WeexcludeallASescontrolledbytheRADadversary,i.e.,ChineseASesifChinaistheadversary.Weproposetwotypesofsortedplacements.Inthesorted-with-ringplacement,decoyASesarechosenfromthesetofallASesnotdirectlycontrolledbytheRADadversary(i.e.,non-ChineseASesinthecaseofChina).Inthesorted-no-ringplacement,weadditionallyexcludeallASesthathaveadirectbusinessrelationshipwiththeRADadversary,sincetheyarelesslikelytodeploydecoyrouters.WeusethetermringASesfortheASesthatarenotcontrolledbytheadversary,buthaveabusinessrelationship.Fromourdatasources(seeSection VI ),weidentied551,69,and5ringASesforChina,Venezuela,andSyria,respectively.Strategicrandomplacement(random):InsteadofselectingrandomASesfromthesetofallASes,assuggestedin[ 24 ],ourrandomplacementstrategyselectsASesfromthesetofallASeswithagivencustomerconesize.Inarandom-Cplacementstrategy,decoyASesarechosenrandomlyfromthesetofallASeswithacustomerconesizelargerthanorequaltoC.Ourrandom-1strategyisthustheexactrandomstrategysuggestedin[ 24 ](since1istheminimumvalueforthecustomerconesize).Similartothesortedplacement,wefurthersubdividerandom-Cplacementintotwotypes:random-with-ring-Candrandom-no-ring-C.Bothexcludeadversary-controlledASes,andthelatteradditionallyexcludesallringASesthathaveadirectbusinessrelationshipwithanadversary-controlledAS.VI.SIMULATIONSETUPANDDATASOURCESWeusesimulationtoestimatethevariouscostsimposedbyRBGProutingontheRADadversary,describedinSection IV .OursimulatorusesCBGP[ 21 ],apopularBGPsimulator,asitsengine,andaPythoninterfacetointeractwithCBGPandqueryforBGProutesbetweenASes.TherestofthesimulationsareperformedinPython.WeuseseveralsourcesofInternetmeasurementsinoursimulations:Geolocation:Weusethe“GeoLiteCountry”datasetfromGeoLite'sgeolocationdatabase 4 tomapIPaddressestocountries.ASrelations:WeuseCAIDA'sinferredASrelationshipdataset, 5 whichisbasedon[ 11 ],tomodeltherelationshipsbetweenASes.ASranking:WeuseCAIDA'sASrankdataset 6 toinferthecustomerconesofindividualASes. 4 http://dev.maxmind.com/geoip/legacy/geolite 5 http://www.caida.org/data/active/as-relationships/ 6 http://as-rank.caida.org/ 6 TABLEIII:ComparingtheInternetconnectivityofstate-levelcensors. Country NumberofASescontrolled NumberofringASes China 199 551 Venezuela 44 69 Syria 3 5 Latency:WeuseiPlane's 7 [ 19 ]“Inter-PoPlinks”datasettoestimateBGPandRBGPpathlatencies.Thisdatasetcontainsdailylatencymeasurementsbetweendifferentpoints-of-presence(PoP)ofASes.Networkorigin:WeuseiPlane's“OriginASmapping”datasettomapIPaddressprexestothecorrespondingASes.VII.SIMULATIONRESULTSThesuccessoftheRADattackdependsontheplacementofdecoysinASes.Therefore,weevaluatethecostsoftheattackfordifferentplacementstrategiesdescribedinSection V .Inallcases,weassumethattheRADadversaryknowstheidentitiesofallASesthatdeploythedecoys.Obviously,thisassumptionfavorstheadversary.ARADadversaryisacensorshipauthoritywhocontrolsalargenumberofASesandforcesthemtomodifytheirBGPdecisionsasdescribedinSection III-B .Intuitively,aRADadversary'sInternetconnectivityisproportionaltothenumberofASesitcontrolsandthenumberofitsringASes(seeSec-tion V ).Thelargerthesenumbers,themorealternativeroutesarelikelytobeavailabletotheRADadversaryforanygivenInternetdestination.Asmentionedbefore,theRADattackissuccessfulonlyifitdoesnotdisconnecttheadversary'sASesfrommanyASesintherestoftheInternet.ThissuggeststhatChinaisthemostpowerfulRADadver-sarybecauseitcontrolsalargenumberofASes(199)andisconnectedtomoreringASesthanotherstate-levelcensors(seeTable III ).WedemonstratethisbycomparingChina'ssuccessasaRADadversarywithothercensoringcountries,suchasVenezuela(44ASes)andSyria(3ASes).Figure 4 showsthepercentageofASesthatbecomeunreachableasaconsequenceoftheRADattack,assumingsorted-no-ringdecoyplacement.ThisshowsthatChinasignicantlyoutperformsSyriaandVenezuelainmaintainingitsconnectivitywiththerestoftheInternet.Fortherestofthesimulations,weonlyreporttheresultsforChina.Thesimulationswereperformedfortwodifferentscenarios:China-World:ChinaistheRADadversary;decoyASesarechosen,usingdifferentplacementstrategiesfromSection V ,fromall44,000ASesexcludingthe199ASeslocatedinChina(weadditionallyexcludethe551ringASesofChinainthecaseofno-ringplacements,asdescribedinSection V ).ThecostsoftheRADattackarethenestimatedforconnectionsfromChinatoallInternetdestinationsacrosstheworld,excludingtheChinesedestinations. 7 http://iplane.cs.washington.edu/data/data.html     \n \n\n \n \n     \n \r\n\n\n \n \n \n  Fig.4:LossofconnectivityfordifferentRADadversariesassumingthesorted-no-ringdecoyplacementstrategy.China-US:ChinaistheRADadversary;decoyASesareselectedonlyfromthe13,299ASeslo-catedintheUnitedStates.Thisscenariorepresentsageographicallylimiteddeploymentofdecoyrouters.Inthiscase,thecostsoftheRADattackareonlyestimatedfortheInternetdestinationsinsidetheUS.Asabove,China'sringASesareexcludedintheno-ringdeployments.A.LossofconnectivityFigure 5 showsthepercentageofInternetASesthatbe-comeunreachablefromChinaunderdifferentplacementstrate-giesandfordifferentnumbersofdecoyASes.Asdescribedabove,fortheChina-USscenariobothdecoyASesanddestinationASesareonlyselectedfromtheUS-basedASes,whilefortheChina-Worldscenariotheyareselectedfromallnon-ChineseASes.Therandom-no-ring-1placementisexactlytheplace-mentstudiedintheRADpaper[ 24 ],whereitwascalled“random”placement.FollowingtheRADpaper[ 24 ],oursimulationsconrmthatrandom-no-ring-1mainlydis-connectsChinafromthedecoyASesonly.ThishappensbecausethemajorityoftheInternetASeshavesmallcustomercones(seeFigure 2 )andrandomplacementislikelytochoosemanyoftheseASes.WhendecoyASesareselectedfromamongthenon-edgeASes,China'sconnectivitydropssignicantly.Forinstance,fortherandom-no-ring-5placement(i.e.,choosingtran-sitASeswithaminimumcustomerconeof5),placingdecoysinonly5%ofglobalASesdisconnectsChinafromaround43%ofallInternetASes,versus7%fortherandom-no-ring-1placement.Figure 5 furthershowsthatdeployingdecoysintheringASesofChinaampliesthecostsoftheChineseRADattack.AnotherobservationbasedonFigure 5 isthat,whileglobaldecoydeploymentismoreeffective,evenregionaldeploymentcausesChinatolosemuchofitsconnectivity.7 Figure 5 alsoestimatespopularity-weightedreachabilityaftertheRADattack(Figures 5c and 5f ).EachASisweightedbythenumberofIPaddressesthatbelongtoit,androutesareweightedaccordingtotheweightsoftheASesontheroute.Intherestofthesimulations,weonlyconsiderthe“no-ring”placements(i.e.,wedonotselectdecoyAsesfromamongtheringASes).B.Non-valley-freepathsThekeytechniquesuggestedbytheRADpaperistore-routetrafcbetweendifferentadversary-controlledASesinordertotakeadvantageofmorealternativeroutes(seeSection III-B ).AsdiscussedinSection IV ,routingthroughNVFpathsisextremelycostly.Figure 6 showsthepercentageofpathsthatbecomeNVF(thedenominatorincludesonlyreachabledestinations).Inallcases,alargefractionofdes-tinationsareonlyreachableviaNVFpaths.DeployingdecoysinASeswithlargercustomerconesampliesthiseffect.Table 7 showstheaveragenumberofChinesetransitASesthatmusttransitNVFtrafc.ThisestimateshowmanylinksoftheNVFpathsare“insidethevalley.”C.Costlyvalley-freepathsWenowdemonstratethatevenvalley-free(VF)pathsselectedbytheChineseASesaspartoftheRADattackaremorecostlythanthepathsthatwouldhavebeenselectedintheabsenceoftheattack.Usingless-preferredpaths(Business):Figure 8 showsthepercentageofVFpathsthatbecomemoreexpensiveasaconsequenceofusingRBGP(thisistheBusinesscostdescribedinSection IV ).Thisratiovariesbetween6%and21%dependingontheplacementstrategy.Notethat,inthecaseofrandom-no-ring-1placement,thisratiodeclinesasthenumberofdecoyASesincreases.ThereasonisthatasthenumberofdecoyASesincreases,moredestinationsarereachableonlyvia(evencostlier)NVFpaths,asshowninFigure 6 .Longerpaths(Length):InSection IV ,wediscussedtheeffectsoflongerpathsonthequalityofservice.Figure 9 showsthepercentageofVFpathsthatbecomelongerwhenRBGPisusedinsteadofBGP.Thispercentagevariesbetween20%and43%dependingontheplacementstrategy.Theaverageincreaseinpathlengthvariesfrom1.12to1.40.Higherlatencies(Latency):WenowshowthatevenwhenRBGPselectspathsofthesamelengthasthecorrespondingBGPpaths,theRBGPpathsarelikelytohavesignicantlyhigherlatency.ThereasonforthisincreaseisthatRBGPpathsareforcedtouselesspopulartransitASeswhichhavelessnetworkcapacity(seeSection IV ).Toestimatelatency,weusethefollowingmetric.FortwoneighborASesAandB,wedeneeLatas:eLat(A;B)=1 nAnBnAX=1nXj=1Lat(A;Bj)whereArepresentstheithpoint-of-presence(PoP)oftheASAandnAisthenumberofA'sPoPs.Lat(X;Y)returnsthemeasuredlatencybetweentwoPoPsXandYfromiPlane's“Inter-PoPlinks”dataset(seeSection VI ).ForaBGP/RBGPpathcomposedofkASesfT1;:::;Tkg,wedeneeLattobethesumofeLatforallneighborASesinthepath:eLat(fT1;:::;Tkg)=k1X=1eLat(T;T+1)TheraweLatmetricisacoarseestimatethatmaynotrepresenttheactuallatencyofagivenpath.Thatsaid,wecanusetherelativeincreaseineLatduetotheRADattack,i.e.,theratiobetweeneLatforanRBGPpathandeLatforthecorrespondingBGPpath,toestimatetheincreaseinactuallatency,withoutknowingtheexactvalueoftheformer.TheiPlanedatasetdoesnotcontainthelatenciesforeveryPoPpairandeveryAS.Therefore,weonlyestimatelatenciesforthepathswherethelatencyofeachindividuallinkisavailableinthedataset.Figure 10 showthattheRADattackcausesasignif-icantincreaseintheeLatmetric.Forinstance,fortherandom-no-ring-1placement(therandomplacementstrategyconsideredintheRADpaper,withdecoysplacedinonly1%ofASes),launchingtheRADattackmakestheroutesfromChinatoInternetdestinationsover4timesslower.Theimpactisevenworsewhendecoysareplacedmorestrategicallyand/orinmoreASes.TheuctuationsinthegraphsarecausedbythelimitationsoftheiPlanedataset,whichpreventusfromestimatinglatencyforsomeofthepaths(i.e.,someofthepathschosenbyChineseASestoavoidaparticulardecoyplacement“disappear”fromthemeasurements).D.TheneedforinfrastructuralchangesLaunchingtheRADattackrequiresChinatomakedra-maticchangestoitsnetworkinfrastructure.EdgeASesactingastransitASes(NewTransit):TheRADattackfundamentallyassumesthatallChineseASesarecapableandwillingtotransittrafcforeachother(seeSection III-B ).However,asdiscussedearlier,themajorityoftheInternetASesareedgeASesanddonothavetherequisitenetworkequipmentandresourcestotransitotherASes'trafc.OursimulationsshowthattheRADattackrequiresmanyedgeASestobeconvertedintotransitASes,requiringhugere-organizationandinvestmentintheirnetworkinfrastructure.Chinacurrentlyhas199ASes,ofwhichonly30aretransitASes.Figure 11 showsthenumberofChineseedgeASesthatmustbecometransitASesinordertolaunchtheRADattack.Forexample,arandom-no-ring-1placementintheChina-Worldscenariowithdecoysin2%ofallASesrequires59edgeASestobeconvertedintotransitASes,almostdoublingthenumberoftransitASesinChina.ConvertingatypicaledgeASintoatransitASishighlynon-trivial.Besidesthemonetarycostsofpurchasingandde-ployingnewnetworkingequipment,theorganizationalpoliciesofedgeASespresentsignicantobstacles.Forexample,wouldauniversity-ownedISPbuiltforeducationalpurposesoranISPownedbyaprivate,internationalcompanybewilling—orevencapable,ifforcedbythegovernment—toactatransitAS?8    \n \r! #        \n    "  "  "   "  (a)China-World,with-ring    \n \r! "        \n         (b)China-World,no-ring    \n \r! #        \n  "        (c)China-World,no-ring,weighted    \n \r! #        \n    "  "  "   "  (d)China-US,with-ring    \n \r! "        \n         (e)China-US,no-ring    \n \r! #        \n  "        (f)China-US,no-ring,weightedFig.5:ThepercentageofunreachabledestinationASes.       \n\r             (a)China-World,no-ring       \n\r             (b)China-US,no-ringFig.6:ThepercentageofpathsthatbecomeNVFduetotheRADattack.IncreasedloadonexistingtransitASes(TransitLoad):TransitASesaresignicantlyaffectedbychangesintheirtransitloads.OursimulationsshowthattheRADattackdramaticallychangestransitloadsonmanyChinesetransitASes.SinceweonlyconsiderthetrafcthatleavesChina,ourestimatesareconservative.TheinformationontrafcvolumesbetweenInternetASesisnotpublic.Tosimulatechangesintransitloads,weassumethattrafcvolumebetweentwoASesAS1andAS2ispropor-tionaltothenumberofIPaddressestheyrespectivelypossess:L(AS1;AS2)=IPs(AS1)IPs(AS2)9 Fig.7:Theaveragepathlengthinsidethevalley.(a)China-World,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.84 1.99 2.01 1.81 1.88 1.89 1.88 1.81 1.96 2.00 random-no-ring-5 1.88 1.85 1.97 1.96 1.99 2.00 2.00 2.00 2.00 2.00 random-no-ring-10 1.98 1.95 1.99 1.99 1.99 2.00 2.00 2.00 2.00 2.00 sorted-no-ring 1.98 1.99 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00 (b)China-US,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.92 1.93 1.92 1.89 1.88 1.87 1.92 1.84 1.96 1.92 random-no-ring-5 2.17 1.94 1.98 1.90 1.97 1.97 1.98 1.97 1.97 1.97 random-no-ring-10 1.84 2.01 1.91 1.97 1.97 1.97 1.98 1.97 1.97 1.98 sorted-no-ring 1.99 1.98 1.99 1.97 1.97 1.97 1.97 1.97 1.97 1.97    \n \r !          \r      (a)China-World,no-ring    \n \r !          \r      (b)China-US,no-ringFig.8:Thepercentageofless-preferredpathsduetotheRADattack.whereIPs(A)isthenumberofIPaddressesownedbytheASA.WeaddL(AS1;AS2)totheloadofeverytransitASonthepathfromAS1toAS2.Inotherwords,wemodelthetransitloadofatransitASasthesumoftrafcvolumesforallpathsthatcrossthisAS.ThismodelmaynotbeaccurateforsomeASessincethehighernumberofIPaddressesdoesnotnecessarilyimplyhighertrafcvolumes.However,itprovidesuswithasimpleestimateoftransitloadsintheabsenceofpublicdataonactualtrafcvolumes.Furthermore,theinaccuracyisaveragedacrossallpaths,thusoverestimatesandunderestimatescancelouttosomeextent.UsingthismodelforeachChinesetransitASA,wecomputethetransitloadincreasefactor,whichistheratioofA'stransitloadaftertheRADattackoverA'stransitloadbeforetheattack(weexcludetrafcthatdoesnotleaveChina).Table IV showsthemaximumvalueofthetransitloadincreasefactoroverall30transitASesinChina,fortheChina-WorldandChina-USscenarios.TheRADattacksignicantlyincreasesloadsonsometransitASesbecausetheyareforcedtotransitadditionaltrafc,e.g.,thatofNVFpaths.SomeoftheincreasesaresodrasticthatwebelieveitisextremelyunlikelythatexistingtransitASeswillbeabletohandlethem.Forexample,assumingarandom-no-ring-1placementwithdecoysdeployedon2%ofASesintheChina-Worldscenario,thereisaChinesetransitASthatmusttransitroughly122timesmoretrafcduetotheRADattack.Tables V and VI showthemediantransitloadincreasefactorforthemostaffected10%and20%oftransitASes,respectively.TheincreasefactorgrowsrapidlywiththenumberofdecoyASesandwithbetterdecoyplacementssincebothforceChineseASestoroutemoretrafcoverNVFpaths.TheRADattackalsocausessometransitASestolosetransittrafc,whichisthesourceoftheirrevenue.Table VII 10       \n \r             (a)China-World,no-ring       \n \r             (b)China-US,no-ringFig.9:ThepercentageofVFpathswithincreasedlength.        \n \n \n \n \n \n        \n\n\r\n \n\r \n \n \n          \r  (a)China-World,no-ring        \n \n \n \n \n \n       \n\n\r\n \n\r \n \n \n          \r  (b)China-US,no-ringFig.10:TheaverageincreaseinestimatedlatencyduetotheRADattack.showstheminimumvaluesofthetransitloadincreasefactor.Fortherandom-no-ring-1placement,thereisatransitASthatloses30%ofitstransitload.Tables VIII and IX showthemedianandaveragechangesintransitload,respectively.TransitloaddoesnotincreasemonotonicallywiththenumberofdecoyASes.Ontheonehand,increasingthenumberofdecoyASesincreasesloadimbalanceandforcesmoretrafctoshifttobetter-connectedtransitASes.Ontheotherhand,increasingthenumberofdecoyASesmakesmoredestinationASesunreachable(seeFigure 5 )andthusreducesoveralltransittrafc.Furthermore,theresultsfortherandomsimulationsarereportedfordifferent,randomlyselecteddecoyplacements,whichmayhaveslightlydifferenteffectsonthedistributionoftransitloads.VIII.LESSONSANDRECOMMENDATIONS1.TheRADattackproposedbySchuchardetal.[ 24 ]isextremelycostlytothecensors,evenforthesimpledecoyplacementconsideredintheRADpaper.ThecostsincludecollateraldamageduetothelossofconnectivitytomanyInternetdestinationsandmuchlowerqualityofservicefortheremainingdestinations,monetarycostsofbuyingandde-ployingnewnetworkingequipmentneededtore-routemassiveamountsoftrafcandconvertedgeASesintotransitASes,andmonetarycostscausedbyswitchingtoless-preferredand,inparticular,non-valley-freepaths.Evenifthecensorsarewillingtopaythemonetarycosts,evidenceindicatesthatsocialcostsmaypreventthemfrom11     \n \r"          \n  !      (a)China-World,no-ring     \n \r !          \n       (b)China-US,no-ringFig.11:ThenumberofedgeASesthatmustbecometransitASes.TABLEIV:MaximumtransitloadincreasefactorforChinesetransitASesduetotheRADattack.(a)China-World,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 122.06x 2807.90x 807.97x 3388.97x 773.61x 14149.49x 3180.45x 3617.08x 3584.44x 9677.14x random-no-ring-5 1718.21x 4588.29x 3402.40x 6418.70x 6338.64x 4688.07x 3972.97x 4173.69x 3128.00x 3030.92x random-no-ring-10 1272.79x 4097.07x 5857.81x 3737.32x 4211.12x 4441.51x 4694.09x 3906.02x 3128.00x 2015.18x sorted-no-ring 7744.57x 6507.31x 7895.25x 5814.86x 5850.94x 5864.12x 5125.12x 5117.52x 5075.41x 4920.45x (b)China-US,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 294.73x 500.66x 1665.49x 1735.54x 1230.66x 1964.71x 2067.50x 2594.94x 2583.04x 3279.70x random-no-ring-5 108.58x 3174.01x 3144.05x 409.45x 521.34x 3217.32x 422.18x 401.43x 388.16x 357.01x random-no-ring-10 540.93x 472.35x 586.65x 596.57x 539.82x 3217.21x 432.20x 401.03x 379.72x 369.57x sorted-no-ring 2474.72x 2499.81x 2502.29x 5269.66x 5269.66x 5270.44x 2978.76x 2965.68x 405.79x 398.96x TABLEV:Mediantransitloadincreasefactorforthemostaffected10%ofChinesetransitASesduetotheRADattack.(a)China-World,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.31x 2.26x 35.05x 394.80x 6.56x 106.29x 169.12x 105.93x 122.47x 47.60x random-no-ring-5 215.27x 432.47x 1353.81x 1056.09x 887.89x 922.83x 922.83x 768.59x 728.39x 699.50x random-no-ring-10 567.20x 1733.25x 1181.85x 1058.98x 957.31x 917.58x 882.66x 866.08x 728.81x 703.36x sorted-no-ring 1933.21x 1748.12x 1697.72x 1616.68x 1540.24x 1499.73x 1457.66x 1440.96x 1428.41x 1723.51x (b)China-US,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 2.31x 1.74x 2.51x 4.08x 14.25x 28.58x 241.57x 103.49x 27.23x 11.79x random-no-ring-5 294.66x 159.13x 164.61x 483.25x 488.71x 446.56x 225.57x 108.33x 94.48x 96.31x random-no-ring-10 261.42x 194.69x 281.52x 276.90x 542.18x 442.66x 430.17x 108.33x 105.63x 102.81x sorted-no-ring 1426.64x 1353.49x 1334.47x 1356.43x 1345.60x 1329.11x 461.33x 426.44x 82.77x 82.77x deployingdisruptivecensorshiptechnologies.Forexample,theGreatFirewallofChinadoesnotblockmanypopularInternetserviceseventhoughtheyareencrypted, 8 duetotheirpopularityamongChineseInternetusers.2.Astrategicplacementofdecoyrouterssignicantlyraises 8 http://www.google.com/transparencyreport/trafc/ thecostsfortheRADadversary.Weproposeseveralstrategicdecoyplacementstrategies.3.ThecostsoftheRADattackvarysignicantlyfordifferentstate-levelcensors.CountrieswithlessInternetconnectivity(i.e.,thosethathavefewerinternalASesandareconnectedtofewerringASes)incurhighercostsiftheylaunchtheRAD12 TABLEVI:Mediantransitloadincreasefactorforthemostaffected20%ofChinesetransitASesduetotheRADattack.(a)China-World,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.00x 1.00x 1.08x 51.82x 1.05x 1.21x 1.10x 1.84x 5.73x 1.54x random-no-ring-5 2.35x 1.74x 230.34x 3.87x 3.30x 3.31x 3.31x 3.46x 2.82x 2.82x random-no-ring-10 1.41x 303.87x 3.51x 3.52x 3.39x 3.48x 2.88x 2.84x 2.82x 2.80x sorted-no-ring 443.83x 397.87x 369.17x 348.17x 320.85x 312.49x 275.50x 270.01x 267.43x 350.41x (b)China-US,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.01x 1.42x 1.01x 1.06x 6.96x 1.70x 102.50x 13.52x 1.18x 1.46x random-no-ring-5 11.02x 20.30x 32.22x 35.48x 44.76x 32.12x 29.97x 22.55x 21.70x 21.07x random-no-ring-10 33.23x 69.44x 51.74x 49.30x 42.17x 30.96x 23.12x 22.55x 21.21x 20.09x sorted-no-ring 68.51x 67.28x 61.12x 66.04x 66.92x 64.93x 39.30x 31.68x 29.94x 29.11x TABLEVII:MinimumtransitloadincreasefactorforChinesetransitASesduetotheRADattack.(a)China-World,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 0.98x 0.67x 0.94x 0.71x 0.62x 0.31x 0.46x 0.60x 0.49x 0.29x random-no-ring-5 0.84x 0.93x 0.81x 0.70x 0.68x 0.65x 0.65x 0.65x 0.65x 0.65x random-no-ring-10 0.88x 0.82x 0.67x 0.66x 0.66x 0.66x 0.65x 0.65x 0.65x 0.64x sorted-no-ring 0.77x 0.76x 0.74x 0.73x 0.73x 0.72x 0.72x 0.72x 0.72x 0.71x (b)China-US,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 0.89x 0.77x 0.71x 0.69x 0.69x 0.74x 0.63x 0.67x 0.58x 0.53x random-no-ring-5 0.63x 0.70x 0.65x 0.78x 0.62x 0.59x 0.58x 0.57x 0.57x 0.57x random-no-ring-10 0.91x 0.66x 0.60x 0.59x 0.60x 0.59x 0.58x 0.57x 0.57x 0.57x sorted-no-ring 0.63x 0.62x 0.61x 0.61x 0.60x 0.60x 0.60x 0.58x 0.58x 0.58x TABLEVIII:MediantransitloadincreasefactorforChinesetransitASesduetotheRADattack.(a)China-World,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 0.99x 1.00x 0.98x 0.99x random-no-ring-5 1.00x 0.98x 0.98x 0.97x 0.95x 0.94x 0.94x 0.90x 0.90x 0.89x random-no-ring-10 0.97x 0.98x 0.95x 0.95x 0.94x 0.94x 0.90x 0.90x 0.90x 0.89x sorted-no-ring 0.98x 1.00x 1.00x 1.00x 1.00x 0.99x 0.99x 0.99x 0.95x 0.95x (b)China-US,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.00x 0.99x 1.00x 0.99x 0.99x 1.00x 0.99x 1.00x 0.99x 0.99x random-no-ring-5 0.99x 0.97x 0.95x 0.91x 0.90x 0.87x 0.86x 0.86x 0.85x 0.84x random-no-ring-10 0.98x 0.95x 0.90x 0.88x 0.88x 0.87x 0.86x 0.86x 0.85x 0.84x sorted-no-ring 0.99x 0.97x 0.97x 0.95x 0.95x 0.95x 0.88x 0.84x 0.84x 0.84x TABLEIX:AveragetransitloadincreasefactorforChinesetransitASesduetotheRADattack.(a)China-World,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.08x 1.54x 6.41x 61.24x 2.50x 25.49x 23.52x 52.67x 45.09x 19.66x random-no-ring-5 33.40x 54.69x 199.41x 150.03x 254.56x 197.00x 197.00x 179.49x 144.25x 139.41x random-no-ring-10 136.41x 248.79x 257.97x 187.01x 191.15x 194.39x 162.98x 173.49x 144.28x 96.10x sorted-no-ring 378.03x 326.33x 365.64x 294.90x 290.39x 288.00x 261.12x 259.66x 257.47x 273.67x (b)China-US,no-ring Placement/Percent 1 2 3 4 5 6 7 8 9 10 random-no-ring-1 1.54x 2.74x 5.02x 13.55x 28.01x 18.33x 18.89x 30.23x 17.72x 25.68x random-no-ring-5 15.13x 68.83x 110.74x 142.47x 133.46x 125.19x 72.50x 19.27x 18.29x 17.53x random-no-ring-10 16.06x 57.49x 41.76x 33.86x 55.61x 125.26x 73.06x 19.74x 18.50x 17.48x sorted-no-ring 135.88x 134.16x 133.20x 226.48x 226.16x 225.45x 118.10x 115.96x 19.02x 18.74x 13 attack.Thisimpliesthatevenaverylimiteddeploymentofdecoyroutersmaybeenoughtodeterrelativelysmallstate-levelcensorssuchasSyriafromlaunchingtheattack.4.Whileaglobaldeploymentofdecoyroutingisideal(i.e.,theChina-Worldscenario),evenaregionaldeployment(e.g.,onlyintheU.S.,asintheChina-USscenario)iseffectiveindefeatingtheRADattack.Thisisanimportantndingbecauseregionaldeploymentismorepracticalthanglobaldeployment.Forexample,theU.S.governmentmaymandateorincentivizeU.S.-basedASestodeploydecoyrouterstosupportthefreedomofInternetinSyria.5.Anyreal-worlddeploymentofdecoyroutingsystemsrequiresdecoystobeinstalledinmultipleASes.Thenet-workingcommunityhasfacedsimilarchallengeswiththeadoptionofnewnetworkingprotocolsandtechnologies.Theirsolutions[ 12 , 13 ]canbeadaptedtotheproblemofdecoyrouting.Inparticular,techniquesproposedfordeployingsecureBGPprotocolsmayprovideaninspiration.Gilletal.[ 12 ]suggestaninitialdeploymentby“early-adopter”ASeswhoareincentivizedbythirdparties.ThisinitialdeploymentwilleventuallyleadtoacompetitionamongASestoinstallthenewtechnology,astheyaimtoincreasetheirrevenue-generatingtrafc.Similarly,aninitialdeploymentofdecoyroutersonasmallnumberoftransitASes,perhapsincentivizedbypro-freedomNGOsorgovernments,can“diffuse”decoyroutingtoothertransitASeswhowanttocaptureashareofthedecoyroutingtrafc.6.Ane-grained,data-drivenapproachisnecessaryforunderstandingthetruecostsofvariousrouteselectionmech-anisms.AnalysisbasedsolelyonthegraphtopologyoftheInternetmayleadtomistakenconclusionsaboutthefeasibilityofdecoyrouting,aswellasothercensorshipcircumventiontechniquesbasedonInternetrouting.AnyanalysisofdecoyroutingandalternativesmustbebasedonallavailabledataaboutindividualnodesandlinksintheInternetconnectivitygraph.ACKNOWLEDGMENTSThisresearchwassupportedbytheDefenseAdvancedResearchProjectsAgency(DARPA)andSPAWARSystemsCenterPacic,ContractNo.N66001-11-C-4018,andNSFgrantCNS-0746888.REFERENCES[1]“ASrelationships,” http://www.caida.org/data/active/as-relationships/ .[2]S.Burnett,N.Feamster,andS.Vempala,“Chippingawayatcensorshiprewallswithuser-generatedcontent,”inUSENIXSecurity,2010.[3]“ASrank:ASranking,” http://as-rank.caida.org/ .[4]J.Cesareo,J.Karlin,J.Rexford,andM.Schapira,“Op-timizingtheplacementofimplicitproxies,” http://www.cs.princeton.edu/jrex/papers/decoy-routing.pdf ,2012.[5]I.Clarke,T.W.Hong,S.G.Miller,O.Sandberg,andB.Wiley,“ProtectingfreeexpressiononlinewithFreenet,”IEEEInternetComputing,vol.6,no.1,pp.40–49,2002.[6]T.DierksandE.Rescorla,“TheTransportLayerSecurity(TLS)protocol—version1.2,”InternetRFC5246,2008.[7]R.DingledineandN.Mathewson,“DesignofaBlocking-ResistantAnonymitySystem,” https://svn.torproject.org/svn/projects/design-paper/blocking.html .[8]R.Dingledine,N.Mathewson,andP.Syverson,“Tor:Thesecond-generationonionrouter,”inUSENIXSecurity,2004.[9]N.Feamster,M.Balazinska,G.Harfst,H.Balakrishnan,andD.Karger,“Infranet:CircumventingWebcensorshipandsurveillance,”inUSENIXSecurity,2002.[10]L.GaoandJ.Rexford,“StableInternetroutingwithoutglobalcoordination,”IEEE/ACMTON,vol.9,no.6,pp.681–692,2001.[11]L.Gao,“OninferringautonomoussystemrelationshipsintheInternet,”IEEE/ACMToN,vol.9,no.6,pp.733–745,2001.[12]P.Gill,M.Schapira,andS.Goldberg,“Letthemarketdrivedeployment:AstrategyfortransitioningtoBGPsecurity,”inSIGCOMM,2011.[13]S.GoldbergandZ.Liu,“Thediffusionofnetworkingtechnologies,”inSODA,2013.[14]J.HawkinsonandT.Bates,“Guidelinesforcreation,se-lection,andregistrationofanautonomoussystem(AS),”1996.[15]A.Houmansadr,G.Nguyen,M.Caesar,andN.Borisov,“Cirripede:Circumventioninfrastructureusingrouterredirectionwithplausibledeniability,”inCCS,2011.[16]A.Houmansadr,T.Riedl,N.Borisov,andA.Singer,“IWantMyVoicetoBeHeard:IPoverVoice-over-IPforUnobservableCensorshipCircumvention,”inNDSS,2013.[17]J.Karlin,D.Ellard,A.Jackson,C.Jones,G.Lauer,D.Mankins,andW.Strayer,“Decoyrouting:TowardunblockableInternetcommunication,”inFOCI,2011.[18]N.Kushman,S.Kandula,D.Katabi,andB.Maggs,“R-BGP:Stayingconnectedinaconnectedworld,”inNSDI,2007.[19]H.V.Madhyastha,T.Isdal,M.Piatek,C.Dixon,T.Anderson,A.Krishnamurthy,andA.Venkataramani,“iPlane:Aninformationplanefordistributedservices,”inOSDI,2006.[20]“Psiphon,” http://psiphon.ca/ .[21]B.QuoitinandS.Uhlig,“Modelingtheroutingofanau-tonomoussystemwithC-BGP,”IEEENetwork,vol.19,no.6,pp.12–19,2005.[22]Y.Rekhter,T.Li,andS.Hares,“ABorderGatewayProtocol4(BGP-4),”RFC4271,2006.[23]E.RosenandY.Rekhter,“BGP/MPLSIPVirtualPri-vateNetworks(VPNs),”RFC4364(ProposedStandard),2006.[24]M.Schuchard,J.Geddes,C.Thompson,andN.Hopper,“Routingarounddecoys,”inCCS,2012.[25]Q.Wang,X.Gong,G.Nguyen,A.Houmansadr,andN.Borisov,“CensorSpoofer:AsymmetriccommunicationusingIPspoongforcensorship-resistantWebbrowsing,”inCCS,2012.[26]E.Wustrow,S.Wolchok,I.Goldberg,andJ.Halderman,“Telex:Anticensorshipinthenetworkinfrastructure,”inUSENIXSecurity,2011.14