PDF-Online Relevant Anomaly Detection in the Twitter Stream

Author : giovanna-bartolotta | Published Date : 2014-09-30

uchilecl Barbara Poblete PRISMA Research Group Department of Computer Science University of Chile Yahoo Labs Santiago Santiago Chile bpobletedccuchilecl ABSTRACT

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document " Online Relevant Anomaly Detection in th..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Online Relevant Anomaly Detection in the Twitter Stream: Transcript


uchilecl Barbara Poblete PRISMA Research Group Department of Computer Science University of Chile Yahoo Labs Santiago Santiago Chile bpobletedccuchilecl ABSTRACT Online social networks have become a massive communication and information channel for u. a. nomaly. -. based. . E. vent . D. etection. and . T. racking. in . T. witter. Adrien . Guille. & Cécile Favre. ERIC . Lab. , . University. of Lyon 2, France. IEEE/ACM ASONAM 2014, Beijing, China. Machine Learning . Techniques. www.aquaticinformatics.com | . 1. Touraj. . Farahmand. - . Aquatic Informatics Inc. . Kevin Swersky - . Aquatic Informatics Inc. . Nando. de . Freitas. - . Department of Computer Science – Machine Learning University of British Columbia (UBC) . Anomaly Detection for. Cyber Security. Presentation by Mike Calder . Anomaly Detection. Used for cyber security. Detecting threats using network data. Detecting threats using host-based data. In some domains, anomalies are detected so that they can be removed/corrected. By Zhangzhou. Introduction&Background. Time-Series Data. Conception & Examples & Features. Time-Series Model. Static model. Y. t. = β. 0. + β. z. t. + . μ. t. Finite Distributed Lag . Problem motivation. Machine Learning. Anomaly detection example. Aircraft engine features:. . = heat generated. = vibration intensity. …. (vibration). (heat). Dataset:. New engine:. Density estimation. Craig Buchanan. University of Illinois at Urbana-Champaign. CS 598 MCC. 4/30/13. Outline. K-Nearest Neighbor. Neural Networks. Support Vector Machines. Lightweight Network Intrusion Detection (LNID). &. Intrusion . Detection Systems. 1. Intruders. Three classes of intruders:. Examples of Intrusion. Performing a remote root compromise of an e-mail server. Defacing a Web server. Guessing and cracking passwords. System Log Analysis for Anomaly Detection. Shilin . He. ,. . Jieming. Zhu, . Pinjia. . He,. and Michael R. . Lyu. Department of Computer Science and Engineering, . The Chinese University of Hong Kong, Hong . Nathalie . Japkowicz. , Colin . Bellinger. , . Shiven. Sharma, Rodney Berg, Kurt . Ungar. . University of Ottawa, Northern Illinois University. Radiation Protection Bureau, Health Canada. “Anomaly Detection: A Tutorial”. Arindam. . Banerjee. , . Varun. . Chandola. , . Vipin. Kumar, Jaideep . Srivastava. , . University of Minnesota. Aleksandar. . Lazarevic. , . United Technology Research Center. 14. . World-Leading Research with Real-World Impact!. CS 5323. Outline. Anomaly detection. Facts and figures. Application. Challenges. Classification. Anomaly in Wireless.  . 2. Recent News. Hacking of Government Computers Exposed 21.5 Million People. It’s no secret that this world we live in can be pretty stressful sometimes. If you find yourself feeling out-of-sorts, pick up a book.According to a recent study, reading can significantly reduce stress levels. In as little as six minutes, you can reduce your stress levels by 68%. Authors. Bo Sun, Fei Yu, Kui Wu, Yang Xiao, and Victor C. M. Leung.. . Presented by . Aniruddha Barapatre. Introduction. Importance of Cellular phones.. Due to the open radio transmission environment and the physical vulnerability of mobile devices , . Institute of High Energy Physics, CAS. Wang Lu (Lu.Wang@ihep.ac.cn). Agenda. Introduction. Challenges and requirements of anomaly detection in large scale storage systems . Definition and category of anomaly.

Download Document

Here is the link to download the presentation.
" Online Relevant Anomaly Detection in the Twitter Stream"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents