/
气候变化对 植物 分布与多样性的影响 气候变化对 植物 分布与多样性的影响

气候变化对 植物 分布与多样性的影响 - PowerPoint Presentation

hirook
hirook . @hirook
Follow
343 views
Uploaded On 2020-08-28

气候变化对 植物 分布与多样性的影响 - PPT Presentation

Climate Change Impacts on Plant Distribution and Diversity Zhiheng Wang 王志恒 Zhihengwangpkueducn 15052014 PKU Beijing Department of Ecology College of Urban and Environmental Sciences ID: 806658

change climate lgm species climate change species lgm diversity term plant 100 temperature data eocene distribution anomaly global oligocene

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "气候变化对 植物 分布与多样..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

气候变化对植物分布与多样性的影响Climate Change Impacts on Plant Distribution and Diversity

Zhiheng Wang (王志恒)Zhiheng.wang@pku.edu.cn15.05.2014 @ PKU, Beijing

Department of EcologyCollege of Urban and Environmental SciencesPeking University

Slide2

OutlineWhat’s macroecology (

宏观生态学)Deep-time climate changes and plant evolutionImpacts of climate changes since the LGM on plant diversityThreats of global warming

in 20th and 21st centuries

on plant diversity

Slide3

Science 1989

1995

James H. Brown

Central question

:

mechanisms of patterns in life distribution and diversity in space and time

Scale:

regional

–> global

Methods:

hypothesis testing

+

quantitative statistics

+

comparative

phylogenetics

Macroecology

is young, but it is one of most active sub-disciplines of ecology.

宏观生态学是生态学中年轻、但最活跃的分支之一

一、宏观生态学

(

macroecology

)

Slide4

影响因子

年份

Beck et al. 2012

Major Journals for

macroecology

:

Journal of Biogeography

(IF: 4.9)

Ecography

(IF: 5.1)

Global Ecology & Biogeography

(

IF: 7.2)

Diversity & Distributions

(IF: 6.1)

宏观生态学

(

macroecology

)

宏观生态学

生物地理学

学科基础

生态学

地理学

研究内容

物种分布和多样性格局的形成机制

物种和多样性的地理格局

侧重点

生物分布与环境和进化的关系

生物分布的格局与样式

方法

定量

定性

Slide5

Global climate changes

Eocene climatic optimum (55 ma)

Mid-Cretaceous Greenhouse (90-100 ma)

Clarke et al. 1999. Geology

Sea surface temperature changes

Slide6

Zachos

et al. 2001.

Science

,

292

,

686-693

Global climate changes

Temperature (

)

Age

(Ma)

Eocene climatic optimum (55 ma)

Eocene-Oligocene transition (34 ma)

Quaternary

(2.3 ma)

Slide7

Climate change impact on species diversity

Speciation

Extinction

Dispersal

Long-term

geological history

1-100 Ma

Long-term

geological history

< 1 Ma

Short-term

industrial evolution

1-100 years

Short-term

current century

1-100 years

Fossil records and paleontological methods

DNA data and comparative phylogenetic methods

Slide8

Deep-time

climatic optimum and plant diversification

Crepet

et al. 2009. Am J Bot

Global speciation rate of plants based on fossil evidence

Slide9

Jaramillo et al. 2010. Science

n

ew sp.

extinct sp.

Deep-time climatic optimum and plant diversification

Slide10

Zachos

et al. 2001.

Science

, 292, 686-693

Eocene-Oligocene transition

Temperature (

)

Age

(Ma)

Eocene-Oligocene transition (34 ma)

Slide11

Eocene-Oligocene transition (ca. 34 Ma)

Slide12

Zanazzi

et al. 2007 Nature

Eocene-Oligocene transition (ca. 34 Ma)

Slide13

Effects of Eocene-Oligocene transition

Global mammal extinction

33.4 Ma

Hooker et al. 2004.

J

Geolog

Soc

Fossil records of North European mammals

old

young

Eocene–Oligocene extinction

event

Grande

Coupure

(great break)

Slide14

Effects of Eocene-Oligocene transition

Plant molecular evolutionary rateRhododendron

Quercus

Slide15

Evolution of RhododendronZhiheng Wang, Xiaoting Xu, Peking Univ., ChinaDimitar Dimitra, Oslo Univ., NorwayAlexandre Antonelli, Univ. of Gothenburg, SwedenKatsuhiro

Nakao, Forestry and Forest Products Research Institute, JapanAlexandra Muellner-Riehl, Univ. of Leipzig, Germany

Slide16

Biogeography of Rhododendron

Distribution

: Northern Hemisphere

Diversification

Originated in late Cretaceous to early

Paleogene

(50-70

mya

)

Species diversity

: c.a. 900

sp

; c.a. 550

sp

in China

Slide17

Sequence data from GenBank388 species16 genes: atpB-rbcL, rbcL,

matK, ndhF, psbA-trnH, trnL-F, trnL, trnT-trnL, trnS-trnG, ITS, RPB2I-1, RPB2I-2, RPB2I-3, RPB2I-4, RPB2I-5, RPB2I-6

Biogeography of Rhododendron

Evolutionary rate of

Rhododendorn

Age (Ma)

Substitution rate

Slide18

Question: What’s the mechanism of the high Rhododendron species diversity?

Biogeography of Rhododendron

Hypothesis:

1) It has been believed that the rapid diversification of Rhododendron was enhanced by the

rise of Tibetan Plateau at ca. 30 – 40

M

a

.

2) Global

climate shifted from Eocene greenhouse to Oligocene icehouse

at 34 Ma

. Cool climate led to the expansion of temperate vegetation, and then the diversification of Rhododendron.

Temperature (

)

Age

(Ma)

Eocene-Oligocene transition (34 ma)

Slide19

Expectation of Hypothesis 1Evolutionary rate is high during the period of the collision between Indian subcontinent and Eurasia, and the clades originated in association with the collision (those in southwest China) have high evolutionary rate. Expectation of Hypothesis 2Evolutionary rate is high during the period of the collision between Indian subcontinent and Eurasia, and the clades experienced high climatic changes (those in the north) have

high evolutionary rate.

Biogeography of Rhododendron

Slide20

Biogeography of Rhododendron

Molecular evolutionary rate of

d

ifferent clades

Age (Ma)

Substitution rate

Clade 1

Clade 2

Clade 3

Clade 4

Clade 5

Clade 6

Clade 7

34 Ma

Slide21

Evolution of QuercusXiaoting Xu, Peking Univ., ChinaDimitar Dimitra, Oslo Univ., Norway

Slide22

北温带森林的优势树种

ca.

4

50 spp., 407 spp.

i

ncluded

186

本植物

志、数据库和发表文献

进化速率与栎属物种多样性分化

Global pattern of oak (

Quercus

) diversity

Slide23

Supermatrix

: 11 genes, 40

× 9528

Gaps

:小于

50%

linked Clock model

序列

序列

alignment

mafft

--

一致性序列构

建(

consensus sequences)

进化树构

Maximum likelihood method

RAxML

-HPC version

7.4.2

定年

Beast 1.7.4化石

校正

分子进化速率的时间变化

Slide24

栎属分子进化速率的时间变化

11 genes

40 sp.× 9528

bp

缺失数据:

<50%

BESAT

: Link Clock model

Slide25

Climate change impact on species diversity

Speciation

Extinction

Dispersal

Long-term

geological history

1-100 Ma

Long-term

geological history

< 1 Ma

Short-term

industrial evolution

1-100 years

Short-term

current century

1-100 years

Quaternary climate change

Climate change since the Last Glacial Maximum

Slide26

Lorenzen, et al. 2011. Nature

Modeled distribution and population size

of

megafauna

species at 42, 30, 21 and 6

kyr

BP.

Effective population size

Effective population size was estimated by population genetic methods based on ancient DNA.

Slide27

Influences of climate change since the LGM on Chinese woody plant diversityYaoqi LiXiaoting XuZhiheng Wang

Slide28

From “Database of China’s Woody Plants (v2.0)”

● compiled from more than 320 national and provincial floras, many local floras and specimen records● examined by 21 local experts of plants● c.a. 6 years●

Taxonomy: Flora of China (English version)

● Specimen records + observation data

S

pecies

number

:

11405

Specimen records

observation data

Data of plant distributions

Slide29

Climate change impacts on Chinese plant diversity

Mean winter temperature

Anomaly of mean annual temperature since the LGM

Anomaly = LGM MAT – Modern MAT

Modern climate

Precipitation

Temperature

LGM climate

data was

hindcasted

by Community Climate System Model (CCSM

).

Slide30

Climate change impacts on Chinese plant diversity

Method: Geographically

weighted regression

(GWR)

Local R

2

of temperature anomaly

Local R

2

of modern climate

Slide31

东南地区,anomaly

的解释率较大;横断山脉地区,MTCQ的解释率较大;东北地区,两者的解释率无明显差异在大部分区域,anomaly

的解释率比MAT高

秦岭、吕梁、太行山地区,MAP

的解释率明显高于

anomaly

Climate change impacts on Chinese plant diversity

R

2

difference

Anomaly – MAT

Anomaly – winter T

Anomaly – MAP

Temperature change since the LGM explains more richness variation than modern climate in southeastern China.

Slide32

Principal component analysis of modern climate

Energy:

MAT + Bio4(

Temperature Seasonality ) + PET

Water:

MAP + Bio15(Precipitation Seasonality) + AET

80.22

% of total variance

Energy

PC 1

Water PC 1

86.67

% of total variance

R

2

of energy PC 1

Anomaly - energy PC 1

R

2

of water PC 1

Anomaly - water PC 1

Temperature change since the LGM explains more richness variation than modern climate in southeastern China.

Slide33

Influences of climate change since the LGM on Chinese vegetationSiyang WangZhiheng Wang

Slide34

Model evaluation

LGM & pollen data

steppeBroadleaved evergreen/warm mixed forestdeserttemperate deciduous forest

taiga

Data: 1) 1:1,000,000 vegetation map

2) LGM

climate data was

hindcasted

by Community Climate System Model (CCSM)

.

Method: species distribution models

Slide35

Results(1): LGM vegetation distribution

LGM

Modern

Slide36

Results(1): LGM vegetation distribution

Transformation

LGM

modern

*

Substantial

contraction: tropical rainforest and monsoon forest, temperate

needleleaf

-broadleaf mixed forest, temperate deciduous scrub

Slide37

Results(1): LGM vegetation distribution

Forests move northward since the LGM

Veget1: Cool and temperate coniferous forest

Veget6: Temperate

deciduous

forest

modern

distrib

Steppe and

desert contracted

Veget16

:

temperate steppe

veget22: alpine

tundra

LGM

distrib

.

LGM

distrib

.

Slide38

Climate change impact on species diversity

Speciation

Extinction

Dispersal

Long-term

geological history

1-100 Ma

Long-term

geological history

< 1 Ma

Short-term

industrial evolution

1-100 years

Short-term

current century

1-100 years

Slide39

Recent climate change

IPCC report V, 2013

Slide40

IPCC report V, 2013

Recent climate change

Slide41

Plants track climate change

Plant species move upward along French Alpine

Speed: 29 m/decadeLenoir et al. 2008. Science

period 1: 1905-1985period 2: 1985-2005

Slide42

Plants track climate change

Plant traits affect moving speed

Lenoir et al. 2008. Science

Slide43

Plants track climate change

Chen et al. 2011. Science

Spider Ground beetlesButterfly

Grass-hopperNorthern boundary of species distribution moves northward in UK.

Speed: 16.9 km/decade

Slide44

Species diversity changes in

Changbai Mts.

Time period: 1963 – 2006

Species diversity declined at the same environment.

Slide45

Climate change impact on species diversity

Speciation

Extinction

Dispersal

Long-term

geological history

1-100 Ma

Long-term

geological history

< 1 Ma

Short-term

industrial evolution

1-100 years

Short-term

current century

1-100 years

Slide46

Source: Wang et al. 2010

China temperature change

Source: National Climatic Data Center, US

Global temperature change

How climate change influences plants in China

?

Global warming changes the habitat, growth,

phenology

and distribution ranges of organisms, and may lead to migration or extinction

5

Ongoing project

Threats of climate change on woody plant diversity

Slide47

Source and variables

From the WorldClim websiteResolution: 2.5

× 2.5 arc minVariables: Bio1 – Bio19

Current and future climate data

Scenarios of future climate

A1B:

maximum energy requirements, balance across fuel sources

A2:

high energy requirements

B2:

lower energy requirements

Precipitation

Temperature

Climate change

Current climate

Climate in 2080 (A2)

Slide48

Model calibration

1) Generalized linear model (GLM) with binomial residuals2) Maximum entropy (Maxent)3) Classification tree (CT)

Models1) Stepwise regression using GLM for a species

Si: forward + backward2) Select a subset of variables for

S

i

based on

Akaike information criterion (AIC)3) The selected

subset of variables were used for

Maxent

and CT

Variable selection

Species with range size > 20 grid cells

7437 species in total

Species selection

modeled species

all species

Slide49

Present richness patterns

(1950 – 2000)

Projections in 2080 – 2100

A2

A1

B

B2

Projected species richness patterns

Changes in species richness

1.

Vulnerable areas

: central to east and south China

2.

Benefited areas

: Tibetan Plateau

Vulnerable vs. benefited areas

Results

Wang

el al

. in preparation

最大能量消耗

能源均衡发展

高能量消耗

低能量消耗

Decline

No change

Increase

Slide50

Hengduan

Wuyi

North

Taihang

North

Daxing’an

Changbai

Kunlun-Qilian

Projected species movement

Predicted species dispersal

Elevation change

Latitude change

Present

Future

Based on the second threshold method

Slide51

Acknowledgements

Prof. Jingyun FangProf. Bernhard SchmidProf. Carsten

RahbekDr. Xiaoting Xu

Thank

you for your

attention

Dr.

Zhiyao

Tang

Dr.

Yining

Liu

Dr.

Xiujuan

Qiao

Dr.

Zhaodi

Guo

Dr.

Luying

Tang

The 21 experts who reviewed the species distribution data

Slide52

Bowen et al. 2004. Science

Two

periods of climatic optimum

Eocene climatic optimum (55 ma)

Mid-Cretaceous Greenhouse (90-100 ma)

Related Contents


Next Show more