/
tFTLREPORTRR25NASAC15926THEINTdACTIOIOFBABIOi8230132FItEUUEICEL tFTLREPORTRR25NASAC15926THEINTdACTIOIOFBABIOi8230132FItEUUEICEL

tFTLREPORTRR25NASAC15926THEINTdACTIOIOFBABIOi8230132FItEUUEICEL - PDF document

hadley
hadley . @hadley
Follow
342 views
Uploaded On 2021-09-23

tFTLREPORTRR25NASAC15926THEINTdACTIOIOFBABIOi8230132FItEUUEICEL - PPT Presentation

DFTLREPORTR825THEINTERACTIONOFRADIOFREQUENCYELECTROHAGNETICFIELDSWITHATHOSPHERICWATERDROPLETSANDAPPLICATIONSTOAIRCRAFTICEPREVENTIONbyROBERTJOHNHANSHANJRJune19821982022556002ITHEINTERACTIONOFRADIOFRE ID: 883589

finally 1982022556 figure5 i1982022556 1982022556 finally i1982022556 figure5 iii deq x0000 theabsorptioncross section const soc insection5 iat sections newyork

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "tFTLREPORTRR25NASAC15926THEINTdACTIOIOFB..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 t,FTLREPORTRR2--5--(NASA-C[_-1592_6)THEI
t,FTLREPORTRR2--5--(NASA-C[_-1592_6)THEINT_.dACTIOI_OFBABIO_i82-30_132FI:tEU_UE_IC¥ELECTROM_GNKTICF!_FI_,pSW!T._i•i_O_cATmOSPhERICWATCHDBOSLE_5ANDAP_LICA_ICBSTOAIRCRAFtiCEP_5¥E_IO_Thesislas.(MassachusettsInst.cfTecn.)193pG3/322862_THEINTERACTIONOFRADIOFREQUENCYELECTROMAGNETICFIELDSWITHATMOSPHERICWATERDROPLETSAN_APPLICATIONSTOAIRCRAFTICE_PREVENTION_-,__1;bRobertJohRHa;isman,Jr,_•_June19821982022556 DFTLREPORTR82-5THEINTERACTIONOFRADIOFREQUENCYELECTROHAGNETICFIELDSWITHATHOSPHERICWATERDROPLETSANDAPPLICATIONSTOAIRCRAFTICEPREVENTIONbyROBERTJOHNHANSHAN,JR.June19821982022556-002 ITHEINTERACTIONOFRADIOFREQUENCYELECTROMAGNETICFIELDS•WITHATMOSPHERICWATERDROPLETSANDAPPLICATIONSTO

2 AIRCRAFTICEPREVENTIONtbylWm|RobertJohnHa
AIRCRAFTICEPREVENTIONtbylWm|RobertJohnHansman,Jr.m¢ABSTRACT_Inthlsworkthephysicsofadvancedmicrowaveanti-icingsystems,'_whichpre-heatimpingingsupercooledwaterdropletspriortoImpact,Isstudiedbymeansofacomputersimulationandisfoundtobefeasible.-Inordertocreateaphysicallyrealisticsimulation,theoreticaland_|experimentalworkwasnecessaryandtheresultsarepresentedinthis"i-_thesIs.Thebehavioroftheabsorptioncross-sectionformeltingiceparticles•ismeasuredbyaresonantcavitytechniqueandIsfoundtoagreewiththeoretlcaIpredictions.Valuesofthedielectricparametersof|supercooledwateraremeasuredbyasimilartechniqueat;k-2.82cmdownF•to-17°C.ThehydrodynamicbehaviorofacceleratedwaterdropletsIsstudied

3 photographlcallyInawindtunnel.Dropletsar
photographlcallyInawindtunnel.Dropletsarefoundtoinitially_-"deformasoblatespheroidsandtoeventuallybecomeunstableandbreakup"inBesselfunctionmodesforlargevaluesofaccelerationordropletsize.ThisconfirmsthetheoryastothemaximumstableJropietsizeintheatmosphere.AcomputercodewhichpredictsdroplettrajectoriesinanarbitraryflowfieldIswrittenandconfirmedexperimentally.Finally,theaboveresultsareconsolidatedintoasimulationtostudytheheatingbyelectromagneticfleldsofdropletsimpingingontoanobjectsuchasanairfoil.ResultsIndicatethatthereissufficienttimetoheatdropletsprlortoImpactfortypicalparametervaluesanddesigncurvesforsuchasystemarepresentedInthestudy.Ib=1982022556-003 +'_L•ACKNOWLEDGEHE

4 NTS+'Iwishtoexpressmyappreciationtoallth
NTS+'Iwishtoexpressmyappreciationtoallthosewhohelpedmake,thisworkpossible,ParticularlyProfessorWalterHollister_who+provideddirectionandsupport,andtotherestofmycommittee,+,ProfessorRobertKyhl,ProfessorRichardPassarelli,andProfessor,,BernardBurke,fortheirhelpfuladvice,IwouldalsoliketothankProfessorRobertSimpson,whoprovi6edmewithahomeintheFlightTransportationLaboratoryandCharlesMillerforhisphotographicadvice,\IwishtothankAIShawpPaulBauerandDonWelnerfortheirtechnicalsupport,JohnPararasforhishelpwith+_mputergraphicsand;especiallyBobHcKillipforhis"quickProgrammingCourse".IthankiJ:alsoSteveKnowltonforhisdiscussionsandcompanionshipandthemembersoftheFlightTransportationLaborato

5 ry.:Theproductionofthisthesiswasmadeposs
ry.:TheproductionofthisthesiswasmadepossiblebythetypingandeditorialskillsofAbbyCrear_thedraftingskillsofLauraWernickandthesoftwareofBobHcKillip.MydeepestthanksareduetomyparentsttoLauraWernick_andtomymanyfriendswhomotivatedandsupportedmethroughthehighsandlowsoftheresearchdescribedinthisthesis.ThisworkwassupportedinpartbyNASAgrantsNAG-I-IO0andNGL-22-oog-640andsponsoredbytheLangleyResearchCenterandagiftInmemoryofStuartDreger.1982022556-004 TABLEOFCONTENTSJABSTRACT2!ACKNOWLEDGEhENTS3+•+iTABLEOFCONTENTS4CHAPTERI.INTRODUCTIONGI.ITheIcingProblem7:!.2ConceptsforMicrowaveIceProtectionil1.3ThesisStructure16:2.THEORYOFABSORPTIONANDSCATTERINGBYHYDROMETERS182.1ScatteringTerminology

6 18i+2.2DielectricPropertiesofWaterandIce
18i+2.2DielectricPropertiesofWaterandIce212.3AbsorptionandScatteringbyblelectricSpheres252.3.1MieThe¢,ry252.3.2Rayleigh292.4AbsorptionandScatteringbyEllipsoids302.5AbsorptionandScatteringbyaCollectionof34Scatterers•3.ABSORPTIONANDSCATTERINGTHROUGHTHEICE-WATERPHASE39TRANSITION3.1TheoryofScatteringbyMeltingandFreezing39:!Hydrometers3.1.1WaterCoatedIceSpheresandEllipsoidsitO3.1.2HodeloftheHeltlngofScatterersInthe43Atmosphere3.2ExperimentalMethodsforMeasuringAbsorptionDuring47PhaseTransition3.2.1PerturbationTechniquesinaResonantCavity483.2.2ExperimentalSet-up523.3ExperimentalResults573.3.1AbsorptionCrossSectionsforWarmDrops603.3.2DielectricParametersforSupercooledWater603.

7 3.3AbsorptionCrossSectionsDuringPhase65T
3.3AbsorptionCrossSectionsDuringPhase65Transition,.[1982022556-005 •+,\i.,54,HYDRODYNAHICSOFACCELERATEDDROPS76,4.1HydrodynamicTheoryofWaterDrops764,1,1DropDeformation77+4.1.2_ropOscillations784,1,3InstabilityandDropBreak-up824,2ExperimentalTechniquesforWindTunnelObservations90ofDropShapeandVelocity4.3ExperimentalResults964.3.1DropDeformation974,3,2InstabilityandDropBreak-up975,WATERDROPLETTRAJECTORIES109+5,1ComputerSimulationsofDropletTraJectories109i5,1,1DropletEquationofHotlonllO5,1,2IterationAlgorithm114+5,1,3DragCoefficients1165,2WindTunnelValidationofComputerTraJectories1225,2,1DropletsInJectedIntoaUniformFlow122._+5,2,2DropletTraJectoriesNearaCylinder1255,3Simula

8 tionResultsNeartheLeadingEdgeofan128Airf
tionResultsNeartheLeadingEdgeofan128Airfoil5.3.1TwoDimensionalImpingementTraJectories1335,3,2DropletKinematicsontheStagnation143Streamline5.3.3AdditionalSimulations148il6,CONPUTERSIHULATIONSOFDROPLETHEATING1526.1DescriptionoftheSimulation1526,2DropletEnergyBalance1586,3SimulationResults165'i7°CONCLUSIONS177LISTOFSYHBOLS181REFERENCES188dm'r01982022556-006 r•/CHAPTER1INTRODUCTIONAircrafticln9haslongbeenrecognizedasoneofthemost!_seriousmeteorologicalhazardstoflight.Iceformationcanresultinlossofaerodynamicefficiency,controlandvlslbIllty,aswellasanIncreaseinaircraftweightandthefailureofvitalcommunicationorInstrumentationsources.WhiloavarietyoftechniqueshavebeenappliedtotheI

9 cingproblem,therearestillareaswhereprese
cingproblem,therearestillareaswherepresentiLsystemfallshort.1'2TheworkdescribedinthisthesisIscenteredaroundunderstandingtheI_yslcsofadvancedconceptsInaircraftIceprotectionwhichemploymicrowaveelectromagneticradiation.Whileunderstandingthephysicsofadvancedconceptswasthefundamentalthreadwhichunltedthework,itwasoftennecessary,Inthecourseofthework,tocressIntootherfieldsInordertoobtainasatisfactoryunderstandingofthephysicsInvolved.SomaofthefieldsInwhichexperimentalortheoreclcalworkwasnecessaryareAtmosphericPhysics,ExperimentalandComiau-rationalFluidDynamicsandtheInteractionofElectromagnetlc!RadiationwithHatter.Asaresultoftheresearch,contributionshavebeenmadeIneachoftheabovef

10 ieldsenroutetotheoriginalobjectiveofunde
ieldsenroutetotheoriginalobjectiveofunderstandingthephysicsunderlyingmicrowaveice_preventionsystems.InSection1.ItheIcingproblemwillbedefinedandcurrent"techniquesusedtodealwlthit_tlllbediscussed.InSection1.2!e1982022556-007 7I°:lsomeoftheconceptsformicrowaveiceprotectionwillbedescribed.'i_!InSection!.3anoutllneofthefollowingchaptersandtheirrelation-shiptothethesiswillbepresented.I.!TheIcingProblemIceformsonaircraftstructureswhenflightisconductedthrough•areasofsupercooledcloudorprecipitationdroplets.Supercooled;waterdroplets,whichoccurcommonlyintheatmosphere,existina;metastablestate.Ifsomestructure,suchasanaircraft,comesincontactwithasupercooleddrop,thenitwillbegintohete

11 rogeneously•nucleateandformice.Therateof
rogeneously•nucleateandformice.TherateofnucleationandsubsequentfreezingI•dependsonthestructureandonthetemperatureofthedrop.This;!isthebasicmechanismforiceformationonaircraft.,_Forslightlysupercooleddrops(-5°CtoO°C),thedropsfreezeIslc_iyafterimpactandsmooth"clear"iceisformed.Forcolderitemperatures(-20°Cto-5°C),dropletsfreezequicklyandanopaque,=Irregular"rime"iceisformed.Below-20°C,supercooledwater:-'becomeslesscommonintheatmosphereashomogeneousnucleationbeginstooccurandattemperaturesbelow-40°CessentiallyallwaterisInitheicephase.3FrozenhydrometersdonotcontributetotheIcingJi1problem,asthoseparticleswhichdostrikethestructurebounceoff.Thevaluesofdropletandliquidwatercontent

12 applicabletotU.S,continentalcumuliforman
applicabletotU.S,continentalcumuliformandstratifomcloudsarepresentedinthedesigncriterionforiceprotectioncertificationinPart25ofthe"•U.S.FederalAviationRegulations(FAR's).4,5Howewr,theFAR'si_neglectIcingfromsupercooledprecipitationdroplets,suchas1982022556-008 8ifreezingrain.TableIsummarizestherangeofdropletparameters!r7_,:applicableforcloudandprecipitationicing.•Whileadescriptionofthemeteorologicalconditionswhichleadto,,!_:Icingisfairlyeasytoprovide,accurateforecastingofthese:conditionsismuchmoredifficult.Thisisduetodifficultiesin:_,predictingwhetheracloudwillbeinthesupercooled-waterorice:_-'phase,whichcanchangequicklywithtime.Forexample,Ifsomeicephaseparticlesareintro

13 ducedintoasupercooledcloud,through:heter
ducedintoasupercooledcloud,through:heterogeneousnucleationorsomeothermeans,thenthecloudwill:veryrapidlytransitiontotheicephase,duetothefactthatthe6saturationvaporpressureovericelslowerthanoverwater.,:iInaddition,Icingzoneshavebeenobservedtobefairlylocalized7evenwhenaccuratelypredicted.'TheuncertaintyInpredictingicingconditionscausesforecasterstobeconservativeandtoforecasticingconditionsanytimethepotentialexists.Theconservativenatureoficingforecastinghastwodetrimentaleffects.ThemostImportantIsthe"crywolP'syndrome,wherepilotsbecomeaccustomedtoflyinginforecastIcing:_TconditionswithnodifficultyandignoreIcingfo_castsInmoresevereconditions.ThisIsborneoutbythefactthatin92_oft

14 heIcing•accidentsbetween1973and1977,Icin
heIcing•accidentsbetween1973and1977,Icingconditionswerecorrectly,forecast.2iTheseconddetrlmntaleffsctofconservativeForecastingIs1economic.Hostgeneralaviationaircraftarenotcortlfledforflight-Into"known"icingconditions.Whilethedefinitionof"known"IclngIssomewhatanbiguous,manyoperatorschoosenottoflyIn1982022556-009 Table1.ParametersoftheIcingProblemiiCloudDropletsPrecipitationDropletsTemperatureO°C6°C-5°CLiquidWaterContentOgm/m3Ogm/m3MeanDropDiameterIO40micronsI+5mm1982022556-010 &,v,'-.i,-II0forecastIcingconditions.CancellationsduetoInvalidforecastsareadrainontheaircraftoperatorsandtheeconomyIngeneral.,_Thereasonfortheconservativeapproachtoaircrafticingaretheinherentdan

15 gers.Someoftheseare:iLossofaerodynamicef
gers.Someoftheseare:iLossofaerodynamicefficiencyIncreaseddragDecreasedIIftIncreasedstallspeedIncreasedwelghtLossofcontrolmow_entEnginefailureAeroelasticflutterresultingfromchangeInstructuralmassdistrlbutionLossofvisibilitythroughwindshieldLossofnavigationandcommunicationantennaLossofcockpitinstrumentationsources(pltot,static,etc.)LossofonboardradarTheaboveIcing-relatedphenomenacanoccursinglyormultiplywithvaryingdegreesofseverity,dependingontheicingconditions,theaircraftandtheIceprotectionequipmentonboard.TheavailableIceprotectiondevicescomeIntwobasicforms,anti-Ice(noiceIsallowedtoform),andde-Ice(someIceformsx,andissubsequentlyremoved).Thecurrenttechniquesallhaveadvanta

16 gesanddrawbacks.Electrothermalandhot-air
gesanddrawbacks.Electrothermalandhot-airantl-lcedevicesareveryeffective,butrequirelargeamountsofenergyinthattheyevaporateallimpingingwateratacostof600cal/gm(2.5xI0lOarg/gm).Freezing-pointdepressantssuchasglycolorchemical"'pastesareefficientbutaresubjecttoerosionontheleadingedge,andco.bustionproblems.Pne_,:tlcde-icingbootsareefficient,!buttendtobeunreliableandsubje_ctomisuse._t"1982022556-011 :Fromtheforegoing,thereIsclearlyaneedforadvancement,both":,_intheabilitytoaccuratelyfor_.casticingconditionsandInIce•protectiononceicingconditionsareencountered,inaddi¢ion,a!,!betterunderstandingoftheIcingproblemonthepartofpilots,as'_."wellasresearchers,willhelpincreasethesafetyand

17 productivityofflight.i1.2ConceptsforMicr
productivityofflight.i1.2ConceptsforMicrowaveIceProtection:Theuseoft,icrowaveelectromagneticenergyforiceprotectionhasbeenproposedbyavarietyofresearchersforbothIcedetectionandicepreventionroles.Remotedetectionofloca|izedIcingzones•wasproposedbyAtlasin1954.8Usingmeteorologicalradar,zones.nfmoderatetohighliquidwatercontentabovethefreezinglevel-_,.canbeobservedinrealtime.WiththeadvancesInground-basedandairborneradar,thisapprcachholdsgreatpromise.In1976,',Hagenheimproposedusingmicrowavestodetectthelocalaccumulationof|ceonairfoilsandhelicopterrotorsbymeasuringthechangein!impedance,asIceaccumulatesonthedielectriccoatingofasurfacetwaveguldelocatedontheleadingedgeoftheairfoll.9

18 ThetechniqueIsfairlysuccessfulbutsuffers
ThetechniqueIsfairlysuccessfulbutsuffersfromanomalousmeasurementswhenIIqulewaterismixedwiththeice.MagenheimalsoproposedusingmicrowaveenergyInade-lcingsystem.Inthisscheme,microwaveheatingattheicedielectricInterfaceofasurfacewavegulde,locatedontheleadlngedgeofthealrfoiI,isusedtobreaktheadhesionbondofice.Thlstechnique_I0wasdemonstratedin1976.However,ithasnorealadvantageoverelectrothermalde-icingtechniques,whichoperateontheIdentical1982022556-012 ...................iii"_12Lprinclp_e,andhassomedisadvantagesintermsofcomplexityandefficlency.:_In1980,HansmanandHollisterproposedu_ingmicrowaveheating"_11,12":_topreventtheformation(anti-ice)onaircraftstructuresTheconceptistoprehe

19 atthesupercooled_aterdropletstoabovefree
atthesupercooled_aterdropletstoabovefreezingpriortoImpactbyamicrowavefieldaheadoftheairfoila_dr,therebypreventIcefromforming.Thepotentialadvantagesseenforamicrowaveanti-iclngsystemarelowpowerconsumption,lowmmintenanceand_erodynamiccleanliness,asopposedtootheranti-icetechniques.±Lowpowerconsumptionisanticipatedduetothesavingofthelatentheat_efusion(80cal/gm,3.35x109erg/gm)bycircumventingthewater-to-Ica-to-waterphasetransitions,andtoth•abiIItyof,_selectivelyheatingsupercooledwaterdroplets.Theselectiveheatingofwaterdropletsisaresultofthestrongabsorptioncharacter'stlcofwaterinthemicrowaveregime,whereassnow,iceandmetalsurfacesarepoorabsorbers.Thisimpliesthatthewingneednotnec

20 essarilybeashotaswithothertechniques,whi
essarilybeashotaswithothertechniques,whichminimizesconvectiveandevaporativelosses.TheadvantageofkeepingtheairfoilascoolaspossiblecanbeclearlyseenInFigure1.1,wheretheheatlossfromawetsurfaceexposedtoatangentialflowisplottedasafunctionofsurface13temperature.Theambienttemperatureis-20°Candthetangentialve|ocityis60m/sac.Theheatfluxincreasesdramaticallyabove:,-xO°Cduetoconductiveandevaporati_losses•Inordertoruntheairfoilascoolaspossibleandstlilpreventrunbackfreezingproblems,theoptimallyefficientanti-icingsystemismo,.tlikely1982022556-013 ,o,I!13•/20"sFigure1.1Heatlossfromawettedsurface.//(calculatedfromNACATH279913)/Ambientten.20°C/J.:_'Surfacevelocity60m/s/;I_'15"E/3/;I/-"L

21 _I0/-E•8/:0I"/mi"5•"rI/,wlW,..._2-_o0I02
_I0/-E•8/:0I"/mi"5•"rI/,wlW,..._2-_o0I02030;Surfacetempeb-ature(°C)1982022556-014 14amicrowavehybrid.Inahybridsystemamicrowaveleadingedcle•systemwouldbecombinedwitheitherafreezing-pointdepressantoranelectrothermalsystemontheaftalrfollsections.Advanced14freezing-polntdepressantpasteshavebeensuccessfulatsuppressingrunbackrefreezlng,andcanoperateatan/)ienttemperatures,butaresubjecttorapiderosionontheairfoilleadingedge.Electrothermalsystemswhichoperateslightlyabovefreezingarealsoefficient,buthaveaproblemInitiallyheatingthedroplets.Thesetechniquesare,therefore,well-suitedtobeingcombinedwithmicrowavepre-heatinginordertoapproachoptimalefficiencyincaseswhereantl-iclngisrequire

22 d.Powerrequirementsfortypicalgeneralavia
d.Powerrequirementsfortypicalgeneralaviationparametersareestimatedforthemicrowavesystemtobeontheorderof100Wforpropelleranti-icingandIk;/forwinganti-Icing.AnadditionaladvantageofthemicrowavesystemIsthat,neglectingcircuitlosses,powerisonlyconsumedwhenliquidwaterispresent,andtherebyhasthecapabilitytoserveasItsowndetector.Anexampleofapossiblefirst-ordermicrowaveanti-iclngschemeemployingsurfacewaveguidesisshownInFigures1.2aand1.2b.InFigure1.2a,across-sectlo_oftheairfoilshowingthedle|ectricinsetforthesurfacewaveIspresented.Theelectromagneticwavepropagatesalongtheleadingedgeoftheairfollandisboundtothesurfacewavegulde.Theelectromagneticfieldstrengthcharacterlstl-:I•I(:allydeca

23 ysexponentiallyawayfromthewaveguide.15Th
ysexponentiallyawayfromthewaveguide.15Thewavesare!',launchedatthewingrootandpropagatetothetip,wheretheenergy!notabsorbedbythewaterdropletsiscollectedandrecycledbackI1982022556-015 t_t;ISORiGiNALPAGEISOFPOORQUALITY_IElectro 16Insidethewingtotherootina"racetrack"pattern.Itshouldbe•notedthatthelaunching-retrievingprocessisnotperfectlyJefficient.ThepresenceofliquidwatercanbemeasuredbyapowerIlossasobservedthroughadirectionalcoupleranddetectoronthereturEpathofthecircuit.Themicrowaveanti-icesystemhassomedistinctanduniqueadvantagesoverotheranti-icingsystems.Thereare,however,severalquestionstobeanswered.TheprimaryquestioniswhetherthereissufficienttimetoheatImpingingdropletsatve

24 locitiesofaeronauticalrelevance(80to200w
locitiesofaeronauticalrelevance(80to200w4)h).Whilethereareotherquestionssuchasrunback-refreeze,electromagneticfieldoptimizationiandcircuitefficiency,thesebecomemootifthereIsnotsufficient!Itlmetoheatthedroplets.Forthisreason,themajorthrustofthisthesiswillbetoendeavortodetermine,inasystematicmanner,whetherthereissufficienttimetoheatatmosphericwaterdropletstoabovefreezingpriortoimpact.I.3ThesisStructureTheprimarygoalofthisthesis,asdiscussedInSection1.2,istounderstandthephysicsofasupercooledwaterdropletbeingheatedbymicro_aveelectromagneticenergy,asItapproachesanairfoil.ThlsproblemisstudiedbymeansofacomputersimulationInChapter6,whichwasdesignedtobeasphysicallycompleteasposs

25 ible.Inordertoprovidethephysicalbackgrou
ible.Inordertoprovidethephysicalbackgroundforthesimulation,somepreliminaryworkofamorebasicnaturewasnecessary.InChapter2,thetheoryofabsorptionbyhydrometersIs1982022556-017 17reviewed.InChapter3,theabsorptionandscatteringofmixed-phaseicewaterparticlesisstudied,boththeoreticallyandexperimentally.•Inaddition,valuesofthedielectricparametersforsupercooled_.aterdropletsareexperimentallymeasured.InChapter4,thedeformationandstabilityofdropletssubjecttoanexternalacceleratlonarestudied,boththeoreticallyandinthewlndtunnel.ThisworkisIntendedtobecombinedwiththatofChapter2,wheredeviationsfromspherlcltyarefoundtohaveapronouncedeffectontheabsorptionpropertiesofdroplets,rInChapter5,aco

26 mputersimulationofwaterdropletsispresent
mputersimulationofwaterdropletsispresentedandexperimentallyverified.Finally,inChapter6the"."resultsofthepreviouschaptersarecombinedintoacomputercode,°whichfollowsthetrajectoriesandheatingofdropletsastheyapproachanairfoil.InChapter7,theresultsandcontributionsofthe.workarebrieflyreviewedbywayofaconclusion."I*iiI1982022556-018 18CHAPTER2THEORYOFABSORPTIONANDSCATTERINGBYHYDROMETERSAbriefsummaryofbasicscatteringtheoryapplicabletoatmospherichydrometersispresentedinthischapter.InSection2.1somescatteringterminolo_/isdefined.TheknowndielectricpropertiesofliquidwaterandicearepresentedinSection2.2.InSection2.3andSection2.4theapproachesofRie,RaylelghandGansforscatteringfromspheres

27 andellipsoidsarebrieflydiscussed.Finally
andellipsoidsarebrieflydiscussed.Finally,inSection2.5theproblemofacollectionofscatterersisconsidered.2.1.Sc.a.,_tterIn9Temi.nologyIntheclassicalformulationofthescatteringproblem,aplanewaveisIncidentonthescatteringobject.ShowninFigure2.1arethecasesofInteresthere.Thew_veiselectromagneticandpropagatesinthedirectionwithwavevectork0--_-no.ThewaveIspolarizedwiththeelectricfieldE!inthe_0direction.ThescatteringobjectisofarbitraryshapeandIsinbeddedina_backgroundofunifomdielectricmaterialcharacterizedbythecomplexdielectricconstantto.Formostatmosphericapplications,¢0Istakentobeunity,thevalueforfreespace.Thescatteringobjecthasacomplexdielectricconstant¢whichcanvaryspatially.Thebac

28 kgroundandthescatteringobjectareassumedt
kgroundandthescatteringobjectareassumedtobedielectricinnature.Therefore,themagneticpermeabilltlesofthebackgroundandtheobjectareunity.[1982022556-019 tt-IrolOFpOORQUALI'6Y•,?A-t_n0El_i.)_'i__o_oFtgure2.1Thescatteringproblemshowingthetnctdentandscatteredpolarizationandpropagationvectors.!m1982022556-020 _,_.m_=;:,r_i"_",_."I__'_20OFPOC_Qj.L',LIT¥TheenergyfluxoftheIncidentwaveischaracterizedbyitsPoyntingvectoreuC"slx;i(2.i),Nhichisalignedinthe_0direction.WhentheincidentwaveImpingesontheobject,energycanbelosteither*.oscatteringortoabsorptionbytheobject.Theselossesarecharacterizedbyvariouscross-sections.Cross-sectionshaveunitsofareaand,whenmultipliedbytheIncidentPoyntlngflu

29 x,yieldthepowerflowIntoabsorptionorscatt
x,yieldthepowerflowIntoabsorptionorscattering.Additionoftheabsorptioncros--sectfonGandthescatteringcross-section(Tequalstheastotalcross-section°t=°a+Üs(2.2)whichmeasuresthetotalenergyflowoutofthewaveduetotheobject.Inmanycases,thescatteredenergyisnotIsotroplc.Thedifferentialcross-section,do_._(n_,__).)isthenused.WhenmultipliedU_AbyISilityieldsthepowerfluxwithpolarization•throughadifferentialofsolidanglecenteredaboutthedirectiondefinedbyn.Thescatteringcross-sectionisthenfoundbyIntegratingoverthetotalsolidangleandallpolarizations.1982022556-021 21OFPO0;:IQ_ALI'_Y'•Forradarapplicationstheenergyscatteredbacktowardthesource"i,isofspecialimportance.Towardthisend,theback-scatt

30 ercross-,sectionobIsdefined.Itisthescatt
ercross-,sectionobIsdefined.Itisthescatteringcross-sectionofan,_.isotroplcsourcewithaconstantdifferentialcross-sectionequaltothatoftheobjectinthebackscatterornegati_nodirection._,"C:do(-)o'b"d_cl.qdi_(2.Ii)_,_._,_ItshouldbenotedthatIntheliterature,C_a,Os,atare-sometimesreplacedbyQa'Qs'I_t'andobIssometimessimplyo.Theaboveconventionhasbeenchosentoavoidconfusionwiththe"qualityLfactod'(_Inlatersections.•_2.2TheDlelectrlcPropertiesofWaterandIceThedielectricpropertiesofanon-magneticmaterialcanbe_'characterizedbytherealandImaginarypartsofitscomplexdielectricconstant._.c(f,T)-¢'(f,T)-l¢"(f,T)(2.5)TherealpartIsameasureofthepolarizationofthematerialsubjecttoanappliedelectricfiel

31 d.TheImaginarypartisaloss"_termmeasuring
d.TheImaginarypartisaloss"_termmeasuringtheenergytransferfromthefieldtothematerial.The%dielectricconstantIsafunctlenoffrequencyfandtemperatureT.ThefrequencyisrelatedtothetreespacewavelengthXbythespeediofII_tc.-It:Q,j1982022556-022 I___,,L,_-_,'''-Y++_1i!22f.)'OF'_"""_':c(2.6):_f-y:)))_Unlessotherwisenoted,cwillbeassumedtobeequaltounityforLbackgroundmaterialsofairorfreespace.,+.."ValuesofthedielectricconstantforwaterandIcehavebeen,:'extensivelymeasured.Severalgoodtabulationshavebeenpublished,LwiththoseofyonH|ppe116andRyde17beingespeciallyuseful.Thetemperaturedependenceofc'andE"forwateratseveralwavelengthsisplottedinFigures2.2and2.3from_nHlppel'sdata.Thedependence,ofc'an

32 dthelosstermc"onTIsclearlynotnegligible,
dthelosstermc"onTIsclearlynotnegligible,particularlyatthelowertemperatures.Theabsenceofidataforsupercooledwaterisdistressing,becauseofthestrongdependenceofEontemperature.ThelackofdataIsprimarilydueto:thedifficultyinmaintainingsupercooledwater,intheliquidstate,undercontrolleddlelect,'icmeasuringconditions.H_vertsupercooledwaterisImportantbecauseitoccurscommonlyInnature.ForsomeapplicationsItisconvenienttodefinethecomplexrefractiveIndexmasthesquarerootof¢:m--n-(2.7)'wherenistherefractiveIndexandKiStheabsorptioncoefficientofthematerl_ll.Itwillalsobeconvenienttodefine2m-lmT&)i1982022556-023 h238o),-lOom70Figure2.2Realpartofthe30dielectricconstantversustemperature.(fromvonHi

33 ppel16)010203050-,T(oc)|•1982022556-024
ppel16)010203050-,T(oc)|•1982022556-024 80,_70Figure2.3Imaginarypartofthedielectricconstantversustemperature60(fromvonHippel)_II"50)gO,23O20::I0X=lOcm.0102030405060T(°c).i!.l1982022556-025 25Valuesofn,K,IK21andtheimaginarypartof-KgivenbyRydelO;areshoqnforwaterandiceInTables2.1and2.2.72.3AbsorptionandScatteringbyDielectricSpheresThescatteringofelectromagneticwavesbyadielectricsphereI_oneofthefewscatteringproblemsforwhichthereexistsacompleteanalyticalsolution.Thegeneralsolutionwasfirstpubl|shedbyHiein1908.18Hie'sworkwasprecededbythatofLordRayleigh.In1871Raylelghsolvedthescatteringprobleminthelongwavelengthlimitaspartofhisexplanationforthebluecolorofthesky19,20Bothsolutio

34 nsarediscussedinthefollowing.!v.2.,3.1Hi
nsarediscussedinthefollowing.!v.2.,3.1HieTheory4,I_le'sanalysisofscatteringbyadielectricsphere18issimpleinconceptalthoughsomewhatcomplexindetail.Thegeneralapproachwillbeoutlinedherealongwiththeresults.ThereaderIsreferredtoStratton'stext21orH|e'soriginalwork18forthedetails.:Hie'sapproachwastowritethefieldoftheincidentplanewaveasthesumofvectorsphericalwavefunctionscenteredatthesphere.Theinciden:fieldgivesrisetooscillatin9chergesInthespherewhichproducesecondaryfieldsInsideandoutsideofthesphere.TheseexternalandInternalfieldsarealso_xpandedinsphericaJwavefunctlons.TheexpansioncoefficientsforthesecondaryfieldsarefoundbyImposingboundaryconditionsattheorib,nandthesurfaceofthes

35 phere.1982022556-026 26•OFPOORQUALITYTab
phere.1982022556-026 26•OFPOORQUALITYTable2.1Valuesofthedielectricparametersfo-water(takenfromRyde,17)i,i•,,m,|ii�.(cm)I03.211.240.62T(°C)208.888.146.154.44109.027.805.453.94-_.n08.997.144.753.4,5-86.::84.153.10II_oo.++,.oo,.,,._9,oo90,._,,,o,._o_,.4,,._,_.7_,.o_II200.9280.92750.91930.892610IKI20.93130.92820,9152,0.8726II00.93400.93000.90330.8312-80,89020.7921ZO0.004740.018830.06,710.091510Im(-K)0.006880.92_70.06130.114200.011020.03330.08070.1441"80,10360.1713i•iimiiiimi|1982022556-027 27ORIGINALPAGEISOFPOORQUALITY+rable2.2Valuesofthedielectricparametersforice(takenfromRyde,17))itn1.78Atalltemperatures024x10-4-I0k7.9xIO-4-205.5x10"4IKIz0.197Atalltemperatures.Thi

36 sisforiceofunitdensity,thevaluetobeusedw
sisforiceofunitdensity,thevaluetobeusedwhen0isdiameterofmeltediceparticle.i(HarshallandGunn,1952.)"!09.6x10"4i-10Im(-K)3.2x10-4-202.2x10-4:--iim•iii••i......ii*Refractiveindexoficeisindependentofwavelengthinthecentimeterband.i1982022556-028 28Inordertocalculatethecross-sectionsoncethesecondaryfieldsareknown,thePoyntingfluxisintegratedoverasphericalsurface,concentricwiththescatterertoyieldtheenergyf|ow.IntegratingthetotalPoyntingvector,whichincludestheincidentandsecondaryfields,willresultintheenergyflowintothesphereandthusoa.IntegratingthescatteredPoyntlngvectorwithonlythesecondaryfieldswillyieldthescatteredenergyflowmayfromthesphereoro.Thesproblemissimplifiedbyassuming

37 thatthesphereofintegrationislargei.:-i.e
thatthesphereofintegrationislargei.:-i.enoughthattheasymptoticvaluesofthesphericalwavefunctionscanbeused.Theforegoinganalysisresultsinthefollowingcross-sections)`2O0,'_0t-_-_(-Re)23(2n+l)(an+bn)(2.9)n=l)2®',---z(2nl)(lanl2Ibnl2):as21Tn,,1(2.10)aa-ot-os(2.11)iOb1_(2n+I)(an-bn)2n--Iwhere),isthewavelengthinthebackgroundmedium.Theexpansion'coefficientsoftheexterlorsecondaryfieldanandbncanbe2thoughtofasthenthmagneticandelectricmultiplecoefficients.TheyaremadeupofsphericalBesselfunctionsanddependonpropertiesofthespheresuchasthecomplexrefractiveIndexmand(1where2waa"_andaistheradiusofthesphere.•iI!l,1982022556-029 I*)Iz9iiiTheHiecross-sectionshavebeencalculatedforiceandwater

38 spheres°:1tbyavarietyofinvestigatorsford
spheres°:1tbyavarietyofinvestigatorsfordifferentvaluesof(xand;itemperature,i7,22-252.3.2RayleI9hTheoryForsmallspheresor1on9wavelengthsi2_aQ="X-I12.131thesimplifyingassumptionsofRaylelghcanbemade.Physically,theaboveconstraintimpliesthattheincidentfieldlsspatiallyunlform:overthesphere.Inthissituationtheexteriorsecondaryfields-fromthespherecanbereplacedbythoseofanoscillatingdipole"p2.I.(c_._;__.)c-1a3_'i.(:_..Z.)a3-_Ei(2.14)m+2whereaistheradiusofthesphereand"1_iIstheIncidentelectricfield.Thecross-sectionsoandobarecalculatedusingthesesfields.Theabsorptioncross-sectionocanbecalculatedfromtheaohmiclossesoftheoscillatingchargesrequiredtocreatethedipole.Theprecedingcross-secti

39 onscanalsobecalculatedusingtheHieformall
onscanalsobecalculatedusingtheHieformallsmbyexpandingthecoefficientsanandbnintermsofa.Byneglectingtermsofhigherorderthane6,allmultipoleshigherthanthedipoledropout.Bothapproachesyieldthefollowingcross-sections231982022556-030 30,.ot-oa+os(2.15)i#•2)`2_6IKI2°s"_712.161+;)2_30---Im(-K)(2.17)a_)`2ob-_-a6IKI2(2.J8)whereValuesofIK21andIm(-K)_retabulatedInSection2.2.Noting2_ra+thatcc"Tthescatteringcross-s-_ctionandbackscattercross-sectionhavethecharacteristicl/_4d?.pendenceknownasRayleigh'sla_.TheRayleighcross-sectionsareofextremeimportanceinthestudyofscatteringfromatmospherichydrometers.TheyarevalidoverawiderangeofusefulparametersandarethPbasisofcomparisonfor-thoserefinement

40 swhichattempttoincludesuchadditionaleffe
swhichattempttoincludesuchadditionaleffectsasnon-sphericalshapeornon-homogeneousmaterial.+II12.4Absorption.andScatteringbyEllipsoidsTheproblemofscatteringbyanellipsoidofrevolutionwastreatedInthelongwavelengthlimitbyGansin1912.26Gans'approachisessentiallyanextensionofRaylelgh_swork.Heresolvestheincident"electricfieldIntocomponentsalongthresperpendicularaxes,onebeingtheaxisofrotationoftheellipsoid.GansthenassumesthatI,,•1982022556-031 .,LOR!C;NAL_''"'-31OFPOORQUALITYtheelectricfieldcomponentsexcitedipoleoscillationsalongtheIellipsoidaxes.ScatteringphenomenacanthenbecalculatedbyanalogytoRaylei9hscattering.Iftheellipsoidcoordinatesystemis_,rl,x,with/_the_axisofre_lution,th

41 enthedipolemomentsgivenbyGansarePF,"gEe(
enthedipolemomentsgivenbyGansarePF,"gEe(2.20),:"Prl"g'En12.21)!PX"g'Ex(2.22)_er'_°g=V(m2-I)(2.23)4_+(m2-I)Pg,.V(m2-1)(2.24)+(2.I)P'foroblatespheroids.P-4_-2P'-_.[I-sin'le](2.25)andforprolatespheroids.P-kw-2P'-kw('_'eZn_lI](2.26)ewhereVisthevolumeoftheellipsoidand•istheeccentricitydefinedasi•--4I-(B/A)212.2711982022556-032 oRIGSNALp_.G'E.|332OFpOORQUALI'[Y_:i4V,,,"_"AB2Prolate(2.28)V-_A2BOblate(2.29)wlthAandSbeingthemajorandminorradiioftheellipsoid.TheGansbackscattercross-sectionsforwater,iceandsnowhavebeencalculatedforrandomlyandpreferentiallyorientedellipsoidsby27Atlas,Kerker,andHirschfeld.TheirworkindicatesthatforwaterellipsoidsorientedwithmajoraxisalongEl,°bIncrease

42 sroughlylinearlywithaxesratioA/Buptovalu
sroughlylinearlywithaxesratioA/Buptovaluesoforder10.Thiseffectisgeometricalandhaslittledependenceonwavelength.Iceandsnowiareseentobeonlyweaklydependentongeometricalfactorsduetotheirgenerallysmalldielectricconstant.Theabsorptioncross-sectionfororientedellipsoidswillbeofparticularinterestinlatersectionsandwasnotcalculatedbyAtlas,etal.ThereforeowillbecalculatedhereusingtheGansapproach.aTheincldenLc_.lectrlcfieldisassumedtoprc_agateperpendiculartotheaxisofrotationoftheellipsoid.Theproblemthenbecomesessentiallytwo-dlmenslonal.InFigure2.4theorientationanglo0.db'_isdefinedastheanglebetweenEland_.Theabsorptioncross-sectionoiscalculatedbyassumingthata"the/_andndipoleshavesepara

43 tecross-sectionso_andonwhich?areexcitedb
tecross-sectionso_andonwhich?areexcitedbytheappropriatecomponentsoftheIncidentfield.Theabsorptioncross-sectionisthen0a-O_cos2a+Or1sln2a(2.30)1982022556-033 O_!G':t_'.F_'__OFPOORQUALITY]Ii]OblateEllipsnidil"i;i(,!'n_Ei_"1CProlateEllipsoidFigure2.4OrientationoftheincidentelectricfieldwlthrespecttotheelllpsO]dcoordinatesystem.{1982022556-034 ilOFPO0:tQU::_L_'(Thepartialcross-sectionso_and_rlare_flnedbyanalogytoRaylelghscatteringas8_2O_"_Im(-g)(2.31)8_2On"TIm(-9')(2.32)_hereXisthefreespacewavelengthandg,g'aretheGansfactors.:Theratioofo6andor1forwateratO°Ctooaofan_equivolumetrlcsphereisplottedversustheaxisratioA/BforoblateandprelatespheroidsinFigures2.5and2.6.OfInterestisth

44 estrongIncreaseinabsorptionastheellipsoi
estrongIncreaseinabsorptionastheellipsoidbecomesmoreeccentric.Thisappearstobevalidindependentofwavelength,subjecttothelongwavelengthlimit.4_2.5AbsorptionandScatteringbyaCollectionofScatterersInmanycasesofsigniflcance,thescatteringobjectIsactuallyacollectionofsmallerscatterers.Theabsorptloncross-sectionoafor,isuch•collectionis,tofirstorder,justthesumofalltheIndividualcross-sectionsoa-z:o12.33)ja,jaslongasthescatterersarenotinImmediateproximitytooneanother.ThiscanbeIllustratedbyconsideringtwoRayleighspheresofradiusaseparatedbyadistancer.Thescatteredelectricfieldfromsphere1i1982022556-035 35:_Figure2.5Ratioofo_andOr1tothesphericalvalue'"versusAIB.50OblateE!lipsoLds3O.st¢•

45 3.%-I,24and10cm,!59A/If O_Lr.,!,_Z:;-_,.
3.%-I,24and10cm,!59A/If O_Lr.,!,_Z:;-_,...-.-.:OFpOORqL;_L_'I'YIFigure2.6Ratioofo{andontotosphericalvalueI00.IversusA/B.IProlateEllipsoids_so4_.---",-'°lS"•///._i-5__'__)_-I.2llandlOcm•/I")"._011982022556-037 \}_':,ORIGINALPAGEISit37OFPOORQUALITY;i_:i_feltbysphere2Isoforder(r)3EiwhereEiistheincident"•_ielectricfield.ItIsclearthatforlnterparticlespacingsgreaterthan_._•:afewradii,theIncidentfielddominatesandtheparticlesabsorbi':independently.Collectiveeffectscanbeimportantforthescatteringcross-sections.InthecaseofIdenticalscatterersthedifferential:(scatteringcross-sectioncanbewrittenas2_^aiIonescatterersscattererwhereF(q)isthestructurefactorusedinx-raycrystallography.It,

46 dependsonthedistributionofscatterersandi
dependsonthedistributionofscatterersandisdefinedas=IzexpClq•xj)lz(z.3s)jo:Thevectorqisthechangeinwavevector_andxjisthepositionofthejthscatterer.ItisInstructivetoconsiderF(q-'L)forthebackscattercross-'-"section_-2_"O.ForauniformdistributionoffixedIdentical"-j"scatterers:•FizZ'0)-0(2.361"Thisisduetothephasecancellationofbackscattersignalfrom1982022556-038 38•onescattererbyanotherseparatedbyanintegernumberofhalfwave-lengthsalon9theIncidentdirection.If,however,thereissomere|ativemotionbetweenthescatterers,thenthephasecancellationiaveragesoutandr(2_O)-N(2.37):whereNIsthenumberofscatterers.Thebackscattercross-section|:formeteorologicalscattererscanthenbewrlttenas,ob-_%,j(2.3

47 8)jThiseffectallowstheback,scattercross-
8)jThiseffectallowstheback,scattercross-sectiontoberelatedtosuchmeteorologicallyrelevantparametersastheliquidwatercontent:andtherainfallrate._."1982022556-039 39o*CHAPTER3_:iABSORPTIONANDSCATTERINGTHROUGHTHEICE-WATERPHASETRANSITION•_Theproblemofscatterln_frommeltingandfreezinghydrometersIst+consideredinthischapter.InSection3.1thetheoryofscattering_'frommixed-phaseparticleslsdiscussed,alongwithamode]forscatteringbymeltingatmosphericparticles.InSection3.2,•{experimentaltechniquesusedtomeasureabsorptionduringthephase1.._itransltlonsarepresented.Finally,Section3.3containstheresults:oftheabsorptioncross-sectionmeasurements.•Ji"3.1TheoryofScatterln_byHeitln_andFreezin_Hydrom

48 etersThescatteringbywater-coatedicespher
etersThescatteringbywater-coatedicesphereshasbeenstudied:theoreticallybyseveralinvestigators.In1951AdenandKerker29extendedHle'stheorytothecaseoftwoconcentricspheres.In1952,30LanglebenandGunncalculatedcross-sectionsforwater-coatedicespheresusingtheAdenandKerkerresults.Addltlonalcross-sectionshavebeencalculatedbyB¢..en,HermanandBrowning31,32Experlmental•!measurementsofthebackscattercross-sectionsforlargemeltingicespheresweremadebyAtlasetalin1960.33Labrumstudiedtheproblemofscatteringbytwoconfocal!_ellipsoidsin195;234inanattempttoexplainenhancedreflectionfromthe"brightband".The"brightband"isobservedonmeteorologicalradarasahlghly-reflectivezonelocatedJustbelowthefreezinglev

49 el.Theenhancedreflectioninthe"brightband
el.Theenhancedreflectioninthe"brightband"canonlybepartially:explainedbythedynamicsofmaltingprecipitationparticles.LabrumappliedtheGansmethodologytocalculatebackscattercross-sectlons.pi!1982022556-040 _r_Healsomadesomeexperimentalmeasurementsofbackscatterfrommelting35:_nonspher!ca]iceparticles.Becauseofexper|mentaldiff|culties,,however,Labrumwasonlyabletogetgeneralqualit°:iveagreement,wlththetheoreticalbackscattercross-sections.*.InSection3.1.1,theabovetheoreticalresultsforspheresandellipsoidswillbesummarized.InSection3.1.2,amodelofthemeltingandscatteringprocesseswhichincludethetheoreticalcross-sectionswiI!bepresented,:--;3.1.iWater-CoatedIceSpheresandEllipsoidsAnexampl

50 eoftheabsorption,scattering,andbackscatt
eoftheabsorption,scattering,andbackscattercross-.sectionscalculatedbyLanglebenandGunn30isshowninFigure3.1.Inthiscasethewavelengthis3cmandtheequivalentmelteddiameter¢Dofthesphereis2./Imm.Thecrosssectionsarenormalizedbyeqthelrmeltedvalues_meltedandareplottedagainstthemassfractionofwater_1f=(3.1)wHw+hiwhereHwisthemassofwaterInthesphereandHiisthemassofice•!Thebehaviorofthecross-sectlonsinFigure3.1withfwIstypicalofthosewater-coatedicesphereswithradius_essthan),•,Thescatteringcross-sectionsIncreaserapidlywithfwtothevaluoforwaterspheres•Theabsorptioncross-sectionrisesveryrapidlyiiwithfwtomorethantwicethemeltedva!uebetweenfw"•1andfw".2andthengraduallyreducestothemeltedvalue.•t

51 r_1982022556-041 ,i-,,____c*,Ii41ORIC-It
r_1982022556-041 ,i-,,____c*,Ii41ORIC-It,!ALPAG_ISOFPOORQUAUTY.1982022556-042 C42+-TheIncreasedabsorptionofapartially-meltedicespherecanbeunderstoodphysicallybyconsideringthemeltedcase.Theabsorptionbyameltedspherecanbethoughtofasohmiclossesarisingfromcurrentswhichcreateoscillatingmul°ipolestomatchtheboundaryconditionsatthesphere'ssurface.Ifanobstruction,inthiscaseanicesphere,isplacedinthecenteroi:thewatersphere,thepathlengthforthecurrentsisIncreasedandtheohmiclosseswillsimilarlyincrease.IftheIcesphereisverysmalltherewillbelittleeffect,andIfthe•sphereispredominantlyice,thentheexcitedmultiplesareweakerandmuchofthecurrentwillflowInthelowlossIce,resultinginlittleabsorption

52 .Forscatteringfrommeltingellipsoidsofrev
.Forscatteringfrommeltingellipsoidsofrevolution,itwillbeassumedthatthemeltingeffectsofthissectionandtheGansshapeeffectsofSection2.4canbeincludedmultiplicatively.Therefore;oO=Ogans,o(3-2)OmeltedOsphe+.esphereHereoIsthecross-sectlontobecalculated,oisthe°reeltedratioofpartlally-tototally-meltedcross-sectionsforasphere.Theo:ratio_isthatoftheGanscross-sectiontoanequivolumetric°sphere,sphereandOsphereisthecross-sectionoftheequlvolumetrlcwater+*sphere.Backscattercross-sectionscalculatedasaboveagreewlththoseofLabrum31ttoatleastfirstorder.Theabovesimplificationisconsideredacceptableconsideringtha_,formostapplications,theassumptionofanellipsoidofrevolutionIsitselfonlyanapproxima

53 tionofsomemorecomplicatedshape.iI+119820
tionofsomemorecomplicatedshape.iI+11982022556-043 43_.1.2HodelofHeltingofScatterersIntheAtmosphereTheapproximationofatmosphericscatterersasbodiesofrevolutionworkswellforice,wherethelowdielectricconstantmakesshapeeffectunimportant,andforsmallwaterdropswheresurfacetensiondominates.Formeltingicecrystals,however,asomewhatmorecomplexmodelmustbeused.Inordertomodelthemeltingprocess,snowflakeswereobservedastheyfellontoaplateofwarmglass.Fivedistinctphasesofthemeltingprocesswereobserved,althoughnoteveryparticleexhibitedallfivephases.ThefivephasesareshownschematicallyinFigure3.2.Phaselistheicephasebeforemelting.InPhase2thecrystalbeginstomeltatitsextremities,wheretheheattransferis

54 thegreatest.Smallwaterspheresbegintoform
thegreatest.Smallwaterspheresbegintoformattheextremities.InPhase3enoughwaterhasmaltedtocoalesceintoawatershell.Thereis,however,stillsufficienticestructureinthisphasetomaintainanon-spherlcalshape.InPhase4theicehasmeltedtosuchapointthatthestructuralintegrityoftheiceisgoneandthesurfacetensionofthewatercausesthedroptocollapseintoasphericalshape.Phase5isthatofthetotally-meltedsphere.TheabsorptionandscatteringcharacteristicsofameltingIceparticlearedifferentIneachofthefivephases.AnexampleoftherscatteringbehaviorofameltingcrystalisshownIrFigure3.3,whereoaandc;bareplottedagainstthemassfractionfw"InPhase]theparticlescattersandabsorbslikeanequlvolumetricIcesphere.IInPhase2thepart

55 iclecanbeappr_xlmatedasacollectionofRayl
iclecanbeappr_xlmatedasacollectionofRaylelgh,wrscatterers.Theabsorptioncross-sectionis,therefore,alinearly-increasingfunctionoffw"Thebackscattercross-sectionis4_1982022556-044 tOFPOORQUALITYPHASE1PHASE2•_PHASE30PHASE_:PPHASE5QFigure3.2Schematicrepresentationofthefive_asesofmelting.¢1982022556-045 45_dependentontheforefunctionF(2_O)definedinSection2.5.Itwill,,Ingeneral,beacomplicatedfunctiondependingontheorientationof,theparticleandthelocationswheremeltingbegins.Inmanycases4thecrystalwillhavesomesymmetry,hexagonalorotherwise,andthemeltingshouldinitiatesymmetrically,whichsimplifiescalculationorF.Themaximumvalue,ofFIsN2whereNisthenumberofwaterspheres.inPhase3,shapeeffects

56 •asapproximatedbyGansscattering,are|:com
•asapproximatedbyGansscattering,are|:combinedwiththemeltingeffectstocalculatethecross-sectlonsasinSection3.1.1.intheexampleshowninFigure3.3,thecross-sectionsareenhancedbyshapeeffects,Implyingthattheelectricfieldisorientedatleastpartlyalongthemajoraxis.Itshouldbenotedthattheshapeeffectscouldalsodegradethecross-sectionstovalueslowerthanthoseofameltingsphere,iftheelectricfieldwereoriented'+ialongaminoraxis.InPhase4,theparticleactslikeawater-coatedIcesphereforoaandob.Finally,inPhase5whentheparticleistotallymelted,thecross-sectionsarethoseofawatersphere."Freezingwaterdropsintheatmosphereexhibitmuchsimplerbehaviorthanthemeltingcase.Thedropsaregenerallyinthemetastablesupercoo

57 ledstatepriortomelting.Whencrystallizati
ledstatepriortomelting.Whencrystallizationoccurs•itdoessorapidlyand_lativelyhomogeneously.The;-_catterlngbehaviorofafreezingdropcanbeapproximatedbythatof•sphereoranelIIpsoidwithahomogeneousdlelectricconstant:¢lcoHi+%aterI_,i¢""I+".(3.3);1982022556-046 46ORIG,t_.,'.-.P,',.gSr,:_OFPOORQUALITY,!I1982022556-047 !47whichIsthemassweightedaverageofthedlelectrlcconstantseice.andawareroftheconstituents.3.2ExperimentalMethodsforHeasurlngAbsorptionDuringPhaseTransitionRelativelyfewexperimentalmeasurementshavebeenmadetoverifythetheoreticalcross-sectionsofmeltingandfreezinghydrometers.Radarobservationsofphenomenasuchasthe"brightbancf'yieldsomeInslght,butaresubjecttomanyuncertaintie

58 s,duetofactorssuchasprecipitationdynamic
s,duetofactorssuchasprecipitationdynamics,coalescence,andgeneraluncertaintyastothe•exactnatureofthescatterers.Controlledexperimentswhichmeasurethecross-sectionsofasingle,scattereraredifficult,duetotheverysmallpowerchangesinvolved.Thosemeasurementswhichhavebeenmade,byLabrum35andiithosebyAtlaseta1,33measuredbackscattercross-sectionsunderless-than-Idealconditions.Labrummeasuredobformeltinghemispheresplacedinawavegulde.Atlasetalmeasuredc;bforverylargemeltingspheressuspendedbyaballooninthenearfieldofamteorologlcalradar.Atechniqueforaccuratelymeasuringtheabsorptioncross-sectionsofmeltingmeteorologicalscaledropsusingperturbationtechniquesin•aresonantmicrowavecavityhasbeendeve

59 loped.Section3.2.1doscribesthetechniquea
loped.Section3.2.1doscribesthetechniqueandtheparticularcavltyusedIntheexperiments.InSection3.2.2theexperimentalset-upisdiscussed.Section3.3containstheexperimentalresultsobtainedusingthistechnique.1982022556-048 48'3.2.1PerturbationTechniquesInaResonantCavityThetechniqueusedformeasuringtheabsorptioncross-sectionoaconsists,basically,ofmeasuringthechangeInqualityfactorQofahighQresonantcavitywhereQ=_energystoredincavlty=uU(3.4)powerlossincavityPandm=2_f(3.5)I•U-energystoredinthecavity(3.6)P=powerlossinthecavity(3.7)ThevalueofI_canberelatedto_aIfthedroplsnon-magneticandItsdimensionsaresmallcomparedwiththescalelengthoftheelectricfieldinsidethecavity.Undertheseassumptionsthes

60 cattererseesanoscillatingelectricfieldof
cattererseesanoscillatingelectricfieldofstrengthEO.ThepowerabsorbedbythedropPdcanbewrittenusingaaandthe:Poyntingvectorwhichwouldresultiftheelectricfieldwereinfreespace.c(3.8)Pd=°a_-_EO2TorelatePdtothechangeInQwhenadropIsIntroducedIntoacavity,thecaseoftheemptycavitymustfirstbeconsidered.FortheemptycavityU%-13.9)W1982022556-049 49whereQeistheemptyQandPwisthepowerdissipatedinthewallsofthecavity._#henthedropIsplacedInthecavity,assumingoUdoesnotchange,theperturbedvalueO.pbecomesu(3.10)QP'_P+PdIfthedropletQisdefinedasUQd=_F_d(3.11)thenI11(3.12)NotingEquations3.8through3.12,theabsorptioncross-sectloncanbewrlttenas%.1CEoZ_dd(3.13)cavityIssuchthatUisproportionaltoE02,thenIfthet

61 heelectricfieldstre.gthwilldropout.Theca
heelectricfieldstre.gthwilldropout.ThecavitychosenfordropmeasurementswasarightcircularcylinderoperatlngIntheTHO10mode.ThismodewaschosenbecauseofItsfairlyunlfomelectricfieldatthecenterofthecavityorientedalongthecavityaxis.TheTHOI0modealsohasvc_/smallsurfacecurrentsontheendplatesneartheaxis,allowingholestobedrilledintheendplateswithmlnlmaleffectonthecavityfields."1982022556-050 :50',Thecavitywasdesignedtoresonateat10.66GHz.ItsdiameterDwas2.153cmanditslengthLwas1.229cm.Figure3.4isthemode36"chartforrightcircularcylinders,shGwingtheoperatingpointforthecylinder.Thereisgood_odeseparation,withtheclosestmodebeingtheTEllIat14.4GHz.SincetheTHOI0isthelowestmode,frequencieslowertha

62 ntheTMOI0resonancearecutoff.Thecavityisc
ntheTMOI0resonancearecutoff.ThecavityisconstructedoutofcopperandtheemptyQIscalculatedtobe9000.'TheelectricandmagneticfieldsfortheTROI0modeare-4.81.-l_tEz(p,t)=EOJoiT)e(3.14)8_(p,t)=-iEoJi(I°'_lp-)e-i_t(3.15)wherep,¢.andzarethestandardcylindricalcoordinates.Withthefieldsknown,itispossib'!etocalculatethestoredenergyU.NotingtheperiodictimedependenceandassumingtheunperturbeddielectricconstanttobeunityII+IB_(p,t)dvol(3.16)U=I-_IEz(p,t)l212¢avityU"L[Jo2(_J.p),ji2(4._lP__)lpdp(3.17)_0U=0.0084(D2L)E02(3.18)2NotethatUhasthedesiredE0dependence.ForthevaluesofDandLdescribedabove|I1982022556-051 OF£OORQU:\LI'i'Vi_.0Ce-;mzI_°_2.0_.I°TH011._._"_-TEll1Eo1.5_l_'Closestcompeting-'__-'po

63 int1.0_Operatingpoint_o_................
int1.0_Operatingpoint_o_..................4.........THO100X_._'_'0.5az.0z'.53.03.'5A2_-(OIL)Figure3,itHodechartforrightcircularcylindershowingtheTH010operatingpointandtheclosestcompetingpoint.1982022556-052 52U=0.048E02(3.19)Therefore\0"Ok8_E02I=0.048f(cm2)(3.20)-°a_E02Theabsorptioncross-sectionissimplyproportionaltotheproductoffandI/Qd.3.2.2ExperimentalSet-UpThemicrowavecircuitusedtomeasurecavityQIsshownin1Figure3.5.PowerwasgeneratedbyanX-bands_eeposcillatorwhichvariedfrequencylinearlyoveraspecifiedrangeneartheresonanL(frequency.Powerwastransmittedthroughavariableattenuatorand:byacommercialwavemetertoprovideafrequencyreference.The,cavitywasconnectedtothecircuitviaasho

64 rtstubtoacoaxialtee!•iThecoaxcoupledmagn
rtstubtoacoaxialtee!•iThecoaxcoupledmagneticallyIntothecavityfieldsbyalooporientedinthe_directionlocatedononeoftheendplates.Theteewas:tconnectedtotherestofthecircuitbyflexiblecoaxialcable.ThisilallowedtheentirecavityassemblytobeplacedInacoldpox.Thei/cablewasterminatedatbothendsbymatchedattenuatorsinordertoIireducereflections.tAfterpassingthecavity,powerwasmeasuredbyacrystaldetector.1Thecrystalhadbeencallbratedpreviouslyagainstabolometer.Theoutputofthecrystalwenttoadigitalscope.ThescopewastitriggeredbythesweeperandhadthecapabilitytostoretracesonfloppyB1982022556-053 JI_•53OFPO'3RQUALITY1982022556-054 7.4;disksfor]ateranalysis.Thisfeaturewasusedwhenmeasuringtime-dependen

65 tphenomena,suchasmeltingeffects.InFigure
tphenomena,suchasmeltingeffects.InFigure3.6atypicalscopetraceofcrystalvoltageversustimeor,equivalently,frequency,isshown.Th_referencemarkerandthecavityresonancearevisible.Whenthefrequencyisoffresonance,nopowerisabsorbedbythecavityandthepowertothecrystalIsatamaximum.Onresonancethecavityisveryabsorptiveandthecrystalpowerisatitsminimum.TheloadedQofthecavity,whichincludescouplingeffects,is,ijfo"Qt=-_(3.21)_FwherefoistheresonantfrequencyandI"Isthefullwidthathalf"41"maximumoftheresonance.ThecavityQdiscussedpreviouslyIstheunloadedQwhichisrelatedtoQI.foracircuitsuchasthisby00my__'x0.LT"x'0"__q__(3.22)wherePmexandPminarethemaximumandtheminimumpowersreceivedbythecrystal.37Theact

66 ualcavityassemblyusedinthe_xperimentIssF
ualcavityassemblyusedinthe_xperimentIssF,owninFigure3.7.Itwasmachinedoutof1.5inchcopperrod.ThecavitydiameterDwas2.153cmandthecavitylengthLwas1.229can.Oneendplatewasremovableforcavitycleaningandpolishing.Therewereholesdrilledonaxisineachofthe].5-cm-thicke)dplateswitha2mmradlustoprovic_eaccessfordropInsertion.Thecavitywas1982022556-055 °,55_ri--C_RQ_ALITY3OV£_OAIY£S_31982022556-056 Figure3.7ResonantCavityAssembly.1982022556-057 57supportedhorlzontallyonaveeblockIndirectcontactwitha.thermometertomeasurecavitytemperature.Dropsofdisti_ledwaterweresupportedbysurfacetensiononaquartzfiberwitharadiuslessthan.!nun.AnexampleisshowninFigure3.8.Dropswereplacedonthefiberbyasyringean

67 ddimensionsweremeasuredInsitub'iadirect-
ddimensionsweremeasuredInsitub'iadirect-readmeas_rl,gmicroscope.Thefiberwasorientedalongthez-ax'_ofthecavityandranthroughtheholesIntheendplates.Itwasheldonaxisbyplexiglasssupportsoneitherendofthecavity.Theentirecavitya_semblywasportablesothatitcouldbemovedinandoutofa-20°Ccoldboxwithoutdisturbingthedroporthemicrowavecircuit.TypicalcoolingandwarmingcurvesareshowninFigure3.9.TheresonantfrequencyandQoftheemptycavitywerefaeasured.Theresonantfrequencywas10.656HzandtheQwas8990,whichareveryclosetothedesignvaluesof10.66GHzand9000.Thedifferencesareattributedtotheendplateholesandimperfectcavitysurfaces.ItshouldbenotedthattheemptyQvariedsomewhatduetooxidationontheinteriorcavitysur

68 faces,resultingfromexposuretomoistureand
faces,resultingfromexposuretomoistureandthethermalcyclingofthecavity.Inordertocorrectforthis,thecavitywaspolishedperiodicallyandtheemptyQwasmeasuredpriortoeachdroprun.3.3ExperimentaI_Resu!t_sTheexperimentalresultsofabsorptionmeasurementsforwaterdrops•arepre__entedInthissection.Themeasuredcross-sectionsforroom-'temperaturedropsarefoundtoagreewiththeRayleighvaluesini:.1982022556-058 58Oi"P_""Q"_ag¢"Figure3.8_laterdropletsupportedonaquartzfiber,:_i:1982022556-059 IO20304050time(rain)1982022556-060 J603Section3.3.1.InSection3.3.2somemeasurementsofthedielectric:iconstantforsupercooledwaterarepresented.Finally,Section3.3.3.containsabsorptiondataforsphericalandnon-sphericalhy

69 drometersduringmeltingandfreezing.4,3.3.
drometersduringmeltingandfreezing.4,3.3.1AbsorptionCross-SectionsforWarmDropsi:!Absorptioncross-sectionsweremeasuredfordistilledwateridropsataroomtemperatureof2O°Cusingthetechniquesdescribedin!:iSection3.2.Theresonantfrequencyofmeasurementwas10.64GHzi*.OIGHz.Dropswithdiametersvaryingfrom0.5mmto2.0mmweremeasured.Themeasuredabsorptioncross-sectionisplottedagainstt|,dropvolumeVinFigure3.10.ThestraightlineisaplotoftheiiRayleighabsorptioncross-sectionst6_VIm(-K)(3.23)";°a=T,2withIm(-K)takenfromRyde17at2O°Ctobe0.01883.ThedataagreeswellwithRayleightheoryforthesesmallessentially-sphericaldrops,ThescatterinthedataismalnlyattributedtouncertaintyinmeasurementofV.,iI3.3.2Dielectri

70 cParametersofSupercooledWaterWiththeconf
cParametersofSupercooledWaterWiththeconfidenceInthemeasurementsofRayleighabsorptionIcross-sectionsgainedfromtheresultsofSection3.3.1,measurementsweremadeofoaasafunctionofcavitytemperatureTinordertoInferthedlelectrlcparameterIm(-K)fromtheRayieighcross-sectionsInequation3.23.HeasurementsofIKI2,whichcanbe1982022556-061 IFPCCRQUAL!I'Yo'.¢1"o..29m_4.0ix(w:))"ow1982022556-062 :62;linearlyrelatedtotheshiftintheresonantfrequencyfoby,perturbationtheory,werealsoattempted.MeasurementsofJKI2,however,wereunsuccessfulbecausetheverysmallchangesinIKI2iwithtemperatureweremaskedbyrelativelylargechangesintheresonancefrequencyduetothermalexpansionofthecavity.LackofIKIzmeasurementisnotcons

71 ideredtooimportantas,inapplications,If;I
ideredtooimportantas,inapplications,If;I2isgenerallyassumedtobeconstantwithtemperature.i-•ReasurementsofthesupercooledtemperaturedependenceofIm(-K)weremadebyinsertin9distilledwaterdropsinawarmcavityandi{tplacingthecavityassemblyinthe-20°Ccoldbox.Thedropswereitassumedtoremaininthermalequilibriumwiththecavity.Microwave''.heatingofthedropwasneglectedbecauseofthelo_powerofthesweeper(lessthan1roW)andthelowdutycycleonresonance(lessthan0.0OI).Liquiddropswereobservedattemperaturesaslowas-17°Cbefore.crystallization.__.Valuesof1/(_dandcavitytemperatureTversustimefora:typicalcoolingrunareshowninFigure3.ll.Thedropcooledwithincreasingabsorptionto-17°Cwhereitnucleatedandtheabsorptio

72 ndroppedtothevalueforice.At16minutesInto
ndroppedtothevalueforice.At16minutesIntotheruntherewasasuddenjumpin1/Qdwhichlastedfor12minutes.Similarjumps:wereobservedonsubsequentruns,althoughoccurringatslightlydifferenttimesandtemperatures.Theseanomalously-highvaluesofJI/QdarenotthoughttobephysicallyrelatedtochangesinIm(-K),:butrathertosomethermaleffectinthemicrowavecircuit.Inthefollowing,therefore,suchvalueswillbeomitted.Figure3.12isaplotoftheobservedveluesofIm(-_;asi,m1982022556-063 63O;,L_,,+,4Q;JALriYI=l•i•ttI,l=L•IImi=Oo••_•-=".II••l,e_°oQ?I!-_.•.+•i•=Q¢••,_i•II•••,_ot•iiii|.ii.i.i-RoooA.*,-,_-•1:301=+"pat,.,=od==.l.'e°lOf=i%11"_tjII.................,+.,_...............1982022556-064 •464,.ORIGIi'IALPAGEISOFP

73 oORQUALITY_,J"\C&OQD_L.,-4•'4)•i*°u�
oORQUALITY_,J"\C&OQD_L.,-4•'4)•i*°u�u_e,_B_),t?8-_4I•inooo:••v-|0•",O000,*•...•,;,,,__l1982022556-065 65calculatedbyequation3.22,alongwiththevaluesofIm(-K)1617_.calculatedfromthedielectricdataofvonHippelandRyde.Themeasureddataisafairlysmoothfittothepreviousvaluesandextendswellintothesupercooledrange.TherealandimaginarypartsofthedielectricconstantcouldbecalculatedfromIm(oK)byassumingIKI2isconstantwithItsvalueforO°C.TheabovetechniquecouldbeusedtomeasureIm(-K)atevenlowertemperaturesifaverycleancoldboxenvironmentwasmaintained.ValuesatotherfrequenciescouldbemeasuredIfasuitablecavitywasc_nstructed.|5.3-3AbsorptionCross-SectionsDuringPhaseTransitionInFigure3,11ofthepre

74 vioussection,asupercooleddropisobservedt
vioussection,asupercooleddropisobservedtocrysta111ze.ThevalueofI/QddroppedlinearlyintimefromavalueforliquidwatertothatoficeinlessthanIminute,ThisIsthebehaviorpredictedinSection3.1forafreezingsupercooleddrop.ThemeltingbehavioroficeparticlesisexpectedtobemorecomplIcated.Observationsofthemeltingcross-sectionsweremadebyplaclnganiceparticleontothefiberandintothecavitywhllethecavltywasinthermalequilibriumwiththecoldboxat-20°C.Thecavityassemblywasthenremovedfromthecoldboxandallowedtowarm.AtypicalexampleofthebehaviorofI/QdwithtimeisshowninFigure3.13foranIcesohereofequivalentmelteddiameterOofeq1.15ram.TheabsorptionbehavedqualitativelyaswaspredictedInSection3.1.At12:30minutesthe

75 dropbegantomelt.ThevalueofI/Qdquiclyrose
dropbegantomelt.ThevalueofI/Qdquiclyrosetoamaximumat16minutes.Theabsorptionthenilk_11982022556-066 66•tOR!G'_?I:_LF;_.'/ISoFPOOP,QUALITY0C•._Q._i'-""aU•'w)E&""=DNU_.IF'_Nq.olxP_/iq,1982022556-067 -,qlo-]/67begantodecayandat20minutesreachedthemelteavalue,whichwaslessthanhalfthepeakvalue.Inordertoquantitativelycomparethemeasurementswiththeory,0aI/Qdmustbeconvertedtothenormalizedcross-sectionandOmeitedsomerelatlcnmustbeassumedbetweentimeandthemassfractionMw(3.24)fw' +MITorelatefwtotlmeT,assumethatthedroplettemperatureIszeroduringmelting.Alsoassumethatmeltingbeginsattimetoandendsattimetf.TheheatlossfromthedropIsdQd-T"const.T(t)(3.Z5)whereT(t)isthetime-dependentcavitytemper

76 atureandtheconstantisdependentonlyonthec
atureandtheconstantisdependentonlyonthecavitygeometry.Fromthewarmingcurvein_'Figure3.9,itisassumedthatthecavitytemperatureIncreaseslinearlywithtimenearzero.ThereforedQ_--const,t(3.26)ThechangeinwatermasscanberelatedtotheheatlossbythelatentheatoffusionLiw.dMwl.J.._tt().27)"_'"Liw1982022556-068 i-ii68........uq'SincethetotalmassH+Hiisconstantandnotln_thatHw-Oat,;:W"itimetOfW(t)Hw(t)t"t_+Mi=const.(t-tO)d(t-tO)(3.28)0:.f(t)-const.(t-t0)2(3.29)Notingthatfw"1attimet-tf,then(t-t0)2=(3.30).,-(tf'-to)2whichistherequiredrelationbetweenmassfractionandtime.Figures3.14,3.15and3.16showtheexperimentalandtheoreticalonormalizedcross-sectionsaoasfunctionsoffwforIceameltedspheresequlw,le

77 ntmelteddiametersDeqof1.15,1.6and2.0mm.T
ntmelteddiametersDeqof1.15,1.6and2.0mm.Thegeneralbehaviorisingoodagreementwiththeory,althoughthetheoryunderestimatestheabsorptioncross-sectionsbyasmuchQs25_.atpeakvalueinthe,_orstcase.ThediscrepancyloduetothefactthattheAdenandKerkertheoryassumesdielectricvaluesforwaterona+wavelengthof3cmandatemperatureof18°C.Thedielectricconstantatthesevaluesislessabsorptivethantheactualexperimentalcondi-tionsof2.8cmand0°C.Theincreasedabsorption,alongwithslightdeviationsfromsphericity,couldaccountfortheobserveddifference.:Tf,eabsorptioncross-sectionsformeltingnon-sphericalIce,._,particleswereobserved,tocheckforthen,ultlplepha_eb_havlorpredlc_edinSection3.1.2.ShapedIceparticleswereconst

78 ructedby1982022556-069 69?C........_JOF,
ructedby1982022556-069 69?C........_JOF,_;,/..-.:C_-:,!-'.1''/!CI'P!oI•I0|IIi"-I!I:J_a"II'_.Io.atI:-.I,'_I-Io,I:...-/It/:•I8III].-I•I/N•Ic);II•I\.•__,,_,.\•'ii11982022556-070 :70.__'.-'"QUALITY_'CFF...._1982022556-071 71c.'....i_"c'b•i°itl|,,._:IIIIZZ.I,,o.oI::_,._,bI:!,/•I•!Zh,,,m/tI//•///•//,_•/•/#°•!ii•Ii1982022556-072 ,',-,L-,.."i.Ti72l!placingasmallwaterdroponafiberandimmersingthedropInailiquidnitrogenbath.Afterthedropfroze,itwasremovedfromthebatllandanadditionaldropwasadded.Theprocedurewasrepeateduntiltherequiredshapewasachieved.Themajordisadvantageofthismethodwastheinabilitytocreatesharpedgesduetosurfacetensionsmoothingofthewaterdrops.Figures3.17and3.18showexamp

79 lesoficeparticleswhichw_.reroughlyoblate
lesoficeparticleswhichw_.reroughlyoblateandprolateellipsoidsorientedwiththeiraxisofrevolutionalongtheelectricfield.FortheoblatecaseinFigure3.17,fourofthefivemeltingphasesarevisible.Theabsorptioncross-sectionstartedinPhaseIlikethatofanicesphere.Oncemeltingbegan,thecross-sectlonskippedPhase2becauseoftherelativelysmoothsurfaceandabsorbedinPhase3likeanoblatewater-coatediceellipsoidwithaxesratioA/B-1.8.Atamassfractionof0.2,thedropbegantocollapseintoPhase4ofawater-coatedicesphereandatamassfractionofI.Othedropab_._edlikeawatersphereInPhase5.InFigure3.18anexampleofaprolateellipsoidisshown(notethechangeinscale).Inthiscasetherewassufficientsurfaceirregularitytoshowanon-uniformme

80 ltingPhase2uptoamassfractionofapproximat
ltingPhase2uptoamassfractionofapproximately0.2where_neverystrongabsorption,inPhase3,ofanorientedprolateellipsoidwlthA/B-2.5prevailed.Phase3lasteduptoamassfractionof0.6whichisartificiallyhighduetothestructuralsupportofthequartzfiber.Abovefw"0.6thedropcollapsedintothesphericalshapeofPhases11and5.1982022556-073 73•.,'/:.,,..::.t_r-,••"...._.,_ur_tII••II1IjI_.3IJoI"Io!Ii}'I!•_|_,_II_.r-I•I-/!,,DL,4/I•II:i_=//--II/III/I•/I4",I'd/,/II-I,i",I•//I/"I///'"*,IIp.+_t':[4l,lInlk•I•It41,1',,.Ion.+1982022556-074 +++71tORIGINALPAGEIS_p'_OUALITY+,\1982022556-075 'r,•75iInconclusion,theexperimentalmeasurementsoftheabsorptioncross-sectionsseemtosupportthetheoryforwater-coatedicespheresa

81 ndellipsoidsandthemodelforatmosphericmel
ndellipsoidsandthemodelforatmosphericmelting.Theobservedt!cross-sectionswerefoundLobegreaterthanorequaltothetheoreticalivaluesforwater-coatedicespheres.Thegreatestdifferencesoccurredatthepeakofthemeltingcurve,whereforonecasethetheoreticalcross-sectionunderestimatedthemeasuredvalueby25_.Thedifferenceisthoughttobetheresultofdiscrepanciesbetweenthe:theoreticalandexperimentalvaluesofthedielectricconstant.1982022556-076 f76+,,+-;+CHAPTER4+HYDRODYNAMICSOFACCELERATEDDROPS'+Theabsorptionandscattcringcross-sectionsofwaterdropswereIshown,inChapters2and3,tobestrongfunctionsofdropletshape.:+Inordertoaccuratelypredictcross-sections,therefore,itisnecessary,+tohavesomemodeloftheexpec

82 teddropletshape.TheCloudPhysics++communi
teddropletshape.TheCloudPhysics++communityhasdoneagreatdealoftheoreticalandexperimentalworkondropletshapeandbreak-upinthequasi-steady-statecaseofdrops•fallingintheearth'sgravitationalfield.38"46InSection4.1thisworkisbrieflyreviewedandthegeneralizationtoaccelerateddrops!Ismade._InSection1t.2experimentaltechniques,employinghigh-speed,_photography,formeasuringdropletshapesandvelocitiesinthewind;+tunnel,arediscussed.InSection11.3theresultsofexperimentsondropdeformationandstabilityarediscussed.4.1HydrodynamicTheoryofWaterDropsForverysmallwaterdroplets,wheresurfacetensionisthedominantsurfaceforce,thedropletsassumeasphericalshape.Section11.1.1discussesdeformationsfromspherica

83 lshapeasaresultof!+hydrodynamicaccelerat
lshapeasaresultof!+hydrodynamicaccelerationofthedropletsbyanotherfluid.Sectionc:__1.I.2presentstheoscillationswhichresultfromtherestoringnature'ofthesurfacetension.Finally,inSection4.1.3theinstabilitiesiwhicharisewhenthesurfacetensionisnolongersufficienttomain-tainthedroparepresented.I1982022556-077 r77.!jII4.1.1DropDeformation!Thesteady-stateshapeofawaterdropbeingacceleratedhydrodynamicallybyanotherfluid,inthiscaseair,can,inprinciple,befoundbybalancingallforcesactingonthesurface.Theseforcesare•SurfacetensionCentrifugalforcefrominternalcirculationofthewaterinsidethedropAerodynamicforcefromairflowingaroundthedropHydrostaticpressuregradientwithinthedropresulting,,fromacc

84 elerationInvestigatorshaveattemptedtomod
elerationInvestigatorshaveattemptedtomodeldropletsbyincludingsurface38-42tensionwithdifferentcombinationsoftheaboveforces.Themostcomplete,althoughreasonablycomplicated,methodwasthatofIPurppacherandPiterin197038:j.TheyIncludedeachoftheabove1forces,eitheranalyticallyorsemi-empirically,intoFourierexpansioncoefficientsinelevationangledetailingthechangeinradiusofthe:drop.Theresultsagreedwellforquiescentfreely-fallingdropswithequivalentdiameterDlessthan5mmwiththeexperimentaleqresultsofPruppacherandBeard,39Includingsuchsecond-ordereffectslasthedimpleobservedonthebot*.omoflargedrops.Fordropslargerthan5Bin,thePruppacherandPitermodelunderestimatesthedeforma-i}:tionsomewhat.1Ifit

85 issufficienttoapproximatethedeformeddrop
issufficienttoapproximatethedeformeddropasanoblateiellipsoid,whichiscertainlyadequateforcalculationsofGansabsorptionandscatteringcross-sections,thenthesimplerapproachof1982022556-078 •+:;78ORIO!P_.LP,.-'...CZISi+i_OFPOORQUALITY._DGreen46providesaccuracyequivalenttothatofPruppacherandPiter.:.Greenlsapproach,in1975,wastoneglectfloweffectsaltogetherand_Includeonlythesurfacetensionandhydrostaticforces.UsingthistapproachthediameterofanequivolumetrlcsphereDecanbewritten•_intermsofthemajor-to-minoraxisratioA/Boftheellipsoidandtheaccelerationaas,!,(_)1/2=(_)i.,2[(A/s)2-2(A/B)1/3,111/2:',Deq(A/B)"l/6(4.I)t_,,,wheregistheaccelerationduetogravity,disthesurface,i,tension(n.b.,_isa

86 lsousedtodenotecross-sections),Pwisthe:I
lsousedtodenotecross-sections),Pwisthe:Idensityofwateranda/gIstheaccelerationofthedropingunits.t;Greenoriginallyassumedthatthedropswerefallingatterminal'velocityandthereforea/gwasunity.Themoregeneralcaseforanyquasi-steady-stateaccelerationisincludedhere.Equation4.1isplottedinFigure4.1forwaterat20°C.,4.1.2DropOscillationsWhendropsareperturbedfromtheirequilibriumshape,surface'tensionactsasarestoringforce.ThisrestoringforceresultsIn1'_droposcillations.TheoscillationscanbecharacterizedbyadiscreteI",t".tsetofnormalmodes.ThesemodeswerefirstidentifiedbyRaylelgh,'+6,47whoidentifiedtheallowedfrequenciesforasphereast+fn"r2-n(n"l)(n+2)_11/2(4.2)"_2pwDeq3,:Ii_+1982022556-079 •:JI7

87 9it,_,_-I_'/_LpAGEIS-q•,!OFpOORQUALITY,i
9it,_,_-I_'/_LpAGEIS-q•,!OFpOORQUALITY,i:!i::'2.-ft,I'1iq'i|_J_,J1•••|1982022556-080 80OR;G:;;,,LV,.C-"ISOFPOORQUALITYwherenisthemodenumber.Thefundamental_odeisn=2withafrequency=[t6o]112(4.3)f2._2PwOeq3="z_efundamentalfrequencyisplottedagainstDinFigure4.2eqformIllimeter-sizedrops.Inthefundamentalmodethedropisflattenedalongoneaxisinitially.Aquarter-cyclelater,thedropisspherical.Afterone-:halfofacycle,thedropisflattenedalonganaxisperpendiculartotheoriginal.Atthree-quartersofacycle,thedropisagainspherical,andafteronefullcyclethedropisbacktoitsoriginalCshape.Thevalidityofthesteady-statedropdeformationsdescribedinSect;on4.1.1afterachangeinaccelerationisrelatedtothefunda-men

88 talfrequencyinequation4.3.Fortimescalesl
talfrequencyinequation4.3.Fortimescaleslessthanone!fundamentalperiod1/f2thesteady-statebehaviorwillnotaccurately)•predictthetransientdropdeformation.Fortimescalesofseveralperiodsthesteady-statebehaviorwillbetheaveragedeformationintime.Aftermanyoscillations,viscousdampingwillcausetheoscillatlonstodecayandthedropdefomatlonwillbeaccurately/determinedbythesteady-statesolution.,:!ItisInstructivetoconsiderthepossibleeffectonthebacksca_ter:._".:cross-sectionofthefundamentalosclllatlon.ThechangeIndropshape!willcauseachangeinthebackscattercross-sectionviatheGans|_theory.Thecross-sectionwilloscillateatthefrequencyoftheitl1982022556-081 "ii:l_,_i,_?.O=Q_ALITYFigure4.2:Fundamental

89 oscilla_ionfrequency:300versusDf2eq(Hz):
oscilla_ionfrequency:300versusDf2eq(Hz):-200100,Oeq(ram)r1982022556-082 droposcillation.AnexampleofaperiodicaxisratioA/Bendtheresultingbackscattercross-sectionobisshownInFigure4.3.:_Theoscillationofc_bisapotentialsourceofdopplernoisein°meteorologlcaldopplerradar.The_boscillationresultsInsidebandsshiftedby_f2'asisshowninFigure4.4.ThisIsaltsourceofconfusioninthatf2isofthesameorderasthedopplerIshiftfromparticlesmovingatmeteorologicalvelocities.Thesei!'f_lsesidebandsignalscouldcauseabroadeninginthevelocityid|stributionfunctionobservedinconditions,suchasturbulence,which!++couldexcit++droposcillations.4.|.3InstabilityandDropBreak-UpIIntheprevioussectionitwasindic,3tedthatsur

90 facetensionistheprimaryrestoringforcemai
facetensionistheprimaryrestoringforcemaintainingdropletequilibrium.Whenother+forces,suchasthehydrostaticpressureresuitin£fromaerodynamicaccelerationbyanotherfluid,becomescomparabletothesurfacetension,thenthepossrbilltyofdropletinstabilityandbreak-up+,mustbeconsidered.Dropbreak,e+isImportant_.omodelsofatmos-jpherlcprecipitationasalimitonthemaximumsizeofdropsand,asi,Langmuirpointedout]t8thatthesmalldropletsresultingfrombreak-_pareamajorsourceofcondensationnucleiinwarmrain,i406servatlonsofdropbreak-uphavebeenmadebyHathewsandHason49i+andother_Oondrops_allingatterminalvelocity.Dropswerei'+stableIntheirro_+,_ly-oblateshapeuntiltheyreachedacertain+criticalbasediameter,whereas

91 mallconcavedepres,_lonInthebasedeepenedu
mallconcavedepres,_lonInthebasedeepeneduntiltheresultingbag-likeshapeevcntuallyburst.This++1982022556-083 Je,'_,_p_,,la';,:_.-'")_�_.":e_pez!Je[odlet[eaed_.-e/v1982022556-084 84L=:iinu|fdFrequency.IQuiescentdropiiiird'f2fdfd¤FrequencyDroposcillatingatthefundar,_ntalfrequencyf2"Figure_._Dopplerspectraforquiescentandoscillatingdrops.1982022556-085 processisknownasthe"bagbreak-upmechanism"andisshownschemati-callyinFigure1t.5•Measurementsofthemaximumstablebasediameteratterminalvelocityvarybetween6and9mmdependingonfactorssuchasturbulence•Theoretically,therearetwobasicapproachestothebreak-upproblem•Thefirstisessentiallydimensional.ItdefinestheWeber+'4numberNastherat

92 iooftheaerodynamicpres-_,Jreonthedroptow
iooftheaerodynamicpres-_,Jreonthedroptowe,:+thesurfacetensionstress+:PaAv2re]N=(4.4):.we0iwhereVreIistherelativewindvelocity,PaisthedensityofairandAisthediameterofthebaseofthedrop.ForvalueslargerthansomecriticalWebernumberthedropsareconsideredtobeunstable.iThecriticalvalueofNhasbeenmeasuredtobeoforder1049,50we+'Thesecondtheoreticalapproach,whichisalsoingoodagreementwithexperimentalresults,issomewhatmoreelegantinthatitconsidersthephysicalmechanismforbreak-up•In1964Komabayasietal.43recognizedthatthebottomsurfaceofalargedropfallingatterminal.:velocitywasinametastablestatewithaheavierfluid(water)beingsupportedinagravitationalfieldbypressureoveralighterfluid(air).Thebottoms

93 urfacewould,therefore,besubjecttogravita
urfacewould,therefore,besubjecttogravitationalorRayleigh-Taylorinstabilitleswhenperturbationsoccurredatthe%bottomsurface.Komabayasietal.assumedthattheperturbationswouldoccuraslinearcapillary-gravitationalwavesandthatthecriticalsizefor+!i.1982022556-086 +':-.+'".-,."+,"Q'bAi.ITYGBi"_,,-.'''.....,_.-/,,II!X/'TB,6RelativeWindFigure4.5Schematicrepresentationofthe"BagBreakupMechanism".1982022556-087 ¢:87.:dropbreak-upwaswhenthebasediameterAwasequaltohalfthecapillary-gravitationalwavelength.Fortypicalvaluesofthesurfacetension,theabovepredictsacriticalbase:llameterof8.55mmforfreely-t'al1ingdrops.TheKomabayasimodelwasfurtherrefinedbyKlettin1970,45whorecognizedthat,ingeneral,dr

94 opsflattenwithaxlalsymmetryand,•therefor
opsflattenwithaxlalsymmetryand,•therefore,instabilityshouldoccurwhenthebasediameterAmatchestheresonancesofcirculargravitationalwavesonthebottomsurface.•51FollowingthenotationofYihincylindricalcoordinates,theequationfortheperturbationofthebottomsurfaceofthedropS(t,p$)isS(t,p,_b)=CJn(kgp)cos(n_))exp(ozt)(4.5)whereCisaconstant,_istheinitialgrowthrateoftheinstabilityandJistheBesselfunctionofnthorder.The,nelgenvaluekisthewavenumberofthesurfacewaveandisdeter-g.1minedbythefol!o_vlngboundaryconditionsatthedropedgeiJJn(kgp)=0P=_A2(II.6)_.dJnArT"(kgp)"0P=T1_'7)':Theallowedsolutionsfortheperturbations,therefore,aretheBesselfun_1onmodesforac;rcularmembrane.Valuesofthezeroes.,_kA:+

95 areshownfordlf4_erentmodesinTable4.1.,,,
areshownfordlf4_erentmodesinTable4.1.,,,ThegrowthrateforeachmodecanbefoundbybalancingforcesQ|,1982022556-088 88Table4.1Thezeroe_ofBesselfunctionsandtheirderivatives(kgA),fromAbramowitzandStegunkA•_9_--2dJn(X)=0Zero#BesselFunction#Jn(X)-0d-_102.4050.000205.5203.8321I3.832!.8412I7.0165.331!I25.1363.054z28.4176.706!136.380_.201234.7618.015o1982022556-089 89OR:C2'.,_.LF,'._7-i$OFPOORQUALITYatthelowersurfaceofthedrop.Assumingthedropisbeingacceleratedataratea,thegrowthratecanbewrittenas51±2o(kA/2)a(pw-pa)(A/z)2=[-(kgA/2)2](4.8)(Pw+Pa)(A/2)3oNegativevaluesof(2implyoscillatorysolutionsforthepertur-bationwhilepositivevaluesimplyinstability.Themostunstable%modeIsthereforetheonew

96 hoseeigenvaluekgA/2maximizesequation4.8.
hoseeigenvaluekgA/2maximizesequation4.8._Onceinstabilityoccurs,theperturbationsgrowquicklyandtheperturbationfunctionS(t,p,¢}isnolongervalid;however,thegeneralcharacteristicsoftheBesselfunctionoriginsshouldbeobservableeveninseverely-perturbeddrops.The"bagbreak-upmechanismI'is,therefore,consideredtobegeneratedfromaperturbationconsistingofthemodewhichcorrespondstothefirstzerooftheaxisymmetricBesselfunctionJ0"ItshouldbenotedthattheJ0n,odeisnotnecessarilythemostunstable,aspredictedbyequation(4.1_).Thisisduetointernalflowinthedrop,whichhasbeenshowntooccurwlthc,taxialsymmetry.Thisflowtendstosuppressmodeswhicharenon-symmetric.TheJois,indeed,themostunstableaxisymmetricmodepredi

97 ctedbyequation4.8forthoseconditionswhere
ctedbyequation4.8forthoseconditionswhere'roagbreak-up"wasobserved.inspectionofequation_.8indicatesthatforlargerval_sof_accelerationordropletsizes,higher-ordersymmetricmodesshould:becomeunstableandthat,ifinternaldropletcirculationcanbesuppressed,thennon-symmetricmodesshouldalsobecomeunstable.1982022556-090 90Someofthesemodeshave,indeed,beenobservedandarepresentedinSection4.3._,4.2ExperimentalTechnieuesforWindTunnelObservationsofDropletbShapeandVelocity!Inordertovalidatetheextension,toarbitraryacceleration,ofthetheoriesofdropdeformationandinstability,exper:mentswereLicarriedouttomeasurethesephenomenaforvariousaccelerations.Dropswereobservedphotographicallyinawindtunnel.T

98 hesmalldropsizesandshorttimescalesrequir
hesmalldropsizesandshorttimescalesrequiredtheapplicationoftechniquesofhigh-speedstroboscopicphotography.Theexperimentalsetupandphoto-graphictechniqueswillbedescribedhere.ExperimentswerecarriedoutintheMITlow-turbulencewindtunnellocatedinBuilding17A.Thetunnelhascross-sectionaldimensionsofIft.by1ft.inthetestsectionandiscapableofvelocitiesfrom0to80mph.Anoptically-clearplexiglasstestsectionwasconstruedtoallowphotographicmeasurements.Tunnelvelocitywasmeasuredbyapltot-staticprobejustupstreamofthelocationwheredropletswereintroducedintotheflow.'iThephotographicsetupisshownschematicallyinFigure4.6.Dropswerephotographedusingashadowgraphtechniquetominimizeexposuretime.Thestrobehad

99 amaximumintensityon-cencerof18x106luxato
amaximumintensityon-cencerof18x106luxatonemeterandhadafullwidthathalfmaximumofeither.8or3IJsec,dependingontheintensitysetting.Thestrobeoutput#/wasdiffusedbyabuffedmylardiffuserscreenwhichbacklitthedrops.r,!i,Thephotographsweretakenbya35ram.camerawitha"macro"lensIi-I1982022556-091 i,91P",'_'-ISOFPOORQUALITY,#CameraDiffuserScreen•dO000r_:0ooOStrobe0_oVooMacru-Lensgtnd//_TunnelTunnelWallVelocity;Figure4.6Schematicdiagt-amoftheFhotographicSet-Up.1982022556-092 92Icapableof!to1magnification.Toprovidemaximumresolution,an!|extremely-fine-grainaerial-photographyfilmwasused(tradename:IKodakTechnicalPan)withahigh-contrastdeveloper(D-19).The!resolutioncombinedwiththissetupwasmeas

100 uredtobetterthan5mmforhigh-contrastobjec
uredtobetterthan5mmforhigh-contrastobjects.tThestrobewastriggeredbyasignalfromafiringcircuit.Forimeasurementsofdropletvelocity,twostrobescouldbefiredsequentiallyitoprovidetimeofflightinformation.ThedelaybetweenstrobescouldIbesetat12,2t_,(;4,93,or124laser,aswasappropriatetothe;velocitiestobemeasured,iThecamerawasgenerallyoperatedwiththeshutterheldopen(bulb?setting)toavoidfocal-planeshuttereffects.Thef-stopswere)determinedexperimentallyandarangeoff-stopswereshotoneach:!photographicrun.Atthebeginningofeachrolloffilm,thealignment!grldonthediffuserscreen,usedtohelpdeterminecameraposition,was:,photographed.Amillimeterscalewasalsophotographedinthefocalplaneprlortoeachruntopro

101 videlengthcalibration.Thephoto-graphicda
videlengthcalibration.Thephoto-graphicdatawasanal,,zedbymicroscopicmeasurementdirectlyfromthefilm.Intheexperimentsdiscussedinthefollowingsection,astreamofwaterdropletswasinJecte_',.,rticallyIt,tothehorizontalflow.Thesetupisshown_,;_|9'J_./_,.w',ichschematicallyviewstheinjectionapparatusalon(jthephotographicaxis.Thedropletstreamwasgeneratedbythenozzle,showninFigure4.7b,whichconsistedofa1.27mmbsveledorificeinaflatplate.Thebevelwaslocatedonthewatersideoftheplatetosuppressnozzleinstabilitieswhich1982022556-093 .+93OF__.....+OFPO_Rf_UALIIY++@=:=+Nozzle"]_Valve-TaPressure:Drop]etGauge+StreamyInjectionTubeTunnelf_PhotographicVelocity_JRegionFigure4.7aExperimentalSet-Uptophoto

102 graphdrooletdeformation.JUL00+0Figure4.7
graphdrooletdeformation.JUL00+0Figure4.7bSchematicdetailofnozzleusedindeformationexperiment.C1982022556-094 94causedthestreamtowanderoutofthefocalplane.Thestreamwa_shieldedfromthetunnelflowuntilthemidpointofthetunnelbya1.9cmplexiglassinjectiontube.Thiswasdonetoavoidfloweffectsnearthewall.Thenozzle_srunwithtapwaterat.either15or30PSIandlocated.!J55.5cmabovethebottomoftheinjectiontube.Thevelocityofthe:dropsatthebottomofthetubewasmeasuredtobe10.1_m/seeat15PSIand15.6m/secat30PSI.Themeanequivalentdropletdiameterswere1.41and.98ram,respectively.Thedropswerenotparticularlyquiescentatinjectionduetothelackofsufficientfalldistancebetweenthenozzleandtheinjectionpointforoscillations

103 ,generatedJatthenozzle,tobedamped.Thevel
,generatedJatthenozzle,tobedamped.Thevelocityshearbelowtheinjectiontubewasmeasuredbyamovablep_tot-staticprobe.Theresultsforallvelocitieswereverysim|lartothoseshowninFigure4.8forafree-streamvelocityof60mph.Thevelocityincreaseswithdistancebelowtheinjectiontubeuntil,atIcm,theflowvelocityisatthefree-streamvalue.Dropletswereobservedbetween1and3cmbelowtheinjectiontubei2InthephotographregionshowninFigure4.7a.InthisreTlon,thedre_shavenothadtimetoacquireappreciablehorizontalvelocity.Dropletaccelerationisinferred,therefore,byassumingthatthe.,_horizontalvelocityiszeroandthatthevelocityoftherelativewindthatthedropletfeels,Visthesumoftheinjectionvelocityrel'Vln/andthefreestreamtunn

104 elvelocityUJ_._1982022556-095 •95"OFpOOR
elvelocityUJ_._1982022556-095 •95"OFpOORQUALITYFigure4•8Flowvelocityversusdistancei:belowthe;,jectiontube•(FreeStreamVelocity=6Omph""60'E-iU-1120,"I'?'•iilllll.5i.o(.5i.oDistanceBelowtheInJectionTube(cm)t,°1982022556-096 96"22U2VreI=Vinj+(4._))TheaccelerationacanbecalculatedfromthehydrodlnamicforceequatlmtI_a=_-(CdPVreI(4.10)whereHwisthemassoftheclrnp,AisthebasediameterandCdisthedragcoefficient.Thedragcoefficientsareextrapolatedfromthe,measuredvalues_orfallingdropsandarediscussedinmoredetailinChapter5.Thevalu_ofR|_',obtainedfromthewphotograph|tally-measureddimensionsofeachdropbyassumingthat+thedropsareoblateellipsoids.4.3ExperimentalResultsOropsnbservedinthephotographi

105 cregio,',,describedInSection'.1t.2,1to3¢
cregio,',,describedInSection'.1t.2,1to3¢mbelo_theInjectiontube,werefoundtoexhibitt++o:typesofbehavior.Forsma,Idropsorlowtunnelvelocities,thedropsflattenedintooblateellipsoidswiththeaxisofrevolutlenalignedwiththedirectionofaccelerationresultingfromtherelativeflowvelocityVreI.For!_rgerdropsorhighervelocities,thedropsilsodeformedInitiallyIntooblateellipsoidsbuttheellipsoidsbecameunstableandthedropsbrokeup.DropsofthefirstkindaredescribedInSection_.3.1andtheunstabledropsaredescribedInSection11.3.2.1982022556-097 974.3.1DropDeformationTheaxisratiosA/Bofdropsdeformedintooblateellipsoidsisplottedagainsttheequivalentaccelerateddiameter(a/g)l/2DeqinFigure4.9.Thedeformationsaremu

106 chgreaterthanthosewhichwerepredictedbyth
chgreaterthanthosewhichwerepredictedbythesteady-statetheoryofSection4.1.Thereasonforthediscrepancycanbeseenbyconsideringthatthetimethedropsareinthephotographicregionisapproximately2msec.Bycomparison,:ithefundan_ntalfrequencyofthemeansizedrop(Deq=1.41ram)is205Hzwhichcorrespondstoaperiodof4.9msec.Thedropsare,therefore,inthephotographicregionforlessthanone-halfofacycle.Theobservedbehaviorofthedropsis,therefore,clearlytransientinnatureratherthansteady-state.Giventheabove,somei_terestingconclusionscanbedrawnfromthedatainFigure4.9.Whilethere_squiteabitofscatterinthedataduetothetransientbehaviorofthedrops,thereseemstobeaclearly-definedlimittothetranslentdeformations.Thisisind

107 icatedinFigure4.9.Thislimitisthemaximumv
icatedinFigure4.9.ThislimitisthemaximumvalueoftheoscillatingaxisratioAJBofadropwhichhassuddenlybeenacceleratedataratea.ThemaximumaxisratioisjustwhbtIs¢requiredtocalculatetheabsorptionandscatteringcross-sectionsfordropswhichexperiencesuddenaccelerationduetovelocityshear,suchasinturbulen:eornearanairfoil.4.3.2InstabiIityandDropSreak-UpAttunnelvelocitiesabove40mph,dropletswereobservedto"_becomeunstableinthephotographicregion,iSuetothehighvelocity,lL1982022556-098 98;OFPOOROUALI_1982022556-099 +-,,.,,-+L_+,-....+99•shearandtheresultingaccelerationfeltbythedroplets,higher-order__31Besselfunctionperturbations,predictedbyKlettwereobservedalongwiththe'*bagbreak-up"modeobserved

108 byothers.Thetheoretical+modesarediscusse
byothers.Thetheoretical+modesarediscussedinSection4.1.3.Atleastsixdifferentperturbationmodeswerepositively:Identified.TheseBesselfunctionmodesaredenotedbylettersInTable4.2alongwiththeboundaryconditionsandtheeigenvaiueskgA/2attheboundary.PhotographsofeachofthesixmodesareshowninFigure4.10wheretherelativewindisverticalinthephotographs.,TheaxisymmetricmodesAandCcorrespondtothefirstandsecondzeroesoftheJ0Besse]functionatthedropletedge.TheBmodetcorrespondstothefirstnontrivia]zeroofthederivativeofJ0on!_:theedge.InFigure4.llaplotoftheJo(kP)surfaceisprovidedI?toaidInvisualizatlon."NodeOcorrespondstothefirstzeroofthenon-symmetricfunctioni:Jl(kp)cos_.AsurfaceplotofthisfunctionIspr

109 ovidedinFigure4.12.Theperiodicdependence
ovidedinFigure4.12.Theperiodicdependencewithazimuthalangle,cos_,isclearlyvisibleinthephotograph.HodesEandFcorrespondtotheJ2(kp)cos2__ndJ3(kp)cos3_functions.Theyarealsomost+clearlydiscernedbytheirperiodicdependenceon_.HodeEis,.:twiceperiodicinoneazimuthalrevolution,whileI_odeFisthreetimes:periodicinonerevolution.TheInstabilitythresholdforeachmodecanbedeterminedfromthegrowthrateequation4.8.Itis?1982022556-100 lootOFPOORQUALITYI.i"-..................IIt_MODEAMODEDJiiij_,.....MODEBMODEEcMODECMODEFFlgure4.10Photographsofdropletsbecomingunstable,,;tnthesixobservedBesselfunctionmodes.4i.1982022556-101 I01oFPOORQUAMTy1982022556-102 /Ii!1021982022556-103 r,_.,¢,,i103ORIGi._'p,L

110 P_G_ISOFPOORQUALITYaa(Pw40-pa)k2�
P_G_ISOFPOORQUALITYaa(Pw40-pa)k2�(kgA/2)2(4.Ii)wherekgA/2istheeigenvaluefortheparticularmode,listedinTable4.2.Theaccelerationcanbefoundfromtheforceequation4.10.Thisyield,arelationshipfortheminimumunstablebasediameterAintermsoftherelativewindvelocityVreI.A)"2[,n.CdPa(2pa.pw)]1/4(kgA/211!2[Vrel]-l/Z(4.12)ObservedvaluesofAandVreIareplottedforthethreeiasymmetricmodesalongwiththeinstabilitythreshold(equation4.12)inFigures4.]3,4.]4,and4.15.ThethresholdwascalculatedassumingCd-1andMwwasequaltothemeanvaluecorrespondingtoa0.98mmdiameterdrop.Thereisgoodagreementwiththetheoreticalthresholdasallobserveddropsexceedthecriticalbasediameterfortheirparticularmode.Itshouldbenotedt

111 hatthereasonthat:thethreeaxisymmetricmod
hatthereasonthat:thethreeaxisymmetricmodeswerechosenforanalysiswassimply;itheprevalenceofdataforthesemodes,duetotheireaseofidentification.Thenon-symmetricmodeswhichwereobservedalsofulfilledtheinstabilitycondltion(equation4.11)butlessdatawas]availableduetomodeidentificationambiguitiesatcertainvlewlng.angles.'_lInconclusion,thesteady-statepredictionsofdropdeformation''"wereseentounderestimatetheobservedvaluesofaxisratioA/B.AmaximumtransientvalueofA/BwasdetemlnedandisshownIn:11"!1982022556-104 4."o_104Table4.2Surfacefunctions,boundaryconditions,andeigenvalues_ofob3ervedmodesJHodeSurfaceFunctionBoundaryConditionElgenvalue(kA/2)miiiJo(kp)JoA-02.405:,dJ0.__)_:BJ0(kP)d-'_"(-0

112 3.832CJo(kP)Jo(-_)-O*5.520DJl(kp)c°sJl(-
3.832CJo(kP)Jo(-_)-O*5.520DJl(kp)c°sJl(-_-)"03.832',zEJ2(kp)cos2J2(--_)-05.136"__tkA_,FJ3(kP)cos3do"T'"011.201._iii|i,i•i,iii*ThisboundaryconditioncorrespondstothesecondzerooftheJoBesselfunctionlI,1982022556-105 '3.0•Ve_,_2.5•L.q-10••__•v,2.0"Inst.Threshold_-a:-••,__._._.....Figure4.13Instability"t'hresholdandodservedvaluesofbasediameterversusVreI.1.0HODEA|0.5I|iUi|ii_oz_3b_sVre!(_/sec)•\/1982022556-106 1060:3,5•03,Q••!°•-j•••_2,5•i1_••I:mInstThreshold.,_,,_----..1,5Fi_gure4.14InstabilitythresholdandobservedvaluesofbasediameterversusVreI.1.0MODEB0,5IIm••il.20253035VreI(H/see)•I11982022556-107 Io7OP,iG_L"_LP_G_IS",1OFPOORQUALITYtII'h.O,•1•3.5•'!"!i•!3.0••!'_••8z.5•==Ins

113 t.Threshold"_'_"----.....----..e)2.01.5F
t.Threshold"_'_"----.....----..e)2.01.5Figure4.15InstabilitythresholdandobservedvaluesofbasediameterversusV1.0re|"HODECe.nm==_a,m,mm_O.S20253035VreI(Wsec)1982022556-108 IO8Figure4.9.TheBesselfunctionperturbationsgivingrisatodropInstabilitypredictedbyKlett1t5havebeenobservedexperimentally.Theperturbedshapesandtheconditionsforinstabilitywerefoundto,_greewet|withthepredictedva|ues_I?1982022556-109 109C!4_PTER5DROPLETTRAJECTORIESTheassessmentofthetrajectoriesofdropletsdrivenbyanotherfluidIsanimportantpartofmanyfieldssuchasaircraftIcing,cloudphysicsandcombustionphysics.Acomputercodewhichsimulatestwo-dimensionaldroplettrajectories,eitherinafreely-flowingfluidornearanobjectsu

114 chasanairfoil,hasbeenwrittenandIsdescrib
chasanairfoil,hasbeenwrittenandIsdescribedinthlschapter.InSection5.1thecomputercodeisdescribed.In_Section5.2windtunnelexperimentsdesignedtovalidatethesimulationarediscussod.InSection5.3someresultsofcaIculatlorsfortrajec-toriesnearanairfoilarepresented.ThesimulationIsextendedfurtherInChapter6,wherethemicrowaveheatingofdropletsnearanairfoilisconsidered.,5.1Computer$lmu|ationofDropletTrajectoriesThefirstattemptstocalculatedroplettrajectoriesInf_owfie|dsperturbedbyobjectsweremadeIn1940.Glauert53studiedtrajec-ctorlesnearcircularcylinderswhichbecamethebasisofInstrumentation54tomeasuretheliquidwatercontentofclouds.KantrowltzstudiedtraJectorle,_andtheirrelationshiptoaircraftIc

115 ing,BothGlauert\andKantrowltzintegratedt
ing,BothGlauert\andKantrowltzintegratedthedropletdlfferentlalequationofmotionanalytlcally.Theapproximationsrequiredtodothlslimitedtheuse-fulnessofthesolutions.In19115,LangmulrandB|odgett55developedamoregeneralapproachforthetrajectoriesnearslmp;egeomtricalshapeswhichrequiredtheuseofadifferentialanalyzer."1982022556-110 110Thetechniqueofiteratlvelysolvingthedropletequationsofmotion,byfinitedifferencetechniques,applicabletoarbitrarytwo-5Gdimensionalflowfields,wasproposedbyBergrunin1947.Thecomputationsweredonebyhand,whichmadecalculatingevenone\:trajectoryamajoreffort.In1953ao-oupledbyBrunandRlnaldodevelopedananalogcomputerwhichmechanicallyintegrateddroplet57-59trajectories

116 .Theycomputedtrajectoriesnearcylindersan
.Theycomputedtrajectoriesnearcylindersand3NACA65,-200seriesairfoils.Theseanalogcomputations,whileimpressive,werelimitedduetothedifficultyinmodifyingtheprogrammedflowfields._Thecalculationofdroplettrajectories,bytheit_rativesolutionofthedropletequationofmotion,Iswell-suitedtothecapabilitiesofmoderndigitalcomputers.Verylittleworkhas,however,beendoneinthisarea.Thosecodeswhichdousedigitalcomputershavegenerallybeendevelopedbyaircraftcompaniesprivatelyandareproprietary•:AcomputercodetocalculatedroplettrajectoriesInanarbitrarytwo-dimensionalflowfieldhasbeenwrittenandIsdescribedinthissection•Section5.1.1discussesthedropletequationofmotion.InSection5.1.2theIterationalgorithmisp

117 resentedwithaflowchartofthecode.Finally,
resentedwithaflowchartofthecode.Finally,inSection5.1.3adiscussionoftheappropriatedragcoefficients,tobeusedforwaterdroplets,ispresented.5.1.1DropletE,.quationsofMotion,Theequationofmotionforadropletbeingdrivenbyanotherfluid_canbewrittenfromthehydrodynamicdragequationasCd._._.1"TPaA_lu-_1(_"v')(5.1)r1982022556-111 ORIG,,,--PAGEiS!!IOFpoORQUALITY,•,+..L--lbWhereaandvaretheaccelerationandvelocityvectorsofthedrop,'tuisthevelocityvectorofthefluid,_isthe.massofthedrop,-Paisthedensityofair,A_Listheareaofthedropperpendicular:\totherelativewindandCdisthedragcoefficientofthedrop.Itisnotedthatv_l-I_-_1(5.2)\isthemagnitudeoftherelativewindfeltbythedrol_aswasdiscussed,+|tlChapter4.T

118 hedropmassisD.+...-(5.3)i:+whereOeqIsthe
hedropmassisD.+...-(5.3)i:+whereOeqIsthediameterofanequivolumetricsphereandPwisthe",i_densityofwater.Inordertosimplifytheuseofequation5.1,itisassumedthat:1theareaAa.ofthedropletisthevalueforanequivolumetrlcsphere+andthatanydeviationfromsphericitywlllbeincludedinthedragcoefficientCd.Therefore:1BA_-lt(-_)2(5.4).+2,!Combiningequations5.2,5.3,and5.4withequation5,1yields:iPaVrel(_._(5.5)"!i;"3Cd_Deq,I+i10&1982022556-112 I12OR!GI,_'_4.....OFpOG,_Q_;ALITY_._TheReynoldsnumberRefordropletsisdefinedas::.Pa(5.6)Re--_OqVr_!wherepisth:dynamicviscosityofairplottedagainsttemperature60inFigure5.1fromthevaluesintheSmlthsonlanMeteorologicalTables.Theequationofmrtlon(equation5.5)canbewri

119 tteninthesimplified;formas]i_CdW_-(-,-_)
tteninthesimplified;formas]i_CdW_-(-,-_)K]--('_-v_(5.7)wherePI;Ka.__'wOeq2(5.8),,,whichisconstantoveraparticulartrajectory.Equation5.7Istheequationofmotionusedinthetrajectorycode.IthasaformsimilartotheequationofmotionfirstproposedbyCdRe55LangmuirandBIodgett.Thecoefficlent(--_--)ispresumedtobeafunctionoftheReynoldsnumberandisdiscussedinsection5.1.3;KIsconstant(assumingOremainsconstant);and(_-_istheaeqrelativewindfeltbythedroplets.:11982022556-113 0,__'''_:'_r-,',-,_--oFFCC,z,CQU_L|i'y\/:_..I.9'Figure5.1Dynamictemperature,viscosityversus./----/1.8"T:X,1.7',_21.6''.....,jill,L:-20-I00IO203040Temperature(Oc)1982022556-114 •-+.,..•+....|1145.1.2IterationAlgorithmtiAflowdiag

120 ramfortheiterativecomputationoftwo-dimen
ramfortheiterativecomputationoftwo-dimension.aldroplettrajectoriesisshownInFigure5.2.ThreegroupsofInputparametersarerequired.Theyaretheflowfield,theInitialdropletconditionsandtheatmosphericconditions.Thecodecalculatestrajectoriesforanarbitraryknowntwo-dlmensionalflowfield.Thevelocityfield_(x_),wherexisposition,mustbeInputeitherthrough+;!flowequationsorbymeansoftabulatedvalues.Iftrajectoriesnear_bodiesarebeingcalculated,thenthepositionofthebodysurfacesmust4tbeincluded.iTheInitialconditionsforthedropletsaretheequivalent,tlameterOtheInitialpositionX'_oandtheInitialvelocityvO.Theieq'atmospherictemperatureandpressurearerequiredtocomputealr•+I,Idensity,viscosity,andKiiI-a,On

121 cetheinitialconditionshavebeendetermined
cetheinitialconditionshavebeendetermined,theequationofIn_)tlon(equation5.7)lssolvedattheInitialposition.Thevelocity.4b.aivandI_sitlonxarethenIncrementedonetimestepAtbythefirstorderEulerIntegrationequations.Ib.Jbxi=viAt+xI(5.9):vi+I=aiAt+vi(5.10)tqtThevalueofAtwastakentobeI0mlc_secondsInmostofthesimulations,althoughitcouldbevariedISnecessary.Oncethe_sitionandveloc!tyhavebeenIncremented,thecodechecksforhydrodynamicstabilityofthedrop(asdeterminedbythe!1982022556-115 115Off:G:;;':;.:-;SOFPOORQUALIFYInitlalpositlonAmbienttemp.,InitialvelocityAnbientpressureDr°plelsize!Calculateacceleration_Bodyshape,-CdRe,,--__BodysizeIa"2-EE-_a'v"u'Freestrea,_veI,J,_IstOrderEulerInt.Scheme

122 Steptime_-increment_i"vi&t;iAt_1+1"_1&t
Steptime_-increment_i"vi&t;iAt_1+1"_1&t+"_iii.l+ll"yeFldstrajectoriesIISthedr°phydr°dynamlca|ly[.stable?++Figure5.2Flowdiagramfortrajectorycode.L1982022556-116 116stabilityconditionsinChapter4)andforcollisionwiththebody.If,:eitheroftheaboveconditionsoccur,thenthecodekicksoutofthetIterationloopandoutputstrajectoriestothatpoint.Ifthedrop_emainsstableandnocollislonsoccur,thenthecodeo/clesbackand:calculatesaccelerationatthenewdropletposition.Thecodethenprogressesthroughtheloop.Valuesofdropletvelocityandaccelerationcanalsobeoutputalongwiththetrajectories.AdditionalforcessuchasgravitycanbeIncludedintheacceleratlonequation.5.1.3DragCoefficientsInpreviouscalculationsofdroplet

123 trajectories,Investigatorshave5354,useda
trajectories,Investigatorshave5354,usedavarietyofdragcoefficients.GlauertandKantrowitzassumedStokes(viscous)flowaroundsphericaldroplets.LangmulrandBiodgett55•observedthatataircraftvelocitiesandmeteorologicaldropletdiameters,Stokes'lawdoesnothold.Theyproposedusingdragcoefficientsmeasuredforsolidspheres.iInordertocheckthevalidityoftheLangmuirandBlodgettdrag'CdRe!coefficientsCd,orequivalently(2--_--),thecodewasusedtocompute'!theterminalfallvelocityofdropsintheearthtsgravltatlonalfield.TheresultsareshownInFigure5.3,alongwiththewell-acceptedexperimentalresultsofGunnandKlnzer.61TheLangmulrandBlodgett:coefficientspredictahigherterminalvelocitythanisobservedexperimentally.Ther

124 easonforthediscrepancyisthattheLangmuir!
easonforthediscrepancyisthattheLangmuir!andSlodgettcoefficientsneglectsucheffectsasdropdeformationanditheIncreaseddragduetoturbulenteddiesdownstreamofthedrop.TheseeffectsIncreaseCdandreducetheteminalvelocity.l,,InordertoImproveontheLangmuirandBIodgettcoefficients,itI1982022556-117 117ORIG.T,_:q,LPP,_EIS•OFP03._C_U/;L!TY,PSSsSFigure5..)SfsS1',Temlnalvelocityofdrops(R/see)S_versusdiameter(mm).SsssSJ1sSJS///•ooo.ooooo//080""I/ojo°S/o:;"/o8SSo/o•0C_GunnlindKlnzer(exot.)S/_,......CalculatedbythecodeS0usingLIngmuirandBlocl_tt/0Idrogcmffl¢lents.2/d1982022556-118 ri'•118iwasdecidedtoInverttheGunnandKinzerexperimentalresultstodetermineasetofempiricallymodlfleddragcoefficients.T

125 hemodlfledCdRevaluesof(-_)areplottedagai
hemodlfledCdRevaluesof(-_)areplottedagainstReynoldsnumberInFigure5.4alongwiththeLangmuirandBIodgettvalues.Theex_rlmentalvalues-cutoffatRe-3500,duetodropbreak-up.ItisassumedthattheCdRevaluesof(--_)canbeextrapolatedtohigherReynoldsnumbers.Therefore,fromFigure5.4iCdRe=1.(;99x10-5(Re)l'92Re&#x Tj ;ć ;� TD;&#x /SS; 10;&#x Tf ;&#x 000;3500(5.11)Usingthemodifieddragcoefficients,theterminalvelocitywas'_calculatedbythecodeandIsplottedInFigure5.5.Thevalues,asexpected,agreewellwiththeGunnandKlnzerdatafortheatmosphericconditionsunderwhichtheexperimentswereperformed.Thevaluesoft1080mbpressureand20°Caretypicalsurfaceconditions.Figure5.5alsoIncludesterminalvelocitiescalcu

126 latedfortypicalIcingcondltionsof750mband
latedfortypicalIcingcondltionsof750mbandO°C,wherethelowerairdensitycauseslessdragandaresultlnglyhigherterminalvelocity.TheabovemodifieddragcoefficientshavebeenIncorporatedintothetrajectorycode.ForReynoldsnumbersgreaterthan3500,equation5.11isused.ForReynoldsnumberslessthan3500,thecodeInterpolatesbetweentabh_dCdRevmlue_of(--_--).Thevalueswhichhavebeenused.ereIistadInTable5.1forreference.1982022556-119 119OFPO0_QUALIT_60(t,I')Figure5.4DragcoefficientversusReynoldsnumber.II40(/II,,lII_"tnferr'edfrom/'I200GunnandKinzerIodataI/ii/'Sltjs/tlIIIs//A)60"/fs/40./_LangmuirandBlodg_tt/values',:;-/20-••A_SJSjSI0_'_"400600100020004000600010000Re1982022556-120 +,.+_It120IIt+"I1IP,t+.,

127 +,,'C+.:+_LIIY'I:,+j_......_,*•]+,+t'1J•
+,,'C+.:+_LIIY'I:,+j_......_,*•]+,+t'1J•FI9ure5.5tt+:TERMINALFALLVELOCITYOFDROPS(METERS/SEC)VERSUSDIAMETER(ram.)i,,,_10",/s_.e...o..O"i8,Ofi,/".o"i/°o.r"i/.o/"',,+I+e/,:**•p-//'._.•••oGunn&Klnzer'(expt.),,/_'4o_l_Bnb20°C-.1485cm2/s4_e°*.-------Code(modifiedCd)SurfaceCond|tlonst1080rob20°C-.1485:m:elsi/_-------Code(modifiedCd)lctngConditions;_'_760ml)ZO°C-.178_m21s2/¥lQt1t%(-_,_+1982022556-121 "-i121OFPUO__C'ALII"YTable5.1Valuesof(CdRe/24)asafunction,ofReynoldsnumber.,a•ReCdRe/Z4ReCdRe/Z&-i0.001.0068.73.6E4ii0.051.00998.?4.4090,i1.013134.05.170i0.21.037175.05.943I0.41.073__.0.06.6830.61.103269.07.5200.81.142372.0_.4801.0].1764_3.011.47_'1.71.201603,0!3.691.41.225731.016

128 .08!1.61,240066.01B._6"1.81.2671013.021.
.08!1.61,240066.01B._6"1.81.2671013.021.27_2.01.2851.164.024.01I2.51.3321313.027.031-3.01.3741461.030,32i3.51.4_21613.033.014014 71 64.o37.56i5.01.5131915.04!.49iI6.01.572206&.04_,.54_,jO.O1678_11.05012]I10.01.7822357.054.83,12.01.9012500.059.89:,14.02.0092636.0&5.2416.02.109..._?_..071.0318.02.1982905.076.8620,02.2913033.083,4125.02.4093164.0g_'.TB30.02.6?33293.0o_.0535.02.0513423.0103.6940.03.0133549.0111.05"50.03.3271982022556-122 t1225.2WindTunnelValidationofComputerTrajectories_Thecomputer-genera_ddroplettrajectorieshavebeencheckedbycomparisonwithwindtunnelmeasurementsofdropletvelocity.In•_•Section5.2.1,velocitymeasurementsofdropletsinjectedIntoafreely-flowingwind

129 tunnelarecomparedwithpredictedvalues.InS
tunnelarecomparedwithpredictedvalues.InSection:5.2.2dropletsareobservedjustupstreamofacylinderwheretheflowfieldlsspatiallyvaryingbutwellknown.Themeasuredvelocitiesarecomparedwiththepredictedvaluesand9ooJagreementisobtai_ed.5.2.1DropletsInjectedintoaUniformFlow•Inordertoverifythecomputer-predictedtrajectories,dropletswereobservedintheset-upshowninFigure5.6.DropletswereInJectedIntoafreely-flowingtunnelperpendiculartothe.flow.Dropletvelocltycomponentsalongthetunnelaxisweremeasured125cmdownstreamoftheinjectionsite.ThemeasurementsweremadebythedoublestrobephotographictechniquediscussedInSection4.2andthewlndtunnelwastheHITIft.x!ft.facilitydescribedInthatsection.Theobserveddro

130 pletvelocitiesforthreevaluesofthetunnelf
pletvelocitiesforthreevaluesofthetunnelfree-streamvelocity(45mph,60¢pl.,75mph)areshownInFigure5.7alongwlththecomputer-calculatedvalues.ThereIsgoodagreement_overtheobserved0.15tot.Ommrangeofequivalentdropletdiameters.Attheobservationsitethesmalldroplets,duetotheirlowInertia,areclosetothefree-streamvelocity,whilethelargerdropletsareslowerandstillaccelerating.Thediscrepancybetweenobservedandpredictedvaluesofvelocityareattributedtodifficultyinmeasuring"1982022556-123 123r__I",2s_�.PI,o,,.1.__"t.-'_,,,_JFree...---_"//pStreamVeI.!Photographic-RegiorlIiiI.|",LowertunnelwallFigure5.6Experimentalsetupfordropletvelocitymeasurement_inauniformflow.&!1982022556-124 ......+..

131 .ID,124u,,,_......QI.i_LIT¥OFpO0_III.--I
.ID,124u,,,_......QI.i_LIT¥OFpO0_III.--IIIIIIII!o#II.-:III._.IIIIII|IaI..a06ll__,_eIIIII!!I:i;gloeI,,o_,,,_..Q.8-iII&,,11I0.0m,.?7*""_i/-;_"'/�_i_�,"(]!)_¢0I,f_:'-!_,"o,6,'_,_/,_!,_/11.!••14btSt#PIosoI,_,IeII,IiIIIiIiiI....eI•,_ilt1_-(qclU)fitoOleA1982022556-125 125'iD,slightvariationsinthetunnelvelocity,andperturbedInitialeq•conditionsduetodropletbreak-uporotherInJectioneffects.i•i5.2.2Droplet.TraJectoriesNearaCylindert!InordertoconfirmthatthecomptuercodeaccuratelypredictedItrajectories,Inregionsofspatially-varyingflow,observationsofdropletvelocityjustupstreamofacyllnderweremadeinthewindtunnel.Acylinderwaschosenbecausethetwo-dimenslonalflowaheadofacyllnd

132 erIswellknowntohaveasimpleanalyticalform
erIswellknowntohaveasimpleanalyticalform.AnexampleofthetrajectoriesgeneratedbythecodeIsshownInFigure5.8.Inthiscasethecylinclerhada10canradiusandthe?!free-streamvelocitywas60m/secflowingtotheleft.Fourdropletswithdiametersof5,!0,20and40micronswereIncidentonthecylindertAfromaposition1.25cmabovethestagnationstreamline.TheeffectsofInertiacanbeclearlyseenasthesmallerdropletsareturnedbytheflow,whilethett0-mlcrondropcontinuesonandImpactsthecylinder.TheeffectsofInertiaontheImpingementtrajectorieswlllIbediscussedfurtherinSection5.3.Theexperimentalset-upusedtomeasurevelocitiesneartheJi_cylinderwasverysimilartothatdescribedinSection5.2.1endIsshowninFigure5.9.Thephotographicregionw

133 ascenteredabovethestagnationstreamlineah
ascenteredabovethestagnationstreamlineaheadofthecylinder.TraJectoriesaheadof:_twocylindersofdiameters11.25andZ,4anwereobserved,ThecylinderswerepaintedblacktominimlzestrayreflectionsInthephotographs.Thefree-streamvelocitywasvariedfrom1t5to75mph.fDropletswereinjectedperpendiculartotheflow125anupstreamofthef,i"1982022556-126 12C!!!I"'OFPO02¢_'-.'--:_•(S£1NflN3ill)SIXV_VOILa3h1982022556-127 127OFPOORQJALITYogI"125cm-.////Free_______._StreamvelCyIinderv"--_'Phot;._raphICRegionlILowertunnelwallFigure5.9Experimentalset-upfordropletve'acitymeasurementsaheadof:acylinder.1982022556-128 •q..128cylinderaxisandthevelocitiesweremeasuredbythedoublestrobe:technique.Severalhundreddropl

134 etvelocitieswereobservedandcomparedtothe
etvelocitieswereobservedandcomparedtothecomputedvalues.ThemeasuredandcomputeddropvelocltleswereFoundtoagreewlth3standarddeviationoflessthan_;ofthepredictedvelocityforaccurately-photographeddroplets.tAs•naside,itwasobservedthatwhenI•,gedropletsimpactedth•cylinder,theysplashedInratherconstantpatterns.An•xampleisshowninFigure5.10•.Theresultoftheimpactofalargedropiwas•collectionofsmallerresidualdropletswithvel_cltlesoforderIone-tenthofthefree-streamveloc|tydirectedradially_•yfromtheiIpointoffirstcontactwiththecylinder.Splashpatternsofthisssort•rethoughttobethecauseofthedouble-hornedIcebuild-up_sk•tchedinFigure5.10bobservedonalrfoilsundercertainicingcondltions.:Inconclusion

135 ,theexperimentalevidencesupportsSheresul
,theexperimentalevidencesupportsSheresultsof:thecomputersimulations.Thecode,can,therefore,beappliedtoothersituationsofInterestwithsomeconfidenceIntheresults.5.3SimulationResultsNeartheLeadingEdgeofanAirfol,.IInthissection,resultsofdroplettrajectorycomputationsnear•nairfoil•represented.Th•airfoilI••dlngedgeisslmul•t•dby•two-dimensionalhalfbody,anexampleofwhichisshownInFigure5.11.Thehalfbodywaschosenbecauseitcloselyresemblesthefrontofanairfoilandthevelocityfieldequationshavea#•rticularlysimpleform.Iftheflowisassumedtobeinviscid,thenthevelocityIIJ1982022556-129 Figure5.10aPhotographofalargedropImpactingthecyl-Indersurface.'_/,)ll1982022556-130 ic;.!,._]-.;,_LF.r,C,7..!'3:

136 OFPOORQUALITYFigure5.105Sketchof•"double
OFPOORQUALITYFigure5.105Sketchof•"doublehorn"icet,_tion.i1982022556-131 !_lI131OFPOORQUALITYi:iFreeStream.XXi•.(XSI_hIIt|Figure5.11Viewofthe2Dhalfbody.1982022556-132 :132:;potentialfunctioneissimplythesumofuniformflowinthex-"62'directionandasourceattheorigin_:4x2"4_(x,y)=U(x+xsIn+y2)(5.12)where-xIsthexcoordinateoftheleadingedge'S,zx-h/_r(5.13)S_.L;_wherehisthehalf-thicknessofthebody.Thevelocityvisrelatedto_byxy)-(x,y),Thehalfbodyequationscanbeusedtosimulatedropletimpingementontoanairfoil•TheonlyweaknessIstheassumptionofan0°angleofattack_implicitinthehalfbodyflowmodel.EffectssuchasdropletInertiaanddropletcollectionefficiency,whlchareweakfunctionsof_,canbeadequatelyinves

137 tigated.InordertoItudy"effectswhichdepen
tigated.InordertoItudy"effectswhichdependstronglyon_,theparticularflowfieldofinterestmustbeinsertedinthecode.InSection5.3.],sometwo-dimensionalImpingementtrajectoriesLarepresented.Someresultsondropletcollectionefficiency,andtheireffectontheImpingingmassdistributionfunction,arediscussed.InSection5.3.2,theeffectoftheairfoilonthekinematicsofdropletsisstudied.Finally,InSection5.3.3somaadditional,_simulationsarepresentedwhichdemonstratetheflexibilityofthemodel.•'k_•1982022556-133 ,,,C1335.:3:1Two-DimensionalImpingementTraJectoriesInFigure5.12,thetwo-dlmenslonaltrajectoriesareplottedfordropletsofvariousequivalentdiameter.Theeffectofdropletinertiaisapparent,asitwasInthecaseof

138 thecylindersInSection5.2•!Sma|ldropletsa
thecylindersInSection5.2•!Sma|ldropletsaresweptbythealrfoi],whiletheinertiaofthelargedropscausesthemtoresistchangeindirectionandtheyImpacttheairfoil•IntheexampleinFigure5.12,thefree-streamvelocitywas60m/sactotheleft,andthebodythicknesswas20ca.Theatmosphericconditionsweretypicalicingvaluesof750mbpressure(equivalentaltltudeapproximately10,000feet),-lO°Ctemperature,andgravltationalaccelerationwasneglected.Inthefollowing,theseconditionswll!tbeassumedunlessotherwisenoted.'InFigure5.13,thetangentialtrajectorytothehalfbodyisdrawnfora20-microndroplet.TheInitialverticalpositionofthetangentialtrajectorydefinestheheightoftheImpingementwindow;hi(l)eq).TheImpingementwindowisthezone

139 inwhich,foragivensize,:alldropletsImpact
inwhich,foragivensize,:alldropletsImpactthebody.Forthesymmetricalcaseofthehalfbody,.theImpingementzoneiscenteredaroundthestagnationstreamline.Thereforetheheightoftheimpingementwlndowhi(Deq)isJusttwicetheseparationofthetangentialtrajectoryandthestagnationstreamlinewellaheadofthebody.Fornon-symmtrlcalcases,theh$lghtoftheimpingementwindowIstheInitialseparationbetweentheupperendlowertangentialtrajectories.InFigure5.14,halftheheightoftheImpingementwindowisplottedagainstOeqfora20-cmthickhalfbody.Thefree-streamvelocitiesstudiedwereI10,60and80m/sac.Itisinterestingtonotethat1982022556-134 L134.+1I(SIINNN3BI)SIXVIV31_3h.1982022556-135 135J"_1omcl._ALpaG_is"OFpoORQUALITY_"_'•(SII

140 NnN3BI)SIXVqV3II_13^1982022556-136 136OR
NnN3BI)SIXVqV3II_13^1982022556-136 136ORIGINALPAGEISOFPOORQUALITYFIGURE5.14IMPINGEMENTWINDOWVS.EQUIVALENTDIAMETERft.88"g,II)ItI!I.25.5B.75.1gg.125.15B.J1;EOUIVALENTDIAMETER(MICRONS)1982022556-137 OR_C.,"--;"-'vr.,.,-1.37OFPoorQUALITYdropletswithDeqlessthanI0micronsarealwayssweptbythehalfbodyatthesevelocities.AboveI0micro..,theheightoftheImpinge-mentwindowIncreasesroughlylinearlywlthdiameterupto!00micronswherethehi(Dq)beginstotapertotheasymptoticvalueof10cm.ThislinearbehaviorwasalsonbservedbyBrunetal.intheirsimulations.TheslightIrregularitiesInthehIcurvesarenotphysical.TheyarearemnantofthediscretenatureofthesamplingalgorithmandthereforeshouldbeIgnored.Aseriesoftrajector

141 ies,withvaryingInitialverticalposi_ions,
ies,withvaryingInitialverticalposi_ions,areshownInFigures5.15and5.16for20and40microndroplets.,tThelimitoftheimpingementwindowIsalsoshown.The20-microni!dropletsareclearlymoreinfluencedbytheflowthantheir40-micron,_o0unterparts.dnc(0eq)ThedifferentialcollectionefficiencyoftheairfoildDeqIstheratioofnumberofdropletsofagivensizeactuallyimpactingthebodytothenumberofdropsofthatsizeInitiallyInthevolumesweptoutbythebody.ItcanbewrittenIntermsoftheheightoftheImpingementwindowasLdnc(Deq)h.i(Oeq)_:.-,,(5.15)dOHeqiwhereHisthethicknessofthebody.Thedifferentialcollection,efficiencyIsrelatedtothetotalcollectionefflcler,_/rtcbyIntegratingoverthedropletsizedistributionf(_q)_'-1L'I"chicl;n

142 c"J qeqf(oeq)doeq(5.16)'0t1982022556-138
c"J qeqf(oeq)doeq(5.16)'0t1982022556-138 (SIINnH301)SIXV_V3IIB3A1982022556-139 (SIINNNOBI)SIXVlVOI£_3A1982022556-140 LOR!GINALPAGEIS;140OFPOORQUALITY:Sometypicalmid-clouddistributionfunctionsareshowninFigure5.17.Forcumulusclouds,thefunctionsarefairlysharply:peaked.Themeandropletdiameterisoforder20micronsandtendstoIncreasewiththesizeandageofthecloud.Stratuscloudstendtohavebroaderdistributionfunctionswithsimilarvaluesofthemeandropletdiameter.AnapproximateformoftheclouddistributionfunctionistheKhrglan-Hazandlstribution6Deq2f(Oeq)-const,exp{3Deq/Deq}(5.17)!ii!where_isthemeaneffectivedropletdiameter.JeqdHCThedistributionofimpingingmassd_-canbecalculatedfromeq1thesizedistrib

143 utionfunction,thedifferentialcollectione
utionfunction,thedifferentialcollectionefficiencyandthevolumeofthedrop.dHcII".(0eq)f(Oeq);d-_eq-Vnc(5.18)Combiningequations5.17and5.18andnotingthattlcisroughlyproportlonaltoOeqforcloud-sizedroplets,andthatthevolumeVIsproportionalto03yields:eqdHcOeq6-const,exp(30eqlOe-'_q(5.19)_,eqAnexampleoftheKhrglan-HazandlstributlonfunctionandtheimpingingmassdistributionfunctionisshownInFigure5.18forequalto20microns.Itisinterestingtonotethatthepeakvalueofthe!I't1982022556-141 I141G,,..,+_-[3OF......._+._+..,,_++y1982022556-142 1112OR|GI_,LrL..r,.-...-',.:,:.:OFPOORQUALh"/1982022556-143 143ORIGIN_,LP_..-"i_OFPOCRQUALITYmessdistributlonfunctionoccursat40microns,whichistwicethemeandiam

144 eter_'-inthecloud.Indeed,theextremevalue
eter_'-inthecloud.Indeed,theextremevalue-eqconditionforequation5.19yields-z5--(5.19)'_OeqIdR¢eqmaxdTeqForraindrops,thedifferentialcollectionefficiencyisapproxi-matelyunity.Theacceptedslzedistributionfunctionforrain664IstheMarshall-Palmerdistribution3furtherrefinedbyAtlas.f(0eq)-const,exp{-3.67Oeq/Oe-'_}q(5.20)ThisresultsInanimpingingmassdistributionofdRc3exp{-3.67--}(5.21)dT"const.DeqOeq/Deqeqwiththemeanvalueof0forrainbeingoforderseveralmilli-eqmeters.?/5.3.2KinematicsofDropletsontheStagnatlonStream,neThegeneraleffectofthehalfbodyflowfieldonthekinematicsofimpingingdropletscanbeobservedinthecaseofdropletswhichi.flowonthestagnationstreamline.Dropletsonthestagnation+strea

145 mlineareparticularlyconven!ent,Inthatthe
mlineareparticularlyconven!ent,Inthatthekinematicsare.assentiallyone-dimensional.InFigure5.19,theaccelerationofdropletsisplottedagainst1982022556-144 144ORIGI?!ALPACEISOFPOORQUALITYFIGURE5.1gACCELERATIONVSDISTANCEONSTAGNATIONSTREAMLINE.\3.j-2"':V_I-5MICRONS:IMICRONS"iUMICRONS'48MICRONS:1B2B3848'DISTANCEAHEADOFHALFBODY(CM),I1982022556-145 4145distanceaheadofthehalfbody,forequivalentdiametersof5,10,20.and40microns,fortheflowconditionslistedinSection5.3.1.Theac_leratlon,whichisactuallyadecelerationinthatitactstoslowthedroplets,istheresultoftheslowingoftheflowduetothepressuregradientaheadofthebody.Dropletsflowingtowardstheairfoilbegintofeelsomeacceleration30to40cmaheadofth

146 ebody.Theaccelerationincreasesuntileithe
ebody.Theaccelerationincreasesuntileitherthelargerdrops(20and40microns)impactthebody,orthesmallerdrops(5and10microns)slowtoapproximatelytheflowvelocltyafewcmaheadofthebody.Themaximumvalueoftheaccelerationisontheorderofseveralthousandrgunits.Thehighvaluesofaccelerationthatthedropletsaresubjectto,resultintwomajoreffects.Thefirsti_hydrodynamic,inthattheeffectiveaccelerateddiameter(a)l/2_Deq,disc,'ssedinChapter4,isIncreasedconsiderably.Thevalueof(_)1/2isplottedagainstcdistanceinFigure5.20,forthedropletsdescribedabove.Thepeakvaluesof40to55areobserved,Implyingthatfactorssuchasdropdeformationandpossibiyinstabi!itywi11becumeImportant.itshouldbenotedthatthedropletsintheexamplei

147 nFigure5.20remainbelowtheinstabilitythre
nFigure5.20remainbelowtheinstabilitythresholdfor(g)l/2DeqofapproximatelyIon.•ThesecondeffectofthestrongaccelerationIstoincreasethe:cMelltimeofdropletsIntheregionJustaheadofthebodyThis'canbeseenInFigure5.21wherethedropletvelocityIsplotted.Thedropletsareseentoslowappreciablyseveralcentimetersaheadofthe.:airfoil•Thedwelltimeand,assumingauniformexternaldroplet••%1982022556-146 !OFpoORQ:/',L|_'YFIGURE5.20DIAMETERINCREASEDUETOACCELONSTAGNATIONSTEAMLINE•80.•p5&40,30.5MICRONS10MICRONS!20,20_'ICRONS4_MICRONS:10.B•••|1020_4DISTANCEAHEADOFHALFBODY(ON)tiI1982022556-147 JB_,..-......................_..............|147OR{GIN_LP_C_.ISOFPOORQUALITYFIGURE5.21VELOCITYVSDISTANCEONSTAGNAT

148 IONSTREAMLINE'\88.84m.4mMICRONS_!30.MICR
IONSTREAMLINE'\88.84m.4mMICRONS_!30.MICRONSvMICRONSi5MICRONS2g.lB.ml1B2{{_lE48DISTANCEAHEADOFHALFBODY(CM)1982022556-148 OFPO0!:Q.};ILtYY!_,field,thedropletconcentration,wlllthereforeIncreaseInthlsiregion.I•}Itshouldbenotedthattheobservationsmadefordropletsonthe=stagnationstreamlinearebynomeanslimitedtothatspecialcase.tIDropletsinthegeneralregionaheadoftheairfoilshouldexhibit'isimilarbehavior,althoughthedirectionofaccelerationwillbe;ivariable.Infact,thezoneofn,3ximumaccelerationIsactuallylocatedslightlyoffthestagnationstreamlineJustahe.ofthebody.5.3.3AdditionalSimulationsIInthlssection,someadditionalsimulationsarepresentedtoIllustratetheflexibilityofthecode.Thefirstcase

149 ofInterestwasthatofalargedropImpactingth
ofInterestwasthatofalargedropImpactingthebody.AswasnotedinSection5.2,thelargedropsplashesIntoacollectionofsmallerdropletswithvelocitiesoforderone-tenthofthefree-streamvelocitydirectedradiallyawayfromthepo&ntoffirstImpact.ThesplashwassimulatedbyassumingthatthepointofImpactwasthestagnationpoint.SimulationdropletswereInitiatedatthispointwithInitialvelocitiesof6m/sec(one-tenthofthe60m/sacfree-streamvalue).TheanglebetweentheInitialvelocityandthe',stagnationstreamlinewasvariedfrom0°to90°.ExamplesoftheresultingtrajectoriesareshownInFigure5.22forthecasesof30°,'60°,and90°.Forthe60°and90°trajectories,thedropletsereclearlysweptawaybytheflow.Forthe30°traJectories,thedropletsreturn

150 backandJustgrazesthebodyapproximatelyIom
backandJustgrazesthebodyapproximatelyIomalongthebody.Theoriginofthedouble-hornedIcingshapeshowninFigure5.|Obl1982022556-149 i149,OFPO0_,QUALITYCI_'!FIGURE5.22.I,SPLASHTR^3ECTORIES-2BMICRONDROPLETS.|1iHORIZONTAl.AXIS(!{:NUNITS)1982022556-150 r"'!•,!15OcanbeInferredfromthesimulationresults.Ifthedropletsdon't:freezeImmediatelyonimpact,mostoftheresidualsplashdroplets_wlllbesweptawayuntilsomeIcebeginstoformoffthecenterline.Thesplashdroplets,whicharemovlngessentiallytangentlallytothebody,willImpactatthlspointandthehornwillbegintogrow.Thesecondhornissimplyamanifestationoftheflowsymmetryaboutthestagnationstreamline.•AnothercaseofInterestIstheeffectondroplettrajectoriesofblowin

151 gairouttheleadingedgeoftheairfoll.Figure
gairouttheleadingedgeoftheairfoll.Figure5.23showsaseriesof40-microntrajectorieswithandwithoutblowing.Theblowingvelocityattheleadingedgeis36m/secinthiscase,andthefree-streamvelocityIs60nVsec.FromFigure5.23ItisclearthatItisindeedpossibletopreventdropletsofagivenslze._fromImpingingontoanairfoilbyblowing.Thefeasibilityoficepreventionbysuchatechniquerequiresanassessmantoftheaerodynamicpenalty,ifany,resultingfromsuchblowingandanassessmentofthepowerrequired.1982022556-151 I!'-v_.,..._,_,.'.T2._IS:1OFPC'O!_QL;ALITYILJFIGURE5,23MI_IZONT^LAX_$(10_I._IT_}40NZCRONTR^Jg_CRIES_ITHLgADINGE_BLO_INTSlo_Ingvelocityr36m/sHOR|ZG_TN._,IS(laCMi_:TS)1982022556-152 152CHAPTER6COMPUTERSIMULATI

152 ONSOFDROPLETHEATINGTheproblemofheatingwa
ONSOFDROPLETHEATINGTheproblemofheatingwaterdropletsbymicrowaveradiationinthe!vicinityofanairfoilisstudiedinthischapterbymeansofacomputer!lsimulation.Thesimulationis,essentially,anamalgamationofthei!r£sultsoftheprecedingchapters.InSection6.1thestructureof_:heiiT;£co_isdescribed.Section6.2discussesthemodelusedtomaintaindropletenergybalanceinthesimulation.Finally,inSection6.3,•someresultsofthedropletheatingsimulationarepresented,it6.1DescriptionoftheSimulation_nthissectionthedropletheatingcodeisdescribed.Thecodewaswrittenprimarilyasameansforobtaininganalysisanddesigncriteria.foraircraftanti-icingschemeswhichemploymicrowavepreheatingofwaterdropletspriortoimpact.Asaconseque

153 nce,theresultsofthec_depresentedinthscha
nce,theresultsofthec_depresentedinthschaptercenterarounddropletswhichareheatedbyJmicrowavefieldsastheyflowinthevicinityofanairfoil.Thecodeis,actually,moregeneralthanthisspecificapplicationandcouldjustaseasilybeappliedtoproblemssuchastheextinctionofsolarradiationbyclouddropletsortheattenuationofradarorcommunicationsignalsintheatmosphere,AflowdiagramofthecodeisshowninFigure6.1.Theprimarystructurecftheheatingcodeisthedroplettrajectorycodediscussedin._Section5,1.Twosectionsareaddedtothetrajectorycodetoa_countfordropletheating.ThefirstaccountsfortheheatingeffectofthemicrowavefieldbycaiculatlngthePoyntingfluxatthedropletIocatlo_.,1982022556-153 !5,_riD,-,,,,,i',",Gc"ISOFPOOR

154 QUALITYInitialposltionAmbienttemp.Initia
QUALITYInitialposltionAmbienttemp.InitialvelocityAnCientpressureDropletsizeII_.-CdRerlelcI_---BodysizeI_=_(_""_)Freestreamvel.lst'0rderEulerInt.SrhemeSteptlmeIncrement+-_iAt-Xi+l"+xi&t_i+l=_iAt+_iyeildstrajectoriesIISthedr°phydr°dyNaml(_al|Y_stable_"-@._.i_i+i'CalculateabsorbtionElectromagneticcross-sectioncsandfieldPoyntingfluxa_x.modelI-I'ncremen_"--/dropletparametersHeattransferdTdlossratesTd,l+l"(t'_-")iAt+TiHi+I•(_-tH)lAt+HIf'_,l+l"(d-'_')lAt4-fw,ii1__._Doesdroplethltthebodyiattimetl+I1Figure6.1Flowdiagramforheatingcode.1982022556-154 )154£'givensomemodeloftheelectromagneticfieldandcalculatingthedropletabsorptioncross-section.Thecross-sectioniscalculatedbyFirstass

155 umingRayleighabsorption(equation2.17).Th
umingRayleighabsorption(equation2.17).Thecodethenchecksfordropdeformationandothernon-Rayleigheffectsandcorrectsthecross-sectionsbythemultiplicativeFactorsdiscussedinSectr,,n).!.1.TheFollowingnon-:Rayleigheffectsareincludedincalculatingtheabsorptioncross-sectioni|-0a:largedroplets(Mietheory)non-sphericaldroplets(Ganstheory)phasechangeeffectsthermaleffectsonthedielectricconstantIntheabove,themagnitudeofthedropaxisratioA/Bistakentobe50_;ofthemaximumtransientdeformationlimltdiscussedinSection3.3.Giventheabove,itlspossibletocalculatetherateofabsorption'ofmicrowaveenergybythedropas,tdQrfd--i""os(6.11a_6whereSisthemagnitudeofthePoyntlngvectoratthedroplocation.Thesecondadditio

156 nalsectionIntheheatingcodecalculatestheI
nalsectionIntheheatingcodecalculatestheIncrementaltemperaturechangeoveronetimestep&tbyconsideringthetotalheatbudgetofthedrop,Includingsucheffectsasevaporation,miring,diffusiveheattransferandventilation,alongwiththemicrowaveheatlngofequation6.1.Theheatbudgetofadropis:discussedinmoredetailinSection6.2.Considerationofthedropletheatbudgetyieldstherateofchangeofsuchdropletparametersasthedroplettemperature,Td,thedroplet1982022556-155 a¢r,+,'++/%155OFPOORQUALITYmass,M,andthedropletmassfraction,f.TheseparametersareintegratedateachtimestepAtbytheEulerintegrationschemei:discussedinSectionS.I!dTdTd,i+l"(-_)iAt+td,i(6.2)°dM:"Mi+l"(_)iAt+Mi(6.3)fw,i+i"(-_)iAt+fw,i(6.4)Thedropletpar

157 ametersTd,Mandfarethereforefree-runningp
ametersTd,Mandfarethereforefree-runningparametersintheheatingcode.TheinitialvalueofTdisgenerallyassumedtobetheambienttemperatureT.Theinitialmassfractionanddropletmassareinput:a:parametersinthecode.ThedropletmassisrepresentedbythediameterofthewatersphereofequivalentmassDeq.0_-'(..s),:Asinthetrajectorycode,thedropletparametersandpositionare,IncrementedthroughtheloopuntilthedropleteitherImpactsthebody,)missesthebodyorbecomesunstable.2Thecodeparameterswhichwillbeassumedinthefollowing,unlessotherwisenoted,are:'Body-half-body20cmthickFreeStreamVelocity-60m/secAtmosphere=Icingconditions(750mb,-20°C),1982022556-156 156OR!C:t."":"OFF-O0_IQ:JALITYTheelectromagneticFieldmodelandt

158 hecoordinatesystemusedInthecodeareshowni
hecoordinatesystemusedInthecodeareshowninFigure6.2.ThefieldconsistedofaboundsurfacewavewhichpropagatedalongtheleadingedgeoftheairfoilperpendiculartotheFlow.Thefieldstrengthwasexponentiallydecayingwithdistanceaheadoftheairfoilandhadacos20angulardependencecenteredaboutthestagnationstreamline.ThefielddirectionisassumedtobeperpendiculartotheradialdirectioninFigure6.2.Thereforewe2I_1-E0exp{-(r-,s)/¢}cosz(_0)(6.6)where8-arctanx(6.7)Y_x2r,=+y2(6.8)00IsareferenceangledefiningtheangularwidthoftheField,E0isthemaximumelectricFieldstrengthatthesurface,ZIstheexponentialdecaylengthoftheFieldandxsisthexcoordinateoftheleadingedgeofthehalfbody.Onthestagnationstreamline,theelectricfield

159 simplifiesto.?I_'1-E0exp{-(x-Xs)/(:}(6.9
simplifiesto.?I_'1-E0exp{-(x-Xs)/(:}(6.9)"whlchistheexponentialdecayassociatedwithaplanardielectricsurfacewaveguide.15Theexponentlationlength_ofsuchwaveguldes1'canbecontrolledbythethicknessofthedielectriccoating.TheeffectofvaryingtheaboveelectromagneticfieldparametersandthewavelengthXisstudiedinSection6.3.:'l1982022556-157 157.,_,,,;"-'":_3OFPOORQUALt_Yy;¢Y(y)Ex,:_:'Figure6.2Coordinatesystemusedfortheelectromagnetic:fieldmodel.,i11982022556-158 7rORIGINALP,_,C_IS'158OFPOORQUALITY•6.2DropletEnerg_BalanceInordertocalculatetherateofchangeofsuchdropletparametersastemperature,Tjdropletmass,_:.andmassfraction,_itlsnecessarytoobservetheheatbudgetofthedrop•Theheatbudgetis\dQtd

160 dQrdQrfd%!t+(6IO)d--_"-'_'-++dt-at'-wher
dQrdQrfd%!t+(6IO)d--_"-'_'-++dt-at'-wheredO.td-_-"mtotalheatchangeindrop(6.11)::dQrfd-"_-=heatchangeduetoradiation(6.12)-heatchangeduetoevaporation(6.13):dQmelt_'_t-heatchangeduetomelting(6.14)dO.tdmheatchangeduetothermaldiffusion(6.15)Thetotalrateofchangeofheatisrelatedtothechangeindroplettemperaturebythespeciflcheatatconstantpressure(Cp-Ical/gm°C-4.186xI07erg/gm°C)andthemassNbydQtdTmCpM_(6.16)_TherateofchangeofheatduetoradiationalheatingwaswrittenIn..$ectlon6.1asdO,rfd-'T-"°aS(6.17)1982022556-159 fORIGINALPAG_IS159OFPOORQUALITY'_:whereoaistheabsorptioncross-sectlonofthedropandSisthe•,:.Poyntingflux.':Thechangeofheatduetodropletevaporat;onistdt-Lwv_t'dM"Lwvfv(d_)(6.I8

161 ).,0:.whereLwv-thespecificheatofevaporat
).,0:.whereLwv-thespecificheatofevaporationofwater(Lv-600cal/gm-2.5xI0IOerg/gm)dM_--therateofchangeofmassduetovapordiffusion:dMdM":":(_t)O-thevalueof_forastationarydropY"mtheventilationcoefficientwhichaccountsFortheenhanced•V"vapordiffusionduetoairflowaroundthedropletdM"rThevalueof(_tt)Omaybefoundbysolvingthesteady-state,dlffusionequation_Pv:=Dv Zpv(6.18)wherePvIsthewatervapordensityandDvisthevapordiffusion:rcoefficient.Calculatingtherateoffluxofwatervaporthroughsomedroplets6closedsurfacearoundthedropyields,forsphericalJD_1"4_Dv(-_"q')("(6.20)"i(_tt)0Pv,aPv,d),::iwhereOeql2IstheradiusofthedropandPv,a'Pv,dere_heawnblentanddropletsurfacevapordensltles,Iftheeffectofcurvat

162 ureonPv,dcanbeIgnoredandtheamb!3ntatmosp
ureonPv,dcanbeIgnoredandtheamb!3ntatmosphe_issaturatefwlthJI"_'_-_'_"""1982022556-160 ....,-,,L--..............+..........;m160ORIGIN_:LF::_:_i3OFP,.,,,_2O';ALITY.watervapor,thenPand0aresimplythesaturationvaporviavjd,_pressuresoverwaterandd¢,_-ndonlyontemperatureappropriatetothepressuretobefound,ValuesofsaturationvaporpressureversustemperatureareplottedinFigure6.3fromtheSmlthsonianHeteorological6OTables.Valuesoftheventilationcoefficientfv'whichistheincreasein,|vapordiffusionduetoairflowbythedrop,havebeendeterminedempiricallybyBeardandPruppacher65tobe_:f-=0.78+0.308N113Rel/2(6.21)VSC,VwhereReistheReynoldsnumberandNsc,vistheSchmidtnanber-sc,vPaDv(6.22)_pisthedynamicvisco

163 sityofairandPaisthedensity.Thevalue66r'0
sityofairandPaisthedensity.Thevalue66r'0fthevapordiffusionistakentobe2___a__3OK)l.gh1013.-ab)(6.23)Dv"0.211((Pa,twhereTaandPaarethe_r_ientvaluesoftemperatureandpressure,Theheatlossfromthedropcanbefoundbynotingthatthethermali.:andvapordiffusionequationshaveidenticalform.Therefore,by_"?analogytothevapordiffusioncase,_dQtdD-ThlllTka(-_)(Ta-Td)(6.24)i,;!wherekaisthethermaldiffusioncoefficienttakentobe_:.:2.4x103erg/cmsec°Cinairand"{rhistheheatventilationcoefficient,whichlstakentobeequivalentto_vfol|owingthe+6_exampleofPruppacher.1982022556-161 J161!.lIur_.....\-\%\4_N.T\ii.-\t',,q_3_4.11uL"1I\°\i0i•_-!1.I,-�a_1982022556-162 i162........._........:5OFPOORQUALm1(,.-vT

164 hechangeofheatduetomeltingoficewithinthe
hechangeofheatduetomeltingoficewithinthedropcanbe,:relatedtothechangeinmassfractionfwbythelatentheatoffusionLlw(Liw=80cal/gm=3.36xl0_erg/cm)dfd%eltwdt=LiwM_(6.25):Intheheatingcode,nomeltln9isassumedtotakeplaceunt'lthedropletisatoraboveO°C,atwhichpointthetemperatureremainsconstantandallexcessgoesintomeltingiceuntilfbecomesunity.wByconsideringtheabove,itispossibletowritetherateofchangeequationsforthevariousparametersofinterestTd¢O";dTddt"--CIM[°aS+4_r(Oeq/2)Tv(LwOv(Pv,a-Pv,d)+ka(Ta"Td))]'P(6.26)Td=0dfw.i[oS+41T(Deq/2)_(LwvDv(Pv,aPv,d)+ka(TaTd))]:=Liwa""(6.27)dM"41T(Deq/2)TvLwvDv(Pv,a"Pv,a)(6.28)-Inordertocheckthedropletparametersectionofthecode,the_lingandevaporationofaI

165 _dropletwassimulated.Thedropletwasgivena
_dropletwassimulated.Thedropletwasgivenaninitialtemperatureof20°Cinanambientsaturate.J'-atmosphereofO°C.Thetwocasesofastationary,unventilateddrop%andafreely-falling,ventilateddropweresimulated.TheresultsareshowninFigures6.4and6.5.Theventilateddropisseentoequilibrateinseveralseconds,whiletheunventilateddroprequirest1982022556-163 5.FREELYFALLING-VENTILATEDt1982022556-164 ii164OFpr,r"_qL!;_Ll'i'y-.,FIGURE6.5'..4MASSCHANGEFORCOOLINGDROP(INITIALLY20C)"1000.AMBIENTTEMP0Ci998.,•i"_=996,VZ994.,--,FREELYFALLING-VENTILATEDQ_1992.!t;I9gB.tIttIIIIiB.1.2.3.4.5.6.7.8.TIME(SEC)1982022556-165 165severaltensofseconds.ThisisgenerallyconsistentwiththeexperimentalresultsofKinzerandGunn,6

166 7whofoundthatai.35mm+dropcooling7.5°Cins
7whofoundthatai.35mm+dropcooling7.5°Cinsubsaturatedairtook4.4secondstoequilibrate.+'ThereIs,therefore,someconfidencethatthecodereasonablyapproximatesthechangesindropletparameters,i6.3SimulationResultsI+InFigure6.6,droplettemperatureIsp;ui.L=dversusdistance!+taheadofa20-cm-thickhalf-body,fordropletsimpingingalongtheiostagnationstreamline.Inthissimulation,tP_ewavelength).wasI+Icm,themaximumfieldstrengthE0was7.5kV/cm,theexponentlation!lengthofthefieldlwaslOcm,andthefree-streamveloci,'.ywasI60m/sac.Dropletsof20,40,i00and1000microndiametersareseentoheatfromtheambienttemperatureof-20°CtovaluesgreaterthanO°Cuponimpact.Itshouldbenotedthatal1thethermodynamiclossessuchasevaporat

167 loranddiffusionhavebeenincludedandthatth
loranddiffusionhavebeenincludedandthatthemaximumelectricfieldIsone-halfoftheairbreakdownvalueof6815kVtcm.Itisclear,therefore,thatfortheabovec_ndltionsdropletscanbeheatedtoabovefreezingbeforeImpactingtheairfoil.+FurtherinspectionofFigure6.6showsthatthesmallestdrop'i'(20microns)Iswannedtheleast.Thisisexpectedevcnthoughthe_:smallerdropletsdwellsomewhatlongerInthehighfieldretlonduetoI,4theirlowInertia.Thisisduetothesmalldropsbeingpoorabsorbersj,,tbycomparisontothelargerdrops.Thetrade-offbetweendwelltime!andabsorptioncross-sectioniswhatcausesthebunchingofthe20,401'!and100microntemperaturesinFig_re6.6,whil,-,fortheIO00micron!+dro_thestrongnon-Rayleighabsorptioneffectc1,wnlna

168 te.+ti1982022556-166 "_166,'_OFPOCRQUaLi
te.+ti1982022556-166 "_166,'_OFPOCRQUaLiTYb:,FIGURE5.Bt!i{iDROPLETHEATINGBYMICROWAVESAHEADOFHALFBODY20.fo10.vi0.,_00MICRONS00MICRONS40MICRONSm'xMICRONSPw-10.QOISTANCEAHEADOFBODY(10CMUNITS)r:11982022556-167 167i|TheeffectofvaryingtheelectricfieldparametersIsshownfor20"Imicrondropletsimpingingonthestagnationstreamline.The20microndrop-!;Jletshavebeenchosenasaworst-casedesignpoint,inthatdiameterslessthan20m[cro,swereshowninSection5.3tohavealowcollectionefficiencyandtheirheatingis,therefore,lesscritical.InFigure6.7thedroplettemperatureatimpactisplottedversusthemaximumelectricfieldstrengthforawavelengthofIcmandseveralvaluesoftheexponentiationlength,Forfieldstrengthsabove2.5k

169 V+thefinaldroplettemperatureincreaseslin
V+thefinaldroplettemperatureincreaseslinearlywithelectricfieldatarateofapproximately4.2°C/kV.Theexponentiationlengthisseentohaveaweakeffectonthefinaldroplettemperature,asthemosteffectiveheatingoccursclosetotheairfoil.Sincetheabilitytoheatdropsdoesnotdependonlongexponentiationlengths,thenit+Isclearlyadvantageoustokeeptheelectricfieldcloselyboundtotheairfoilinordertominimizetheheatingofdropletswhichmisstheairfoil._InFtgure6.8,thedroplettemperatureatImpactisplottedagainst'-wavelengthforseveralvaluesoftheelectricfieldandalO-cmi'exponentlationlength.Thefinaltemperatureincreasesquicklywithidecreasingwavelengthfor_,lessthan3cm.Finaltemperaturesat._freezingareobtainableforAles

170 sthan2can.Thefieldstrengthrequiredtoheat
sthan2can.ThefieldstrengthrequiredtoheatdropletsIsseenInFigur_6.7++_+'mtohaveamaximumvalueontheorderof7.5kV/cmneartheairfoil,+surfacewith_,-Icm.Thepowerfluxforaplanewaveof7.5kV/cmcanbecalculatedfromthePoyntlngvector',c(6.29)it.......L+1982022556-168 168ORIG!'n;_L_:,',___L_OFPOOR(_L;;_UTYFIGURE5.7'|DROPLETTEMPATIMPACTVS.MAXELECTRICFIELDi20.!20MICRONDROP!1CMWAVELENGTH1982022556-169 _69OP,;G::_._LPAC_ISOFPOOI__UALITYFIGURE6.8DROPLETTEMPERATUREATIMPACTVS.WAVELENGTH2g.^MAXELECFIELDuvQ10.13KV/CM=u10KV/CM=,7KV/CMPKV/CM0.1KV/CMwxWm-10.Q°\+-28,B.2,4.6,8.1_,WAVELENGTH(CM)•+1982022556-170 I170_,tobe74kW/cm.Thishighpeakpowerdensitylmplieslargepowerflo_In..themicrowavecircuit.While

171 thishighpowerisnotlostfromthesystem,]ias
thishighpowerisnotlostfromthesystem,]iasitrecirculates,itcreatespowerhandlingproblems.Itmaythereforebeadvantageoustokeepthefieldstightlyboundandtooperateatshorterwavelengthswherethemaximumelectricfieldsarereduced,asisimpliedbyFigure6.8.Itshouldalsobenotedthattheelectromagneticfieldsarenotnecessarilyplanewavesanditmaybepossibletocreateafield"rstructurewhichmaximizestheelectricfieldwhileminimizingthemagneticfield.Thiswouldreducethecircuitpowerfluxfromequation6.29,whilestillheatingthedropletsduetothenon-magnetlcnatureofwaterdropletabsorption.InFigures6.9andG.10,theeffectoftheambienttemperatureandtheflowvelocityareplottedfor20micronand100microndroplets.Themaximumelectricfi

172 eldis7.5kV/cmwithI-Icanona10cmexponencia
eldis7.5kV/cmwithI-Icanona10cmexponenciationlength.InFigure6.9withafree-streamvelocityof60m/sac,thefinaldroplettemperaturedecreaseswithambienttemperature,aswouldbeexpected.Itisnotedthatthe20micron:dropimpactsatabovefreezing,evenforambienttemperaturesof-30°Candthatthefinaltemperatureofthe100microndropaveragesapproximately/4°warmerthanthe20microndrop.Theeffectofthefree-streamvelocity,atafixedambienttempera-tureof-20°C,isshowninFigure6.10.Asexpected,thehighvelocitiesprovidelesstimetoheatthedropsandtheirfinaltemperaturesarecorrespondinglylower.Theli°Cto5°Cdifferenceitbetweenthe20andi00microndropsisagainobserved.i1982022556-171 FIGURE5,gDROPLETTEMPATIMPACTVS.AMBIENTTEMP_B0.

173 :Q-3B.-2B.-IB,_.AMBIENTTEMPERATURE(DEGC)
:Q-3B.-2B.-IB,_.AMBIENTTEMPERATURE(DEGC)(1982022556-172 172OFPOOffQUALITYFIGURE6.10DROPLETTEMPATIMPACTVS.FREESTREAMVEL.20.8%100MICRONS10._20.......!I:40.50.60.70.80.i?FREESTREAMVELOCITY(M/S).i1982022556-173 173InFigure6.11themassfractionisplottedversusdistanceahead,ofthebody.ThevalueoftheelectricfieldparametersIsthesameasabove,andthefree-streamvelocityis60m/sec.TheInitialvalueoffwIs0.1.Thelarge(1000micron)dropistotallyme.ltedbythetimeItiswithin6cmofthebody,whilethesmallerdropsarestillpartiallyfrozenuponimpact.Thisisnotconsideredaproblem,inthatmostmix_d-phaseparticlesintheatmosphereareprecipitation;particleswlthdimensionsontheorderofmillimeters._,_Anexampleofdropletswhi

174 chimpingefrompositionsotherthanthestagna
chimpingefrompositionsotherthanthestagnationstreamlineisshowninFigure6.12.Droplettemperature:_atthenoseoftheairfoil(x-Xs)Isplottedagainstinitialseparationfromthestagnationstreamline.ThedropletsizeIs20mi,-:-onsandthereferenceangleB0is45°.Thelimitoftheimpingementwindow_Isalsoshown.Theplotissomewhatmisleading,inthattherewillbesomeadditionalheatingfordropswhichimpactbehindthenoseoftheairfoilandthefinaltemperaturealsodependsondiffusivelosses.Itisclear,however,thatthedropletswhichareheatedthemostarethosepwithintheImpingementlimit,andthatbyJudiciouschoiceoftheelectricifieldtheselectiveheatingofonlytheimpactingdropletscouldbemaximized.Inconclusion,acomputersimulationhasbeenmad

175 eofdropletsbeingheatedbymicrowaveradiati
eofdropletsbeingheatedbymicrowaveradiationastheyImpingeontoanairfoil.Thesimulationutilizestheresultsoftheprecedingchapters.The_resultsindicatethatItisIndeedfeasibletoheatdropletstoabove;._freezingpriortoimpactundermostIcingconditions.Theeffectofvariouselectromagneticfieldandflowparametersondropletheating1982022556-174 174G....:..FIGUREB.11"#t*"MASSFRACTIONOFWATERINDROPVS.POSITION:1982022556-175 _175_"_.....FIGURE5.12¢i:FINALDROPLETTEMPVS.INITIALPOSITION20o1982022556-176 jI'176=hasbeencalculated,andtheresultsarepresentedasanaidtothe4!designandanalysisofanti-icingsysten_whichmightemploytheitechniquesofmicrowaveheating.Theresultsindicatethatwavelengthslessthan2cmandmaximu

176 mfieldstrengthsgreaterthan7kV/cmarerequi
mfieldstrengthsgreaterthan7kV/cmarerequiredtoheatdropletstoabovefreezingpriortoimpact.Whiletheirequiredfieldstrengthishigh,itislessthanthebreakdownvalueof|',air,andthesimulationindicatesthatthefieldscanbekeptquitecloselyboundtotheairfoilwithlittledegradationinperformance.i,!i1982022556-177 r177CHAPTER7CONCLUSI0NSTheprimarygoalofthisthesiswastounderstandthephysicsInvolvedinadvancedmicrowaveanti-icingsystemsandtodeterminetheirfeasibilityintermsoftheabilitytoheatsupercooledwaterdropletstoabovefreezingpriortoimpact.Correspondingly,thisquestionwasansweredbymeansofacomputersimulationinChapter6•_TheconclusionisthatItisindeedpossibletopre-heatwaterdropletstoabovefreezingundera

177 nticipatedicingconditions,aslong.'asthem
nticipatedicingconditions,aslong.'asthemaximumelectricfieldexceeds7kw/cmandthewavelengthis:_lessthan2cm.Detaileddesigncurvesfortheelectricfield;parametersareprovidedinChapter6.I;i1Theworkwassuccessfulindemonstratingitsoriginalgoal,]tI.e.thatsupercooledwaterdropletscanbeheatedtoabovefreezingaheadoftheairfoil.Inordertocreatethephys!cally-reallsticsimulationfromwhichtheaboveconclusionsweredrawn,somei"preliminaryworkwasnecessary.Theoriginaltechniques,methodology_,_:andresultswhichweredevelopedaremostlikelyassignificantas_,titheoriginalgoal•Theseresultswillbereviewedbrieflyby,.chapter.1InChapter3,atechniquewasdevelopedtoaccuratelymeasuretheabsorption¢ross-sectlonofasingledr

178 opletbyitseffectontheQofalo_lossresonant
opletbyitseffectontheQofalo_lossresonantcavityUsingthistechnique,the"';theoryofabsorptionbywater-coatedicespheresofAdenandKerkerl,wasexperimentallyconfirmedforthefirsttime.Inaddition,anb1982022556-178 ..1781extensionoftheAdenandKerkertheorytomeltingoflrregularlt-I1.|t;shapedparticleswasmadeandconfirmedexperimentally.Finally,iinChapter3,anextensionoftheresonantcavitytechniqueallowedthedielectricpropertiesofsupercooledwatertobemeasured,at_,-2.82cm,downto-17°C.ThisnewdataisshowninFigure3.12.;InChapter4,thehydrodynamicsofacceleratedwaterdropletswereobservedinthewindtunnelbymeansofhigh-speedstrobephotography.Thetransientdeformationlimitofthemajor-to-minor"axisratiowasexperi

179 mentallycleterminedfordropletssuddenlyac
mentallycleterminedfordropletssuddenlyacceleratedbyanotherFluid.TheresultisshowninFigure4.9.Inaddition,thetheoreticalpredictionofKlett45astotheformof:Raylelgh-TaylorinstabilityinwaterdropletswasunambiguouslyconflmedastheFirstsixBesselFunctioninstabilitymodeswereidentifiedphotographically.ThisexperimentalevidenceverifiesthetheoryofthemaximumstabledropsizeIntheatmosphere.Theunstablebreak-upoflargewaterdropletscauses*.hetruncationatapproximately5mmobservedintheatmosphericexponentialdropletsizedistributionofHarshallandPalmer.In_hapter5,acomputercodewaswrittentocalculatedroplettrajectories,Inanygivenflowfield,andwasexperimentallyverified.ThecodeIsusefulinanalyzingthesuscept

180 ibilityofiairfoilstoIcingandtoanalyzingn
ibilityofiairfoilstoIcingandtoanalyzingnewicepreventionconcepts.Withtheassistanceofthecodeitwasdeterminedthat,forclouddroplets,',thelargerdropscontributeappreciablymoretoIcingduetotheirIncreasedcollectionefficiencyandtheirIncreasedmass.In1982022556-179 I__i•'.__,J179:dddition,themechanismofthe"double-horned"icingshapesresultingfromlargesplashingdrop!etswasobservedandmodeled.Finally,inChapter6theaboveresultswereamalgamatedint.acomputersimulation,whereitwasseenthatitisindeedpossfbletoheatdropletstoabovefreezing,evenwhenevaporativeandconvectivelossesareincluded.FromthedesigncurvesofChapter6,someconclusionscanbedrawnastothepracticalrequirementsofamicrowaveantl-lcingsystem.

181 InFigurp-6.8wherethestronginfluenceofthe
InFigurp-6.8wherethestronginfluenceofthewavelengthondropletheatirgisdisplayed,itisclearthattheminimalwavelengthisoptimalintermsofheatingandthatawavelengthoflessthan2cmisrequired.Balancingthedesira-bllltyofshortwavelengthsisthefactthatmicrowaveequipmentcoststendtoIncreasemonotonicallywithdecreasingwavelength.Thesefactorsindicatethatapractical,_nti-iclngsystemwouldoperatewithawavelengthofapproximatelyIcm.InChapter6,forX-1cmitwasfoundthatarelativelyhlghfieldstrengthof_roximately7.5kVwasrequiredtoanti-iceinallanticipatedicingconditions.Thisfleldstrengthisone-halftheatmosphericbreakdownlimit.EventhoughthefieldsLrengthwasrequiredtobelarge,intheresultsofChapter6Itwasfoundt:_t

182 itneednotbeextensive,asatightly-boun"(.i
itneednotbeextensive,asatightly-boun"(.i_-10an)surface'_:wavewasfoundtoperformaswella_aloosely-boundwave(_=40cm).;,Thisresu"Indicatesthatitshouldbepossibletobequiteefflclert!Inonlyheatingtheimpactingwaterdroplet_.Withthecriteriafor-:dropletheatlngdeterminedb_.,theaboveresults,thepractlcalityofmicrowaveanti-icingsystemsdependsolelyonengineering1982022556-180 IiimI,efficiencyc_nslderationsandtheabilityofthemicrowave_ystem-tobeintegratedwithothersystems,inahybriddesign,asdiscussedInChapter!,tosolvetherunback-refreezep.,'nblem.}?2i1982022556-181 '_';i81.!.LISTOFSYMBOLSii'iAdropmajordiameter1iAdropareaperpendiculartotherelativewindA/BellipsoidaxisratioiIasphereradius_iadrop

183 accelerationvector'!magneticandelectrice
accelerationvector'!magneticandelectricexpansioncoefficientsofthe_an'bnscatteredwaveBdropminordiameterBmagneticfieldvector_IincidentmagneticfieldvectorCddragcoefficientCspecificheatofwateratconstantpressurePcspeedoflight!OcylindricalcavitydiameterDequivolumetricspherediametere:lm.DmeanvalueofDeqeqr,vwatervapordiffusioncoefficientelectricFieldvector1982022556-182 W.••b-w,.182_iIncidentelectricfieldvector"E0maximumelectricfieldstrengthEzelectricfieldstrengthinTMoI0modeeeccentricityofanellipsoid_0polarizationvectorFstructurefactorffrequency:focavityresonantfrequencyfdDopplerfrequencyfdroposcillationfrequencyofthenthmodenfmassfractionofwaterWC"fhaverageheatventilationcoeff

184 icientaveragevaporventilationcoefficient
icientaveragevaporventilationcoefficientVg,g'Gansfactors._gaccelerationduetogravityHairfoilthicknessH_magneticfieldstrengthinTH010modehbodyhalfthickness1982022556-183 =,183hIImpingementwindowheightthJnBesseIfunctionnKdielectricparameterKconstantinthedropletequationofmotionawavevectorKthermaldiffusioncoefficienta;kgravitationalwavenumberg_0i,cldentwavevector.t=kscatteredwavevectorSLcavitylengthLiwlatentheatoffusionJLlatentheatofevaporationWVexponentiallengthoftheelectricf:eldMdropmassM.massofIceII_massofwaterdMcImpingingmassdistributionmcomplexrefractiveindex•i11982022556-184 184INnumberofscatterersNWebbernumberweNscSchmldtnumber•nmodenumbernrealpartoftherefractive;ndex

185 t_unitvectorinthedirectionofpropagationP
t_unitvectorinthedirectionofpropagationPpowerPaambientpowerP,P'geometricalfactorsforellipsoid_:Pdpowerdissipatedbyadrop,.tPpowerdissipatedbythecavitywallsW"Pmin'Pmax_inimumandmaximumpowerreceived,Qqualityfacto•:.QheatrateofchangeofheatqchangeinwavevectorRralnfa_lrateReReynoldsnumber•radialcoordinate'a1982022556-185 .185-rinterpartlclespacingSsurfacefunctionPoyntingvectorSlincidentPoyntlngvectorTtemperature4Tambienttemperaturea:T(t)cavitytemperatureTddroplettemperaturettimetotimemeltingbeginstftin_meltingends_.Uenergystoredinthecavity-Ufreestreamvelocity_-ufluidvelocityVdropletvolumeVre!relativewindvelocity_:.Lvdropletvelocity'.x,y,zCartesiancoordinates1982022556-186 .p

186 186-=thxjpositionofthejscattererxhalfbod
186-=thxjpositionofthejscattererxhalfbodyscalelength'_2Tra/),•_instabilitygrowthrate?O[angleofattack,.,£fulIwidthathalfmaximum¢complexdielectricconstant_realpartofc"negativeoftheimaginarypartoferlcairfoilcollectionefficiency(_angularcoordinate,_80heatingcodereferenceangle1:knegativeoftheimaglr.-_ypartofmXwavelength_'),Harshal1-Palmercoefflclent1Jdynamicviscosity._-ellipsoidaxisofrevolution_,rl,Xellipsoidcoordinates?1982022556-187 !iI187!pdensltyI;!I'PidensityoflcePwdensityofwaterPvdensityofwatervapor::p,¢,zcylindricalcoordinates,.asurfecetensioni;0CrOSS-Section!nbbackscattercross-sectionaabsorptioncross-section,'_sscatteringcross-sectionattotalcross-sectionidodlffertia

187 lcross-section2¢velocitypotentialfunctio
lcross-section2¢velocitypotentialfunction.)solidangle4?1982022556-188 -r.J•4158REFERENCESI."AGARDConferenceonIcingTestingforAircraftEngines",AGARD-CP-236(1978).2."NASA-FAAConferenceonAircraftIcing",NASACP-2086/FAARD-78-I09(1978)_3.P.V.Hobbs,_cePhysics(OxfordUniv.Press,Oxford,1974).4.U.S.FederalAviationRegulations,Part25.:5.U.S.FederalAviationAdministration,AC-20-73(1973).'6.H.R.PruppacherandJ.D.Klett,HicrophysicsofCloudsand_precipitation(D.Reidel,Dordrecht:Holland,1978).7.P.J.Perkins,NACARHE52JO6(1952).8.D.Atlas,J.Heteorology,!.__1,309(1954)._9.B.Nagenheim,USAAMRDL-TR-77-34(1977).IO.B.MagenheimandF.Hains,USAAHRDL-TR-76-18(1976).•il.R.J.Hansman,Jr.andW.Hoilister,NASACon

188 ferenceProceeding-'(tobepublished-1981).
ferenceProceeding-'(tobepublished-1981)..12.R.J.Hansman,Jr.,U.S.PatentSerialNo.163,520(ApprovedMarch1982).13.V.H.Gray,NACATN2799(1952).14.AGARDWorkingGrouponRotorcraftIcing,AGARD-AR-166(1981).15.R.Collins,FoundationsforMicrowaveEn_leeering(McGraw-Hill,New•York,1966).16.A.R.vonHippel,DielectricMaterials_ldApplications(HITPress,_"Cambridge,1954)._17.J.W.Ryde,TheAttenuationandRadarEchoesProducedatCentln_treWavelengthsby"VariousHeteprologicalPhenomena(Phys."Soc.Lo'ndon,1947).18.G.Hie,Ann.Physik,2__5,377(190_).19.LordRayleigh,Phil._g.XL._J.I,IO7(1871).,20.LordRaylelgh,Phil.Hag.XLVII,375(1899).21.J.S.Stratton,ElectromagneticTheory(McGraw-Hill,NewYork,1941),pp,563-573.!198202

189 2556-189 18922.A.Lowan,TablesofScatterin
2556-189 18922.A.Lowan,TablesofScatteringFunctionsforSphericclParticles(NationalBureauofStandards,Washington,1949).23.K.L.S.GunnandT.W.R.East,Quart.J.RoyalNeteor.Soc.80,522'(1954).24.B.M.HermanandL.S.Batten,Quart.J.RoyalMeteor.Soc.8.3.7,233;(1961).25.L.J.Batten,Radar__ObservatlonoftheAtmosphere(Univ.ofChicago--Press,Chicago,1973).26.R.Gans,Ann.Physik.3..7.7,881(1912).27.D.Atlas,H.Kerker,andW.Hitschfeld,J.Atm.andTerr.Physics,_3,IO8-119(1953).28.J.O.Jackson,ClassicalElectrodynamics(J.WileyandSons,New:York,1975)._29.A.AdenandM.Kerker,J.Appl.Phys.2_2_2,12/,2(1951).30.H.P.LanglebenandK.L.Gunn,HcGillUniv.StormyWeatherGroup(1S52).31.B.HermanandL.Batten,J.Net.1__8,468(1960).32

190 .L.Batten,S.BrowningandB.Herman,J.Appl.N
.L.Batten,S.BrowningandB.Herman,J.Appl.Net.9--,832(1970).33.D.Atlas,W.Harper,F.Ludlum,andW.Macklin,Quart.J.RoyalNeteor.Soc.8.66,468(1960).3/_.N.Labrum,J.Appl.Phys.2..33,1324(1952).35.N.Labrum,J.AppI.Phys.2.33,1320(1952).]6.BellLaboratoryTechnicalStaff,RadarSystemsandComponents{VanNostrand,NewYork,1949).37.C.Montgomery(ed.),TechniquesofMicrowaveMeasurements:Rad.LabSeries!1(H_Graw-Hill,NewYork,1§47),pp.308-319".38.H.PruppacherandP.Pltter:J.Arm.Sclence_28,86(1970).I39.H.Pruiapa(.,_dKBeard,(_uart.J.RoyalHeteor.Soc.___,247+_(I_70).40.J.E.Mc_K)nald,J.Net:eor.I_1.1,57-80(1954)../11.A.Spilhaus,J.Meteor.5_,IO8(1948).+42.T.TaylorandA.Acrivos,J.FluidNech.188,It4G(1964).5L+:i19820

191 22556-190 ,;"_E"r190,43.M.Komobayasi:and
22556-190 ,;"_E"r190,43.M.Komobayasi:andK.Isomo,J.Meteor.Soc.Japan,Ser.24.._2,330(1964).,44.J.HcTaggart-CowanandR.List,J.Atm.Scl.3..2.2,1401(1975).•45.J.Klett,JAtm.$ci28,646(1970)46.A.W.Green,J.Appl.Meteor.1__4,1578(1975).47.LordRayleigh,Phil.Hag.XIV,184(1882).48.I.kangmulr,J.Meteor.5--,175(1948).,'I49.J.B.HathewsandB.J.Mason,Quart•J.RoyalMeteor.Soc.90,275(1964).50._.V.BeardandH.R.Pruppacher,J.Atmos.Sci.2_66,1060(1969).-251.C.S.Yih,DynamicsofNonhom£geneousFluids(MacHillan,NewYork,1965),pp.142-145.:52.H.AbromowitzandJ.Stegun,HandbookofMathematlcalFunctions_(Dover,NewYork,1964),pp.355-435.53.H.Glauert,BritishA.R.C.,2025(194_).54.A.Kantrowitz,NACATN779(1940).t55.ILangmulr

192 andK.BlodgettDept.ofCommercePB27565(1945
andK.BlodgettDept.ofCommercePB27565(1945),l56.N.Bergron,NACATN1397(1947).57.R.Brun,J.Seraflni,andH.Gallagher,NACATN2903(1953)._:'58.R.BrunandH.Mergler,NACATN2904(1953).:'59.R.Brun,H.Gallagher,andD.Vogt,NACATN2952(1953).i60.R.List,SmithsonlanMeteorologicalTables(Smlthsonian,Washington,1iID.C.,1949)._.,,_61.R.GunnandG.Kinzer,J.Meteor.6,243(1949)._"62.hi.PotterandJ.Foss,FluidMechanics(Ronald,NewYork,1975).:c_63.J.S.MarshallandW.M.Paln_r,J.Meteor.5_.,1(;5(1948).64.D.Atlas,AdvancesinC_ophyslcsI...00,318(1964).e1982022556-191 191_65.K.V.BeardandH.R.Pruppacher,J.Atmos.Scl.28,lk55(1971).'66.W.D.HallandH.R.Pruppacher,J.Atmos.Sci.3._3,1995(1977).67.G.D.KinzerandR.Gunn,J.Heteor.8

Related Contents


Next Show more