/
A model for flash weakening by asperity melting during A model for flash weakening by asperity melting during

A model for flash weakening by asperity melting during - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
380 views
Uploaded On 2015-05-01

A model for flash weakening by asperity melting during - PPT Presentation

W Rempel and S L Weaver Received 25 February 2008 revised 22 July 2008 accepted 15 August 2008 published 26 November 2008 Recent results from laboratory experiments on a broad range of mineral systems exhibit dramatic drops in the effective friction ID: 58181

Rempel and

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "A model for flash weakening by asperity ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Amodelforflashweakeningbyasperitymelting duringhigh-speedearthquakeslip A.W.Rempel 1 andS.L.Weaver 1 Received25February2008;revised22July2008;accepted15August2008;published26November2008. [ 1 ] Recentresultsfromlaboratoryexperimentsonabroadrangeofmineralsystems exhibitdramaticdropsintheeffectivefrictioncoefficient m oncethesliprateexceedsa criticallevel V w ,whichistypically O (0.1)m/s.This‘‘flashweakening’’hasbeen attributedtotheeffectsoflocalizedheatingathighlystressedmicroscopicasperities.We extendpreviousphenomenologicaltreatmentstoassesswhethermeltingatasperity contactscanexplaintheobservedchangesinstrength.Usingphysicalparametersobtained fromtheliteratureonthephasebehaviorandmechanicalpropertiesofquartz,albite, dolomite,gabbro,Westerlygranite,andserpentinite,thepredictionsofoursimplified modelareinreasonableagreementwithavailableexperimentaldata.Wederive approximateanalyticalexpressionsthatsuggestthatstrengthchangesareinsensitivetothe meltviscosityunderconditionsthatlikelyincludethoseduringearthquakeslipalong majorfaultsystems.Instead,theprimarycontrolson m aretheratioofsliprate V to V w and theStefannumber S ,whichisdefinedastheratioofthelatentheatoffusiontothe sensibleheatrequiredtoraisethetemperaturefromambientlevels.Thephasebehavior duringtheshortlifetimesandatthehighconfiningpressuresofasperitycontactsisa significantsourceofuncertaintyintheparameterchoices,asarethepresenceand availabilityofwater.Nevertheless,ourresultsareencouragingforfurthereffortsto incorporatethemicrophysicsoffaultzoneprocessesintoearthquakesimulations. Citation: Rempel,A.W.,andS.L.Weaver(2008),Amodelforflashweakeningbyasperitymeltingduringhigh-speedearthquake slip, J.Geophys.Res. , 113 ,B11308,doi:10.1029/2008JB005649. 1.Introduction [ 2 ]Frictionalbehaviorhasarichhistoryofstudythatcan betracedthroughthe15thcenturyeffortsofLeonardoda VincitolatercontributionsbyAmontons,Euler,andCou- lomb(see,e.g., Scholz [2002]and BowdenandTabor [1950]forhistoricalreviews).Earlyexperimentsdemon- stratedthattheratioofslidingresistance t tonormalstress s n ,thefrictioncoefficient m ,isapproximatelyconstantfora givensolidandindependentoftheapparentcross-sectional area A oftheslidingsurface.Themicroscopicoriginsof frictionalresistanceremainanareaofactiveresearch[e.g., Kilgoreetal. ,1993; Marone ,1998; MairandMarone , 1999; Goldsbyetal. ,2004],butabasicphenomenological modelforthecontrolson m atlowslidingspeedshasbeen established.Asarguedby BowdenandTabor [1950]and demonstratedexperimentallyby LoganandTeufel [1986] and DieterichandKilgore [1994,1996],truecontact betweenslidingsurfacesoccursonlyatmicroscopicasperity junctions,whichhaveanarea A c thatisasmallfractionof A .Sincetheslidingresistanceisdominatedbytheasperity behavior,itfollowsthat t = t c A c / A ,wherethejunction strength t c forbrittlerocksisfoundtypicallytobeapprox- imately10%oftheshearmodulus[ Rice ,2006].The fractionalareaintruecontact A c / A = s n / s c ,wherethe contactindentationstrength s c canberelatedtothemineral hardness.Modelspredictthat s c isapproximatelyconstant bothforjunctionsthatdeformplastically[ Bowdenand Tabor ,1950]andforthosethatdeformelastically [ GreenwoodandWilliamson ,1966].If t c isapproximately constantaswellthisyieldsafrictioncoefficient m  t / s n = t c / s c thatdoesnotdependon A . Baumberger [1997]and Scholz [2002]giveinformativereviewsofthemicrophysics offrictionthatoutlinemorerecentdiscoveries,including therateandstatedependencethataresoimportanttoslip instabilitiesduringthenucleationofearthquakes[ Dieterich , 1978,1979; Ruina ,1983; RiceandRuina ,1983]. [ 3 ]Theresistancetosliding,orstrength,ofmajorplate- boundingfaultsisthesubjectofvigorousongoingdebate [e.g., Scholz ,2000; TownendandZoback ,2000].Several linesofevidenceindicatethatduringearthquakes,typically t ismuchlowerthanthevalueextrapolatedfromlaboratory measurementsofrockfrictionatlowerslidingspeeds [ Byerlee ,1978].Dynamic-weakeningmechanismsthathave beensuggestedtoexplainthisbehaviorincludethethermal pressurizationofporefluids[ Sibson ,1973],normalstress variations[ Bruneetal. ,1993],acousticfluidization [ Melosh ,1996],elastohydrodynamiclubrication[ Brodsky andKanamori ,2001],theformationofsilicagels[ Goldsby andTullis ,2002],andasperity-scaledecompressional heating[ O’Hara ,2005].Significantly,recentexperiments JOURNALOFGEOPHYSICALRESEARCH,VOL.113,B11308,doi:10.1029/2008JB005649,2008 Click Here for Full A rticl e 1 DepartmentofGeologicalSciences,UniversityofOregon,Eugene, Oregon,USA. Copyright2008bytheAmericanGeophysicalUnion. 0148-0227/08/2008JB005649$09.00 B11308 1of14 [ HiroseandBystricky ,2007; HiroseandShimamoto ,2005; Prakash ,2004; TsutsumiandShimamoto ,1997; Tullisand Goldsby ,2003a,2003b;D.L.GoldsbyandT.E.Tullis, manuscriptinpreparation,2008]revealthattheeffective frictioncoefficientsoffaultrocksthemselvescanfall dramaticallyathighsliprates(i.e.,afewdecimeters persecond). Rice [1999]notedthesimilaritywithflash- weakeningbehavioridentifiedpreviouslyinmetals[e.g., BowdenandThomas ,1954].Theessentialideaisthatthe temperatureriseslocallyatasperitycontactswhentheyare heatedtoorapidlyforconductiontodissipatetheenergy releasedbymechanicalwork.Thestrengthsofasperitiesfall below t c athightemperatures.Aslongasthetruecareof contact A c doesnotchangesignificantly,however,the localizedtemperatureincreaseisnotexpectedtochange s c so m drops.Reasonablefitstoexperimentalobservations havebeenachievedwithelementarymodelsthatquantify theseeffectsbyassumingatemperaturethreshold T w ,upon whichtheasperitystrengthdropsfrom t c toaweakened value t w thatistreatedasaconstant[ Rice ,2006; Beeleret al. ,2008]. [ 4 ]Theassumptionofconstant t w isausefulidealization forassessingthebasicflash-weakeningprocess,butitis morerealistictoexpecttheasperitystrength t a toevolve aftertheweakeningtemperature T w isreached[ Rice ,2006]. Themechanismsthatcontrol t a determinehow m changes withsliprate V andambienttemperature T .Inmetals,flash weakeninghasbeenattributedtoenhancedplasticyielding atelevatedasperitytemperatures[ Molinarietal. ,1999]. Thestiffnessesofmineralsystemstendnottobeas sensitivetoelevatedtemperaturesastheyareformetallic systems,soenhancedplasticyieldingisnotexpectedto dominatetheweakeningbehavior.Extremelocalizedpres- surevariationsmaycauseaglasstransitiontoweaken quartz[ Kingmaetal. ,1993],variousdehydrationreactions toweakenserpentiniteandotherphylosilicates[ Hiroseand Bystricky ,2007],andotherthermallyactivatedreactions maybeimportantforcarbonatemineralssuchascalcite [e.g., Hanetal. ,2007].Thesespecialcasesareclearly deservingoffurtherconsideration,butflash-weakening observationsinothermineralsystemsmotivatetheinvesti- gationofamoregeneralmechanism.Iflocaltemperature increasesaresufficientformeltingtooccur,then t a is expectedtobecontrolledbytheresistancetoviscousshear ofthinmoltenlayers.Thedynamicsofflashmeltingarethe focusofthispaper. [ 5 ]Wepresentanelementarytheoryofflashmeltingnext andderiverelationshipsfor m ( V )whenheatflowcanbe treatedasonedimensionalandmeltextrusionisnegligible. Severalrecentexperimentalandtheoreticaleffortsprobethe effectsofpervasivemeltingalongthefaultsurface[e.g., Di Toroetal. ,2006a,2006b; HiroseandShimamoto ,2005; Nielsenetal. ,2008; Sironoetal. ,2006].Incontrasttothose efforts,thoughlocalizedheatingisassumedtocausemelt- ingatasperities,themodelsherearelimitedtoconditionsin whichtheaveragefaulttemperatureremainsbelowthat requiredforapervasivemeltlayertocovertheentirefault surface.Ourgoalistoassesswhetheramodelthatissimple enoughtobeeasilyimplementedasacomponentofmore complicateddynamicrupturecalculationsisconsistentwith observedfrictionalbehaviorinthelaboratory.Insection3 wediscussourchoicesforthevaluesofrelevantparameters andsomeoftheuncertaintiesthatarise.Wefocusin particularonslidingsystemsforwhichrecentexperimental high-speedfrictiondataisavailable(D.L.GoldsbyandT.E. Tullis,manuscriptinpreparation,2008),namely,novaculite (quartz),Tancofeldspar(albite),dolomite,gabbro,Westerly granite,andserpentinite(chrysotile).Foragiventime- dependentslidingrate V ( t )wecalculatetheevolutionof backgroundtemperature T ( t )andgeneratepredictionsfor m ( t ).Theseresultsarediscussedinthecontextofrecent experimentalobservations[ HiroseandBystricky ,2007; D.L.GoldsbyandT.E.Tullis,manuscriptinpreparation, 2008],geologicobservations,andpotentialcomplicating processes. 2.ElementaryModelforFlashMelting [ 6 ]Asperitycontactsareassumedtoweakenwhenthey areraisedfromthebackgroundtemperature T toacritical weakeningtemperature T w intheweakeningtime q w .A largepopulationofasperitycontactsispresentatalltimes andtheirindividualstrengthsevolveindependentlyasthey areloaded,heatedandquicklyslideoutofcontact.The time-averagedstrengthofacontactwithdiameter D a and lifetime q = D a / V � q w isgivenby  t c  t c q w   q q w t a d t q   1  where t c isthelow-speedcontactstrengthand t a isthe evolvingcontactstrengthaftertheweakeningtemperatureis reached.Assumingcontactlifetimesremainsufficiently shortthat q (d V /d t )  V ,thetime-averagedstrengthofa representativecontactcanbeequatedwiththespatially averagedstrengthofthecontactpopulationsotheoverall frictionalresistanceisproportionalto  t c .Asinglevalueof D a isadoptedhereforsimplicity;extensionstotreatmore realisticdistributionsofasperitysizescanbemade followingthetreatmentof Beeleretal. [2008]. [ 7 ]Itisinstructivetoreviewfirsttheidealizedcase [ Beeleretal. ,2008; Rice ,2006]inwhichthecontact strengthdropsabruptlytoaweakenedstate t a = t w  m w s c at T w andremainsconstantthereaftersothattheaverage contactstrengthis  t c = t c q w / q + m w s c (1  q w / q ).Assuming A c remainslinearlydependenton s n ,whichisheldconstant, then s c doesnotdependonthelocaltemperatureandthe effectivefrictioncoefficientis m   t c / s c = m 0 q w / q + m w (1  q w / q ),where m 0  t c / s c istheconventionalfrictioncoef- ficientthatpertainstoslidingratesthatareslowenoughthat q q w .Theweakeningvelocity V w  D a / q w V = V w isdefined asthethresholdslidingspeedatwhichflashheatingfirst beginstoaffectthefrictionalresistance.Analysisofthe temperatureevolutionpriortoweakening[ Rice ,2006] suggeststhat V w  ( r C ) 2 ( T w  T ) 2 pa th /( t c 2 D a ),where r C and a th arethevolumetricheatcapacityandthermaldiffu- sivity.Theeffectivefrictioncoefficientcanbewrittenas m  m w  m 0  m w  V w V   2  whichtendstotheweakenedvalue m w when V V w .The valueof m w inequation(2)canberegardedasafitting parameterthatshoulddependonthepropertiesofthe B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 2of14 B11308 slidingsystemwhenasperitytemperaturesareelevated.A valueof m w  0.2istypical(e.g.,D.L.GoldsbyandT.E. Tullis,manuscriptinpreparation,2008). [ 8 ]Inprinciple,itshouldbepossibletocalculatethe weakenedshearresistancefromthemechanicalproperties andphasebehavioroftheasperitiesandtheirmelts.The resistancetoshearingmeltatstrainrate  g is t a = h  g where h isthemeltviscosity.Inmostoftheworkthatfollowswe treatthemeltasisothermalso h isconstantandauniform t a isachievedacrossthemeltthickness h m with  g = V / h m .A scalinganalysissuggeststhattemperaturevariationsinthe meltaresmallwhen h m  4  a th q .Whenthisconditionis notmet,significantgradientsinmelttemperaturecanarise so h isnolongerspatiallyuniformand  g isexpectedtovary laterallyaswelltosatisfyforceequilibriumconstraints. Keepingthisinmind,westilltake t a = h V / h m ,buttreat h as anaveragemeltviscositywhenrheologicallysignificant temperaturevariationsoccuracrossthelayerthickness h m (seeAppendixA). [ 9 ]Theonsetofmeltinginpolycrystallinematerials beginsatnodesandthree-grainjunctionswhen T T m , thenproceedstograinboundariesandfreesurfacesbefore achievingbulkcoexistenceat T = T m [e.g., Smith ,1948; Dash ,2002; Dashetal. ,2006].Onamicroscopicscale,the meltingtransitionoccursatlowertemperaturesinlocations ofelevateddisorder,suchasthatwhichaccompanies collisionaldamage.Meltonsetatgrainboundariescanbe abrupt,inthesensethatmeltfilmsofmicron-scalethickness appearimmediatelyonceathresholdtemperatureiscrossed [ BenatovandWettlaufer ,2004].Asperitycontactscanbe thoughtofassimilartoimperfectgrainboundariesthatare heatedrapidlyandsubjecttoenormousstressgradients.For thespecificmineralsystemsconsideredherewehaveno firmexperimentalevidencetoguideus,andsowedonot attempttoresolvethedetailsofmeltonsetitself.Insteadwe makethecrudeassumptionthatfinitemoltenlayersare generatedimmediatelyoncethetemperaturereaches T w  T m ,andwechoosetheinitiallayerthickness h m ( q w )= h 0 to ensurethatthevariationinasperitystrengthiscontinuous, with t a ( q w )= t c .Thissetsthelevelfromwhichflash weakeningcausestheeffectivefrictioncoefficienttodrop whenthecontactlifetimeexceeds q w .Usingequation(1), wefindthatfor q � q w m  m 0 q w q  h 0 q  q q w d t h m    3  where h 0  h V / t c . [ 10 ]Toevaluatetheintegralterminequation(3),we approximatethevariationsin h m byconsideringamodelfor isothermalmelting.Theheatflowfromtheshearzoneafter meltonsetisapproximatedasthatduetoaplanarheat sourceonthesymmetryplane,withalltheremainingheat excessconvertedtomeltingofthefilmwalls.InAppendix Awecomparethepredictedfrictionalbehaviorwithresults fromasimilaritysolutioninwhichtheviscousshearofa meltfilmofuniform,buttime-varyingviscosityactsasa heatsourceandwetrackthechangesinmelttemperatureas thefilmthicknessevolves.Thegoodagreementbetweenthe twomodelsprovidesincreasedconfidencethattheapprox- imatetreatmentofthemeltfilmevolutiondoesnotsignif- icantlyinfluencetheessentialmodelpredictions. [ 11 ]Toapproximatetheeffectsofheatlossdueto conduction,withsolidconductivity k  r C a th ,wetake thedifferencebetweentherateofheatproductionatthe asperitycontact t a V andtheheatconductedawayasbeing equaltotherateoflatentheatreleaseasthemeltfilm thickenssothat t a V  2 k  T  y     h  m  2  r L  h m  q   4  where r L isthelatentheatoffusionperunitvolume.Prior totheonsetofmelting,for q q w thecontactstrengthis t a = t c andtheconductivefluxat y = h m /2is[ Carslaw andJaeger ,1948] 2 k  T  y  V t c erfc h m 4  a th q  Treatingtherateatwhichsubsequentconductioncontinues tocarryheatawayinasimilarfashionaftermelting begins,therateoffilmgrowthisapproximatedas r L d h m d q  V 2 h h m erf h m 4  a th q   5  Equation(5)wasintegratedsubjectto h m ( q w )= h 0 andthe resultingeffectivefrictioncoefficientwascalculatedfrom equation(3)toobtaintheresultsplottedinFigure1. [ 12 ]Theeffectivefrictioncoefficientfallsoncetheslid- ingrateissufficienttocausemeltingatasperities.Increases in V causethemeltfilmtothickenand m evolvesasshown inFigure1.Itisusefultocalculateanalyticalapproxima- tionsfor m tobetterunderstandthesystembehavior.When Figure1. Thepredictedfrictionalbehaviorforflash meltingatasperitycontactsinasimplifiedmodelwhere themelttemperatureistreatedasconstant(solidcurve).The dottedanddashedcurvesshowanalyticalapproximations fromequations(6)and(7)thatarevalidforfilmthicknesses thataremuchsmallerandlargerthanthecharacteristic distanceforthermaldiffusion.Parametersforalbiteandan ambienttemperatureof T 0 =210  Cwereused(seeTables1 and3fordetails). B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 3of14 B11308 thefilmthicknessissmallenoughthat h m  4  a th q wecan makeuseofthesingle-termexpansionerf u  (2/  p ) u to integrateequation(5)andevaluateequation(3)tofindthat m  m s  m 0 V w V 1  2 S  V V w   1  1  S  ln1   V V w   1 S            6  wheretheStefannumber S  L /[ C ( T w  T )].Significantly, theeffectivefrictioncoefficientisindependentofmelt viscositybecausethefilmthicknessincreasesinproportion totheviscosityinthisregime.Belowweshowthatthisis theregimeinwhichmanymineralslidingsystemsare expectedtooperate.Whenthefilmthicknessissufficiently largethat h m 4  a th q ,theconductivefluxisnegligible andequation(5)predictsthatthefilmthickensinproportion tothesquarerootoftime.Inthislimit,equation(3)gives theapproximatefrictioncoefficientas m  m l  m 0 V w V 1  V V h  2  1  2 V 2 h V 2 V V w  1    1      7  where V h   pr L a th  h S 2   isacharacteristicvelocitythat increaseswithdecreasedmeltviscosity.Atlarge V ,an expansionoftherightsideofequation(7)revealsthat m l increasesbacktowarditsinitialvalueof m 0 .Wenotethat significanttemperaturevariationscanoccuracrossthefilm when h m 4  a th q sotheassumptionsmadeherethatthe meltviscosityisuniformandallexcessheatgoesto thickeningthemeltfilmarenotstrictlyjustified.These effectstendtocounteracteachothertosomeextentand favorablecomparisonswithasimilaritysolutiondiscussed inAppendixAthataccountsfortemperature-induced variationsinmeltviscositysuggestthatthesimplified treatmentleadingtoequation(7)approximatestheexpected frictionalbehaviorreasonablywell.Asdiscussedfurther below,fortheslidingsystemsconsideredherethebehavior typicallyisexpectedtofallwithintheregimewhere equation(6)applies. [ 13 ]Thepredictionsofequations(6)and(7)arecom- paredwiththefrictioncoefficientderivedfromthenumer- icalsolutiontoequation(5)forarepresentativesetof parametervaluesinFigure1.Exceptforasmallrangeof slidingratesnear V  2m/s,where h m iscomparabletothe conductivelengthscale4  a th q ,theeffectivefrictioncoef- ficientisapproximatedwellby m  max( m l , m s ).Equation(6) ismorerepresentativeofthepredictedbehaviorforsmaller viscositiesandslidingrates;equation(7)givesabetter approximationatlarge h and V .Figure2showstherangesof parametervaluesforwhich m s = m l ,with S =1(solid), S =0.1 (dashed),and S =0.01(dotted).Thismarkstheboundary betweenparameterregimesinwhichequation(6)isa betterapproximation(inthelowerright)andthosein whichequation(7)isexpectedtobemoreaccurate(in theupperleft). 3.PhysicalParameters [ 14 ]Thethermodynamicandmechanicalpropertiesofthe slidingsystemmustbeevaluatedinordertopredictthe frictionalbehavior.Table1summarizesthenominalparam- etervaluesthatweusedtomodelarangeofslidingsystems. Asperitycontactsaresubjecttolargeandrapidchangesto boththetemperatureandtheeffectivenormalstress.Listed valuesforthedensities r ,thermalconductivities k ,heat capacities C ,andcontactindentationstrengths s c areall givenatstandardtemperatureandpressureconditions. Variationsintheseparameterswithchangesinthepressure andtemperaturestateareassumedtobesmallincompar- isontotheuncertaintiesinsomeoftheotherparameter choices.Similarly,thelatentheats L listedinTable1arefor phasechangesatatmosphericpressureunlessotherwise notedbelow.Therangesof m 0 and D a areestimatesby D.L.Goldsby(personalcommunication,2007)forhis experimentalconditions.The m 0 valuesfordolomiteand serpentiniteweretakenfromtheliterature[ WeeksandTullis , 1985; Mooreetal. ,2004].Asdiscussedinsection1,when asperitycontactsareloadedtheeffectivenormalstressis expectedtoapproach s c .Weuseanempiricalfitreportedby Beeleretal. [2008]tothedataof Brozetal. [2006]to estimate s c fromMohshardness H as s c  0.123 H 2.3 GPa. Themeltingtemperatureatthiselevatedpressureislisted foreachcaseas T m s .Foreachoftheseslidingsystemsthere areextraconsiderationsthatcomplicatethechoicesfor Figure2. Regimediagramshowingtherangesofnormal- izedslidingrate V / V w asafunctionof V h / V w forwhich m l is biggerorsmallerthan m s ,with S =1(solid), S =0.1 (dashed),and S =0.01(dotted).Highslidingrateshave m l � m s ,andequation(7)betterapproximatestheeffective frictionalbehavior.Lowslidingrateshave m s � m l ,and equation(6)givesabetterapproximation.When S =0.1or 0.01,therearesmallrangesofslidingvelocitieswith V / V w closetounity(i.e.,belowthehorizontaldashedanddotted lines)where m l exceeds m s slightly,butbothapproximations give m  m 0 V w / V inthisparameterrange.Labeledpoints correspondtoexpectedparametersforvarioussliding systems,asdiscussedfurtherinsection3andsummarized inTable3. B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 4of14 B11308 someoftheparametervalues.Weoutlinetheseconsider- ationsandexplainourassumptionsnext. [ 15 ]Arapidsolid-statetransformationfrom a -to b - quartzoccursatmodesttemperatureswellbeforemelting. Underequilibriumconditionsatlow(e.g.,atmospheric) pressuresandelevatedtemperatures, b -quartztransforms furthertocristobalitesothemeltingtemperatureofthis phaseislistedas T ma .Underequilibriumconditionsatthe highpressuresexpectedofasperitycontacts b -quartzis convertedtocoesitepriortomelting.Thetabulatedvalueof T m s isforthishigh-pressurepolymorph(forcomparison, thetriplepointforcoexistenceofcoesite, b -quartzandmelt isatapproximately2450  Cand4.4GPa[ Zhangetal. , 1993]).Weapproximate L fromthemetastablecongruent meltingofquartzandignorethesmallenthalpychanges associatedwithsolid-statephasetransitions[ Spera ,2000]. Giventheshortlifetimesofasperitycontacts(typicallytens ofmicroseconds),however,thereisreasontosuspectthat insufficienttimemaybeavailableforthe b -quartztocoesite transitiontotakeplace.Theoreticalcalculations[ Zhanget al. ,1993]suggesttheexistenceofaglasstransitionwitha negativeClapeyronslopewhenthequartzmeltingcurveis extrapolatedtohigherpressures.Experimentalevidencefor suchatransitionislimitedtoanintriguingsetofSEMand photomicrographimagesby Friedmanetal. [1974]that showglassyfilamentsinquartzgougethatformedduring low-speedslidingexperimentsonsandstone.Withoutfur- therempiricaldatatoguideus,hereweusethecoesite meltingtemperaturetocharacterizeflash-meltingbehavior atquartzasperitycontacts. [ 16 ]Underequilibriumconditionsalbiteistransformedto jadeiteandquartzabove3GPa.Significantchangesin crystalstructurearerequired,however.Comparisonsbe- tweendifferentsources[e.g., Holland ,1980; Morse ,1980; WilliamsandKennedy ,1970]revealsomeuncertaintyinthe detailsofthephasediagramnearthesemineralphase transitionsathighpressures.Here,weassumethat q w is sufficientlyshortthatalbitedoesnotinfactchangephase. Instead, T m s isextrapolatedfromthelower-pressuremelting curveforalbite. [ 17 ]Gabbroandgranitebothcontainmanydifferent minerals,andasaconsequencethepropertiesofasperity contactsareexpectedtobewidelyvaried.Forasamplethat contains N differentmineralphases,eachwithvolume fraction y i ,ifasperitycontactsinvolveonlyasinglemineral phaseoneachsurfacethenarandomsamplingwouldbe expectedtoincludeproportion2 y i y j ofcontactsbetween the i thand j thmineralsfor i  j and y i 2 otherwise.The softermineralisexpectedtocontrolthelevelofthe confiningstressateachasperitycontact[e.g., Scholz , 2002].Wedonottreatthephasebehaviorateachpotential contactseparately,butinsteadevaluatetheaverageconfin- ingstressoverapopulationofasperitiesas  s c  y 2 1 s 1   N i  2 y i s i y i  2  i  1 j  1 y j   where s i isthecontactindentationstrengthofthe i thhardest mineral.InTable1,thecontactstrengthsofgabbroand Westerlygraniteareapproximatedinthisway.Other tabulatedpropertiesofthesetwoslidingsystemsare representativeofthepropertiesofbulkgabbroandgranite samples.Forthecaseofgabbro, T ma and T m s are approximatedusingtheexperimentaleutectictemperatures forabasalt[ WangandTakahashi ,1999]withasimilar compositiontothegabbrousedinfrictionalexperimentsby HiroseandShimamoto [2005]andD.L.GoldsbyandT.E. Tullis(manuscriptinpreparation,2008).Forthecaseof granite, T m s isextrapolatedto7.2GPausingthedrysolidus fromexperimentsthatwereperformedtoamaximum pressureof3.5GPa[ SternandWyllie ,1973]. [ 18 ]High-pressurephasetransformationsconvertdolo- mitetoanumberofdifferentminerals.Therelativepro- portionsofCO 2 andH 2 Ostronglyinfluencethemineral assemblagethatispresentpriortomelting.Weassumedry conditionshere,andfor T m s weusethetemperatureofthe liquidusminimumformixturesofCaCO 3 andMgCO 3 , whichweinterpolateto2.2GPausingpublishedvaluesof 1075  Cat1GPaand1290  Cat2.7GPa[ Byrnesand Wyllie ,1981].At s c  2.2GPa,theeutecticcomposition hasacalcium:magnesiumratioofapproximately3:2.The solidustemperatureforthe1:1calcium:magnesiumratioof puredolomiteisapproximately20–30  Chigher[ Byrnes Table1. NominalParameterValuesUsedtoModeltheEffectiveFrictionalBehaviorofVariousSlidingSystems a PropertyQuartzAlbiteGabbroGraniteDolomiteSerpentiniteSource b r (g/cm 3 )2.652.622.592.352.862.551 k (W/(m  C))4.31.352.242.55.52.592 C (kJ/(kg  C))0.7320.7721.481.380.8460.9783 s c (GPa)10.97.66.17.22.27.44 m 0 0.63–0.710.82–0.880.76–0.880.73–0.820.560.555 t c = m 0 s c (GPa)7.36.55.05.61.24.1 D a ( m m)10–2010–2010–2010–2020–5020–506 L (kJ/kg)14824639622025010107 T ma (  C)1710110012009001000 c 1560 T m s (  C)2800171014001800116020508 h ma (Pas)1.8  10 5 3.0  10 7 1.2  10 3 1.3  10 10 0.0200.082 h m s (Pas)121.1  10 3 29980.0122.0  10  4  Seetextforfurtherdetails.  Sourcesare1, Deeretal. [1966]and Spera [2000];2, ClauserandHuenges [1995], Ennisetal. [1979],and VosteenandSchellschmidt [2003];3, Robie andHemingway [1995]and Anderson [2005];4,empiricalfitby Beeleretal. [2008]tothedataof Brozetal. [2006]: s c  0.123 H 2.3 GPa,where H is mineralhardness;5,D.L.Goldsby(personalcommunication,2007), WeeksandTullis [1985],and Mooreetal. [2004];6,D.L.Goldsby(personal communication,2007);7, RobieandHemingway [1978], Spera [2000],and Langeetal. [1994];8, Zhangetal. [1993], Morse [1980], SternandWyllie [1973], WangandTakahashi [1999],and Presnalletal. [1998].  Meltingtemperatureat0.5GPa[ IrvingandWyllie ,1975]. B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 5of14 B11308 andWyllie ,1981].Forthepurposeofcomparison,thevalue of T ma listedinTable1correspondstothesolidustemper- atureat0.5GPa[ IrvingandWyllie ,1975],whichwasthe lowest-pressureexperimentalmeltingtemperaturethatwe wereabletofindreportedforCaCO 3 andMgCO 3 mixtures. [ 19 ]Asitisheated,serpentinite(chrysotile,orcrtwith MW277g/mol)undergoesacomplicatedseriesofbreak- downreactionsthatinvolveintermediatephasesofantigor- iteandtalcbeforeproducingacombinationofforsterite (fo),enstatite(en),andwaterimmediatelypriortomelt onset[ BucherandFrey ,2002].Becausecontactlifetimes areshort,itisnotclearwhetherthereactionseriesactually proceedstocompletionbeforemeltingbegins.Here,we assumethatitdoesaccordingto crt  fo  en  2H 2 O  withanetenthalpychangeofapproximately64.5kJ/mol. Thoughsignificantwaterproductionoccurs,weassumethat itescapestheasperitycontactspriortomeltonset. Accordingly,weusetheanhydrousenstatite-forsterite eutecticmeltingtemperaturefor T m s andassumeperitectic meltingat1atmfor T ma .ThevalueslistedinTable1for r , k ,and C areallforchrysotile,and L isapproximatedasthe sumofthenetenthalpychangeofthebreakdownreactions plusthelatentheatsofpureforsterite(73.2kJ/mol)and enstatite(142kJ/mol)[ Spera ,2000].Consistentwiththe procedureusedforthecasesofgabbroandgranite,the contactindentationstrengthisapproximatedas s c  y fo 2 s fo +( y en 2 +2 y fo y en ) s en ,where y fo and y en arethevolume fractionsofforsteriteandenstatiteina1:1molarratio, s fo  9.94GPa,and s en  6.24GPa. [ 20 ]Thefluidviscosityvalues h ma and h m s inTable1are estimatesfortheaveragemeltcompositionatatmospheric pressure,andthetemperatures T ma and T m s withnoadded water.Forthesilicaterocks,theseestimatesarebasedonthe empiricalfitsreportedby HuiandZhang [2007]tocom- piledexperimentalviscositydata.Thefittingparameters summarizedinTable2werecalculatedassumingthatthe meltcompositionandsolidcompositionareidentical.As dolomiteisnotasilicaterock,theempiricalfitsof Huiand Zhang [2007]couldnotbeusedtocalculateitsmelt viscosity.Instead,weaveragedthepredictionsofempirical exponentialfitstotheviscosityofpureCaCO 3 andMgCO 3 melts[ Dobsonetal. ,1996].Plotsofmeltviscosityasa functionoftemperaturearegiveninFigure3foranhydrous conditionsatatmosphericpressure.Inthepresenceofwater, themeltingtemperaturecanbereducedandthemelt viscosityatagiventemperaturedecreasessignificantly. Thesetwoeffectstendtocanceleachothertosomeextent insofarastheappropriatevaluesof h m s areconcerned. However,lackofknowledgeabouttheavailabilityofwater thatcaninfluencethemeltingprocessisrecognizedasone ofthebiggestsourcesofuncertaintyinchoosingappropriate parametervalues. [ 21 ]Theeffectofconfiningpressure s c onthemelt viscosity h ispoorlyconstrained.Thegenerallyhighvis- cositiesofsilicatemeltsarefacilitatedinpartbythe formationofpolymerchains.Changesin s c produce changesinthedegreeofpolymerizationsothat h can decreasesignificantlyathigh s c .Forsomecompositions h increaseswith s c instead,andforothercompositions h reachesamaximumatintermediate s c (see,e.g.,discussion by Tinkeretal. [2004,andreferencestherein]).(Dissolved waterisexpectedtobeimportantformodifyingthesensi- tivityof h to s c aswell.)Empiricaldatatoconstrainthese changesaresparse,andthevaluesof h m s giveninTable1 arecalculatedfromempiricalfunctionsthatarecalibratedto dataacquiredatatmosphericpressure.Sufficientdatado existtoestimatetheapproximatemagnitudeoftheeffectof pressureon h forthecaseofdryalbite.Experimentsat 1350  Candarangeofconfiningpressuresupto2.4GPa suggestthat h dropsbyaboutoneorderofmagnitudeas s c isincreasedbythisamountfromatmosphericpressure [ Kushiro ,1976].Suchadropin h m s wouldcausean increasetothecalculatedvalueof V h byapproximatelya factorofthree.Theempiricaldataforcarbonatitemeltsused toapproximatetheviscosityofdolomitewerecollected underarangeofconditionsandshowlittleapparent dependenceonconfiningpressure. [ 22 ]Table3summarizestheimportantdimensionless parametersthatcontroltheexpectedfrictionalbehavior, calculatedusingthenominalparametervaluesfromTable 1.Calculationswereperformedforambienttemperaturesof 20  Ctorepresentconditionstypicaloflaboratoryrock frictionexperiments;210  Ctorepresentconditionstypical ofmidseismogenicdepthsattheonsetofearthquakeslip; and700  Ctorepresentconditionsfollowingprolongedslip andsignificantfrictionalheatingoftherocknearthesliding surface.Ineachcase,theweakeningtemperatureisassumed tocorrespondtotheonsetofbulkmeltingat s c sothat T w = T m s .Atagivenbackgroundtemperatureandthe correspondingtabulatedStefannumbers S ,andvaluesof V h / V w and V / V w ,Figure2canbeusedtogaugewhetherthe effectivefrictioncoefficientisbestapproximatedby m s or m l (i.e.,equation(6)or(7)).OnFigure2,starsfor T =20  C, plusesfor T =210  C,andsquaresfor T =700  Careusedto Figure3. Meltviscositiesasafunctionoftemperatureat 1barpressure,calculatedfromempiricalfitsusingthe parameterssummarizedinTable2.Foreachcomposition, themeltonsettemperatureat1barisshownwithared asterisk,andthemeltonsettemperatureat s c isshownwith abluesquare. B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 6of14 B11308 representthevelocityratioslistedinTable3.Withthe exceptionofthealbite,atthesetemperaturesandthe nominalslidingrateof V =1m/seachofthesliding systemsconsiderediswellwithintheregimewhere m s � m l .Asnotedbefore,equation(6)predictsthat m  m s isnot sensitivetothemeltviscosityinthisregime.Thisisbecause t a = h V / h m andattimeswhen h m  4  a th q , h m  h so t a isafunctionof V and q ,butnot h .Bycontrast,attimes when h m 4  a th q , h m   h so t a increaseswith h . Similarbehaviortothisispredictedbythemodelfor pervasivefrictionalmeltingby Sironoetal. [2006].Velocity ratiosforthealbitesystemplotclosetothetransitionregion where m s  m l ,asisdemonstratedbythepredictionsshown inFigure1. 4.ApplicationtoExperimentalSlidingSystems [ 23 ]Topredicttheevolutionoffrictionalbehaviorina typicalexperimentalsetting,wemustfirstdeterminethe evolutionofbackgroundtemperature.Weassumethatthe contactlifetime q isasmallfractionofthetimescaleover whichthebackgroundtemperaturechangessothateach contact‘‘sees’’aconstantbackgroundvalueof T ,butthat T evolvesoverthecourseoftheexperiment.Foraneffective heatsource V ( t ) t ( t )= V ( t ) m ( t ) s n , CarslawandJaeger [1948]givethetemperatureonthesymmetryplaneattime t as Tt  T 0  s n 2 k  a th p   t 0 Vt  u  m t  u   u d u   8  where T 0 = T ( t =0)istheinitialambienttemperature.For constantslidingspeedswith V V w thetemperature evolutionis T ( t )= T 0 + V m 0 s n  a th t /( k  p ).When V � V w , theevolutionof m canbeapproximatedfromequations(6) and(7)as m  max( m s , m l ). [ 24 ]Figure4showsthechangesin m and T thatare predictedwhendifferentmineralsurfacesarewarmedfrom aninitialtemperatureof T 0 =20  Cbyfrictionalslidingata constantvelocityof V =0.36m/swith s n =5MPa.These parametervalueswerechosentocorrespondwiththeupper endofconfiningstressesandslidingratesattainedin experimentsusingtheseslidingsystemsbyD.L.Goldsby andT.E.Tullis(manuscriptinpreparation,2008).Calcu- lationswereperformediteratively,withequation(8)evalu- atedfirstforaconstantvalueof m andtheresulting approximatetemperaturehistoryusedtoobtainabetter approximationfor m ( t )thatwasinturnusedtocalculate anupdatedestimatefor T ( t ).Thisprocesswasrepeateduntil furtherchangesin T werebelowathresholdtolerance. [ 25 ]Ataconstantsliprate,changestothesliding resistancewithincreasingslipdistancearedrivenbytem- peraturechangesinthevicinityoftheslidingsurface.As notedinTable3,atanambienttemperatureof20  C,the weakeningvelocityofdolomiteis V w  1.1m/s,which exceedsthemodeledslidingrateof V =0.36m/s.Thehigh valueof V w fordolomiteincomparisontotheothermineral systemsislargelyduetotherelativelylowvalueof t c for thismineralsystem.AsshowninFigure4,theeffective frictioncoefficientfordolomiteisexpectedtoremainatits Table2. RheologicalParametersUsedtoCalculateSilicateMelt Viscosityat1barPressureFromlog h = A + B / T +exp( C + D / T ) a System AB (K) CD (K) Quartz  6.831.81  10 4 02.16  10 3 Albite  7.311.79  10 4  0.381.29  10 3 Gabbro  10.41.99  10 4  23.72.13  10 4 Granite  7.601.83  10 4  1.592.74  10 3 Dolomite b  7.555.02  10 3  9.957.15  10 3 Serpentinite  13.52.28  10 4  63.36.74  10 4  MeltviscosityisinPas.Compositionaldatausedtoobtainthefitting parametersusingthemethodof HuiandZhang [2007]arefromthe followingsources:albite(D.L.Goldsby,personalcommunication,2007); gabbro[ HiroseandShimamoto ,2005];Westerlygranite[ Spray ,1993].As notedinthetext,serpentiniteisassumedtobreakdowntoforsterite, enstatite,andwater.Weassumethewaterescapestheasperitycontactsprior tomeltingandusetheoxidesformedfromananhydrousforsterite-enstatite 1:1molarcompositiontocalculatethemeltviscosity.  ForDolomite,theviscositywascalculatedfromtheaverageoffitsto dataforMgCO 3 andCaCO 3 meltsas h  0.5[exp( A )exp( B / T )+exp( C ) exp( D / T )][ Dobsonetal. ,1996]. Table3. DimensionlessParametersforVariousSlidingSystems,CalculatedUsingtheNominalParameterValuesFromTable1With T w = T m s and h = h m s PropertyQuartzAlbiteGabbroGraniteDolomiteSerpentinite ParameterValuesatT=20  C V w (m/s)0.250.0390.140.171.10.14 S 0.0730.190.190.0900.260.51 V h / V w 8.2  10 2 1.5  10 2 3.0  10 2 2.3  10 2 2.3  10 3 9.1  10 4 V / V w a 3.9267.35.80.93 b 7.0 ParameterValuesatT=210  C V w (m/s)0.220.0310.100.140.750.12 S 0.0780.210.220.100.310.56 V h / V w 8.8  10 2 1.7  10 2 3.5  10 2 2.6  10 2 2.8  10 3 1.0  10 5 V / V w a 4.5339.87.31.38.6 ParameterValuesatT=700  C V w (m/s)0.140.0140.0350.0660.180.063 S 0.0960.320.380.140.640.76 V h / V w 1.1  10 3 2.5  10 2 6.0  10 2 3.8  10 2 5.7  10 3 1.4  10 5 V / V w a 6.97228155.716  Calculatedfor V =1m/s.  Note V w � V sonoweakeningexpected. B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 7of14 B11308 basevalueof m 0 =0.56,untilaslipdistanceofapproxi- mately4m,bywhichtimethebackgroundtemperaturehas risenabove500  C,and V w hasdroppedbelow V sothat flashweakeningbegins.Bycontrast,alltheothermineral systemsconsideredherehave V w 0.36m/sevenat20  C, sotheybeginwith m m 0 .Withincreasesintemperaturethe effectsofflashweakeningreducethemodeled m further,as showninFigure4a).Inadditiontotheslipspeed,thedegree ofweakeningisdependentonseveralkeypropertiesofthe mineralsystem,includingtheweakeningvelocity V w ,and theStefannumber S .Once V V w becomessufficiently largeathighertemperatures,theviscosity-dependentchar- acteristicvelocity V h alsoplaysarole.Asshownbya comparisonofthetrendsinFigure4a)withtheparameters ofTable3,thevalueof V w providesagoodindicationofthe predictedrelativedegreeofweakening.Dolomitehasthe highest V w attheinitialtemperatureandremainsstrongest throughoutthecalculatedsliphistory.Thisisfollowednext byquartz,thengranite,gabbroandserpentiniteatalmostthe same m andsimilarinitialvaluesof V w .Finally,albitehas thelowest m andalsothelowestvalueof V w atagiven temperature. [ 26 ]ExperimentalresultsreportedbyD.L.Goldsbyand T.E.Tullis(manuscriptinpreparation,2008)(seealso Figure4of Beeleretal. [2008]andFigure2bof Hiroseand Shimamoto [2005])suggestweakeningvelocitiesforgab- bro,graniteandquartzoforder0.1m/satambientlabora- torytemperatures.Thisisinreasonableagreementwithour predictionsof V w  0.14,0.17,and0.25m/srespectively fortheseslidingsystems(seeTable3).Usingequation(2) toextrapolatetheseexperimentalresultstoatypicalcoseis- micsliprateof1m/s,D.L.GoldsbyandT.E.Tullis (manuscriptinpreparation,2008)predictfrictioncoeffi- cientsofapproximately0.2forthesethreemineralsystems andnotethatsuchalowfrictioncoefficientissufficientto satisfyheatflowconstraintsontheSanAndreasfault.Here, wecalculate m  m s  0.26forgabbro,0.23forgranite,and 0.25forquartzat V =1m/sandanambienttemperatureof 20  C.Therewasnoobservedweakeninginslidingexperi- mentswithdolomitetoslipspeedsof0.36m/s(D.L. GoldsbyandT.E.Tullis,manuscriptinpreparation,2008). Thisisinagreementwithourpredictionof V w  1.1m/s atanambienttemperatureof20  C.Bycontrast,weakening ofalbitewasnotobservedbyGoldsbyandTullisuntil V  0.3m/s,whereaswepredictasignificantlylower V w  0.04m/ssothat m wouldapproach0.11at V  1m/s. Asdiscussedfurtherbelow,additionalaffectssuchasthe productionofgougeontheslipsurfacemightreducethe rateofslipatasperitycontacts.Theuncertaintyinparameter choicesdiscussedabovemayalsoproducesignificant modelingerrorsthatexplainthediscrepancieswithexper- imentalobservations.ExperimentalresultsbyGoldsbyand Tullisforserpentiniterevealasignificantlymorecompli- catedfrictionalevolutionthanfortheotherslidingsystems theyinvestigated.Theyreportaslowonsetofweakening beginningatjust10–20mm/s,followedbymorerapid weakeningstartingatapproximately0.1m/sandabrupt strengtheningbeginningatapproximately0.2m/s.By design,ourmodelisonlycapableofpredictingtheoutcome fromasinglephasechangeprocess,inthiscasewith weakeningbeginningat V w  0.14m/sandleadingto m  0.26at V  1m/swhen T =20  C.Itseemsclearthat additionalphysicaleffectsmustberesponsibleforthebe- haviorobservedintheserpentiniteexperimentsofD.L. GoldsbyandT.E.Tullis(manuscriptinpreparation,2008). [ 27 ]Acomparisonbetweenpredictedfrictioncoefficients andtheexperimentalresultsof HiroseandBystricky [2007] foraserpentiniteslidingsystemareshowninFigure5.The experimentswereconductedusingcylindricalcoresamples, withonesideheldfixedandtheotherrotatedathighspeeds asresistancetoshearwasrecorded.Ineachofthefour modeledruns,thepredictionshavemuchlessstructurethan theexperimentaldata,yettheoveralltrendsagreereason- ablywell.Someofthevariationsinmeasuredfrictional resistanceareundoubtedlycausedbyadditionalphysical effectsthatwerenotmodeledhere.Asnotedby Hiroseand Bystricky [2007],theseincludevariationsinslipspeedwith radialdistance,fractureandshorteningoflaboratorysam- Figure4. (a)Changeineffectivefrictioncoefficientwithtimeastheslidingsurfacewarmsdueto frictionalheating.(b)Evolutionofbackgroundtemperature T .ParametersfromTable1wereusedwith appliednormalstress s n =5MPa,slidingrate V =0.36m/s,andaninitialtemperatureof T 0 =20  C. B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 8of14 B11308 ples,andpossiblyeventhermalpressurizationofthewater releasedbydehydrationreactions.Indeed,calculationsby Rice [2007]suggestthatwateradsorbedtomineralsurfaces atambienthumiditymightbeexpectedtoundergosignif- icantthermalpressurizationduringlaboratoryexperiments. Forexample,aporepressureincreaseof0.5MPawouldbe sufficienttodropthemodeledeffectivefrictioncoefficients forthethreelowercurvestoapproximately0.32,0.19,and 0.15,arguablymoreinlinewiththemedianvaluesobtained experimentally. [ 28 ]Weemphasizethatnoadjustableparameterswere usedtoobtainthemodelresultswedescribe.Ourprimary goalisnottoobtainanexactfitwithexperimentalresults, butrathertoprovideasimplephysicallybasedmodelthat makesuseofpropertiesmeasuredindependentlyyetis capableofreproducingtheessentialtrendsoffrictional experiments.Weanticipatethatfutureexperimentalefforts, aimedbothatmeasuringfrictionalresistanceandatfurther constrainingtherelevantphysicalproperties,willprovide morestringenttestsofthiselementarytheoryandthe importanceofadditionalphysicaleffectsthathavenotbeen included. 5.Discussion [ 29 ]Thesimplifiedmodelofasperitymeltingpresented herepredictsfrictionalbehaviorthatisinreasonableagree- mentwithavailableexperimentalresults.Becauseofthe uncertaintyinchoosingappropriatemodelparameters,the adoptionofseveralsimplifyingapproximations,andpoten- tialcomplicatingeffectssuchassolid-statephasetrans- formations,somedifferencesbetweenpredictedand experimentalfrictioncoefficients m areinevitable.Two- parameterfitsoftheformgiveninequation(2)thatusea constantweakenedcoefficient m w andempiricalonset slidingrate V w alsofitexperimentaldataquitewell.Itis reasonabletoaskwhethertheadditionalcomplications involvedinpredictingfrictionalbehaviorfromthefunda- mentalpropertiesofthesystemcomponentsisworththe extraeffortinvolved.Ifthegoalistoextrapolateknown experimentalresultstopredictfrictionalbehaviorunder otherconditions,empiricalfitsmaywellprovideabetter guidethanfirst-principlescalculationsthatfailtomatch preciselyobservationsintheoverlappingrangeofslip rates V ,normalstresses s n ,andambienttemperatures T . Nevertheless,approximationsfor m oftheformgivenby equations(6)and(7)dosuggestimportantfeaturestothe systembehaviorthatarenotencapsulatedinprevious treatments.Theyalsoprovideabasisforgaugingthe importanceofotherphysicaleffectsthatmaycomplement orcounteracttheeffectsofasperitymelting. [ 30 ]Fortheslidingsystemsconsideredhere,undertyp- icalexperimentalandcoseismicconditionsweexpect m  m s ,asdescribedbyequation(6).Inthisparameterregime theratioof m tothelow-speedfrictioncoefficient m 0 dependsonlyontheweakeningvelocity V w  ( r C ) 2 ( T w  T ) 2 pa th /( t c 2 D a )andtheStefannumber S  L /[ C ( T w  T )],whichmeasurestherelativeimportanceoftheheat requiredtomeltasperitiesincomparisontothatrequiredto raisethetemperaturefromambientlevels.Crucially,the valueof m s isindependentofthemeltviscosity h ,whichis oftenoneofthemoredifficultphysicalpropertiesto ascertain.Thethermalpropertiesanddensitiesofmost mineralsystemsarewelldeterminedandtheambient temperatureisalsoknownunderexperimentalconditions andcanbeestimatedasafunctionofdepthduringseismic slip.Theweakeningtemperature T w andtheproductof asperitysize D a withthesquareofthecontactstrength t c 2 arethephysicalquantitiesthatareleastwellknownfor assessingappropriatevaluesof V w and S .Asanalternative toseekingthesepropertiesindependently,onestrategyfor determiningtheirvaluesistofitempiricaldatausing equation(6)withdifferentvaluesof V w and S andsoinfer T w and t c 2 D a .Closerexaminationofequation(6)indicates that m s / m 0 isinverselyproportionalto V / V w atsmall S ,which alsofitswellwiththepredictionsofequation(2),butthe dependenceof m s / m 0 on V / V w weakensas S increases. Brownetal. [2007]report m  V  0.36 inexperimentswith diabase;thisisconsistentwithourpredictionsfor m s at valuesof S approachingunity. [ 31 ]Atthehighestslidingratesweexpect m  m l ,as describedbyequation(7).Inthisparameterregimetheratio m / m 0 dependson V , V w andthevelocityscale V h   pr L a th  h S 2   =( T w  T )  p kC  h L   .Themeltviscos- ity h hasanimportantcontrollingeffectunderconditions when m  m l .Inthesimplifiedmodelpresentedherewe havetreatedthemeltlayerasisothermalsothat h  h m s isa constantandallheatthatisnotconductedawaythroughthe solidgoestoextendingthemeltfilmthickness.Inreality, thetemperatureonthesymmetryplaneat y =0isexpected toexceedthatatthephaseboundarywhere y = h m ,and variationsin h withtemperatureareexpected,asshownin Figure3.InAppendixAanalternativemodelisdescribed thatapproximatestheeffectsofvariationsinmeltviscosity withtemperaturebyevaluatingchangesintheaverage viscosity h avg ofthemeltlayerasitgrowsandapproximat- ingtheresistancetoshearingatthemoltenasperitycontacts as t a  h avg V / h m .AsshowninFigure6,thefrictional Figure5. Comparisonbetweenpredictedeffectivefriction coefficientasafunctionofslipdistancefortheserpentinite systemattheslipratesandconfiningstressesgiveninthe legendandthelabeledexperimentaldataof Hiroseand Bystricky [2007]. B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 9of14 B11308 evolutionpredictedbythisalternativemodelisinreason- ablygoodagreementwiththatproducedusingtheisother- malmelttreatmentofthemodeldescribedinsection2. Becauseforceequilibriumrequiresthatstrainratesbe higherwhere h islower,andbecausetheeffectsofan overpredictedviscosityandanoverpredictedfilmthickness partlyoffseteachother,thetemperature-dependentviscosity doesnotaffectthetotalshearresistanceasmuchasone mightotherwiseexpect,atleastforthekinematictreatment consideredhere.Inexperimentsthatspanasufficientrange ofslidingvelocitiessothatthefrictionalbehaviortransitions fromaregimeinwhich m  m s tooneinwhich m  m l , empiricalfitsto m / m 0 atthehighest V usingtheformgivenby equation(7)mightbeusedtoinfer V h andsodetermine h . [ 32 ]When m  m l ,Figure1showsstrengtheningwith increasesin V afteraminimumin m / m 0 isreached.Weak- eningwithincreasedslipratehasbeensuggestedasa mechanismforcausingshearlocalizationingranularmedia [e.g., Riceetal. ,2005].Atfacevalue,thepotentialfor asperitymeltingtoproducestrengtheningwithincreased slipratesuggestsamechanismforbroadeningtheshear zoneduringlaterstagesofseismicorexperimentalslip.The kinematictreatmentpresentedheredoesnotaccountforthe variationsinslipratethatareexpectedundermorerealistic conditions.Itisreasonabletoexpectthattheambient temperature T oftheshearzoneshouldtypicallyincrease withslip.Assumingthat m l canbeusedtoapproximatethe frictionalbehaviorwithchangesin T evenas V changes,we differentiateequation(7)tofindthat  m l  T   2 m 0 T w  T V w V 1  1  2 V 2 h V 2 V V w  1    1  2        0   9  Thisindicatesthat m l alwaysdecreasesas T risesandhints thatthepositivedependenceof m l on V mayonlycausethe shearzonetobroadenunderarestrictedsetofcircum- stances.Accuratepredictivemodelsfortheshearzone thicknessanditsevolutioningranularmediaareneeded. [ 33 ]Significantvelocitystrengtheninghasbeenobserved duringexperimentsonserpentenite(D.L.GoldsbyandT. E.Tullis,manuscriptinpreparation,2008)anddiabase [ Brownetal. ,2007].Intheformercase,theincreasein m with V wasmuchmoreabruptthanpredictedbyourmodel forasperitymelting.Inthelattercase,evidenceofmelt quenchingand‘‘welding’’wasimplicatedinthestrength- eningbehavior,muchasinferredduringexperimentson gabbroby HiroseandShimamoto [2005].Additionalphys- icalmechanismsbeyondthosetreatedinourmodelare requiredtoexplaintheseobservations. Noda [2008]givesa detailedandinformativeanalysisofsomeoftheseissues. Recentexperimentalandtheoreticaleffortstotrackstrength evolutiontoconditionsinwhichthroughgoingmeltlayers coattheslipplanealsoshowpromiseinthisdirection[e.g., DiToroetal. ,2006a,2006b; Nielsenetal. ,2008; Sironoet al. ,2006].Thetreatmentof Sironoetal. [2006]shares manysimilaritiestothecurrentmodelandpredictsthatmelt viscosityshouldhaveonlyaminoreffectontheeffective frictionalbehaviorevenwhentheentireslidingsurfaceis coatedwithamoltenlayer.Anotabledifferencewiththe predictionsofourmodelisthatwhereaswefindthat m  m s isindependentofviscosity h becausemeltthickness h is proportionalto h and t  h / h , Sironoetal. [2006]findthat forthemineralsystemstheyconsiderthetemperaturesof thethroughgoingmeltlayersattainsuchlevelsthat h reachesnearlythesamevalueineachcase. [ 34 ]Wehaveconsideredslidingalongasingleplaneand havenotaccountedfordistributedshearthroughfinite gougelayers.Granularshearzonescanbepreexisting,as inthecaseforearthquakesthatoccuralongmaturefaults. Theycanalsobeformedduringslip,asinthecaseof slidingexperiments,whicharetypicallyconductedusing rocksamplesthatareinitiallyintact,butfoundtobecoated bywearproductsafterexperimentalruns.Ifshearis uniformlydistributedover N graindiametersatagiven instantintime,thentherelativeslipvelocitybetween adjacentgrainsisexpectedtobereducedtoavalue comparableto V / N .Becauseparticlesizesinshearzones areoftensubmicroninscale, N canbelargeenoughthat V / N V w evenforsubmillimeter-scaleshearzonesatthehighest slipspeedsattainableduringearthquakesandlaboratory experiments.Similarconclusionsarereachedforthecase wheretherelativesliprateisnotuniform,butinsteadhasa Gaussiandistributionacrosstheshearzone[e.g., Andrews , 2002]. Rice [2006]suggestedthatevenwhenshearis distributedthroughafinitezone,therelativesliprate betweenadjacentparticlesatagiveninstantintimemight actuallyapproach V .Thiscorrespondstotherateexpected forsliponaplane,withtheideabeingthattheslipplane Figure6. Comparisonbetweenthefrictionalbehavior predictedbythemodelforisothermalmelting(dashed)from section2(seealsoFigure1)andthatpredictedbythe similaritysolutionfromequation(A5).Parameterswere chosenfordryalbiteandtheinitialtemperature T 0 =210  C. Thedot-dashedlineiscalculatedusing h m s ,whichisthe highestviscosityinthemeltandoccursatthefilm boundaries.Thedottedlineshowstheapproximationfrom equation(A4),whichisvalidinthelimitoflow h .Thesolid curvegivesthepredictionsofequation(A5)withtheviscosity assignedthespatiallyaveragedvalue h avg forthecalculated temperatureprofileacrossthefilm(usingtheviscosity parameterizationsummarizedinTable2). B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 10of14 B11308 itselfmovesthroughafinitezonetoaccommodatethe effectsofgeometricalirregularitiesandsoproduceashear zonewithanapparentfinitewidth.Thelargerstrength reductionimpliedbythisassumptionhasbeencompared tothatpredictedforuniformshearwith m approximatedby equation(2),where V isreplacedby V / N asappropriate [ Rempel ,2006].Becausethetemperatureevolutionissen- sitivetothethicknessoftheregioninwhichheatis dissipated,thesecomparisonsattesttotheparamountim- portanceofshearzonethicknesstomechanismsforstrength evolutionthatarethermalinorigin.Forexample,the strengtheningobservedbyD.L.GoldsbyandT.E.Tullis (manuscriptinpreparation,2008)intheirexperimentson serpentinitemightbeattributedtoreductionsin m that accompanydecreasesin V / N asgougeisproduced;the largevalueof V w inferredfromexperimentsonthealbite systemmightbeattributedtosimilareffects. [ 35 ]Duringhigh-speedfrictionexperimentsthatwere conductedby HiroseandShimamoto [2005]macroscopic quantitiesofmeltwereejectedfromtheslidingsurface[see also DiToroetal. ,2006a,2006b; Nielsenetal. ,2008]. Similarbehaviormightmodifytheevolutionofmeltfilm thicknesses h m atasperityjunctionssothattheythicken moregraduallythanpredictedhere.Thiswouldtendto increase m andmightbepartiallyresponsibleforthe strengtheningbehaviorobservedby Brownetal. [2007]. Inadditiontoreducing h m belowwhatitwouldotherwise be,meltejectionmayalsocausetheeffectiveareaofcontact toincreasesothat s c decreasesduringthecontactlifetime. Sincemeltonsettemperatureistypicallyreducedby decreasesinconfiningpressure,thiscouldsignificantly complicatethestrengthevolutionbyflashmelting.Without firmexperimentalevidencetoguideus,weviewmodel extensionsthataccountforsucheffectsaspremature. [ 36 ]Themeltfilmswemodelalongasperityjunctionsare typicallynanometerstoperhapsmicronsinthickness,with thepreciseevolutionof h m sensitivetothemeltviscosity h . Itisreasonabletoquestionwhetherthemeltviscosities themselvesmightbealteredfromtheirbulkvaluesbythe effectsofconfinement.Experimentswithotherliquidsys- tems[e.g., Granick ,1991]suggestthatviscositiesdecrease toapproachtheirbulkvaluesforfilmsthatareonlyafew molecularlayersinthickness.Forsilicatemeltsthatare significantlyinfluencedbytheformationofpolymerchains, thechainlengthisthemorerelevantlengthscale.Weare notawareofanyexperimentaldatathatteststheeffectsof confinementinthesesystems.However,onecaneasily envisionscenariosinwhichconfinementwithinathinfilm mightcausetheaveragelengthofpolymerchainsto decrease,andsoproduceareductionineffectiveviscosity atlowvaluesof h m .Insofarastheeffectivefriction coefficientisnotsensitivetothemeltviscositywhen m  m s ,sucheffectsmayonlybeofacademicinterestiftheydo notaltertheoverallfrictionalbehavior,butjustinfluence theevolutionof h m .Forphysicalintuition,usingthe parameterslistedinTable1thefilmthicknessesrequired forviscousshearresistance t  h m s V / h m  t c when V =1 m/sareapproximately0.002,0.2,0.006,and0.02 m mfor quartz,albite,gabbro,andgraniterespectively.Fordolomite andserpentinitetheeffectiveviscositiesmustbeconsider- ablygreaterthanthevaluesof h m s listedinTable1inorder forrealisticfilmthicknesses(i.e.,greaterthanmolecular dimensions)tobeachievedwith t = t c .Withfurther experimentalcontrolsamoredetailedinvestigationofthe conditionsatmeltonsetmayleadtoanimprovedunder- standingoftheshearresistanceduringtheearlystagesof flashmeltingforthesesystems.Wenotehoweverthat Figure2andTable3indicatethattheeffectiveviscosity wouldneedtoincreasebyseveralordersofmagnitudeforit tochangetheinferencesmadehereandbecomeanimpor- tantfactorincontrollingtheeffectivefrictionalbehaviorof dolomiteorserpentinite. [ 37 ]Onthebasisofthesimplemodelpresentedhere, fieldevidencefortheeffectsofflashmeltingislikelytobe sparseatbest.Asnotedabove,meltfilmsgeneratedalong asperityjunctionsareexpectedtobeextremelythinand theirquenchedproductswouldbedifficulttodetect,par- ticularlyfollowingthelongresidencetimesrequiredfor exhumationfromseismogenicdepths.Typically,meltsare expectedtoquenchtoglasses,thatwouldbeexpectedto formpatchycoatingsonthefaultsurfaces.Inrarecircum- stances,meltsmightcrystallizeashigh-pressurepoly- morphsoftheinitialmineralphases.However,asperities areexpectedtobecooledandunloadedsimultaneously,so conditionsshouldfavortransformationbacktotheoriginal crystalstructures.Carefulexaminationofslipsurfaces followingcontrolledlaboratoryexperimentsmayyetyield evidencefortheproductsofflashmelting.However, comparisonsbetweenmodelpredictionsandobservedfric- tionalevolutionarelikelytobethemostcompellingtestof flash-weakeningmodels.Thepotentialforflashmeltingto contributetothedeterminationofshearzonewidthsuggests afutureresearchdirectionthatmightonedayproduce predictionsofflash-meltingcharacteristicsthataretestable withfieldevidence. 6.Conclusions [ 38 ]Laboratoryobservationsofflashweakeningare broadlyconsistentwiththepredictionsofsimplifiedmodels fortheeffectsoflocalizedmeltingandviscousheatingat asperitycontacts.Forestimatedvaluesofthephasebehav- iorandmechanicalpropertiesthatcontrolflashmelting undertypicalseismicandlaboratoryconditions,theevolu- tionofeffectivefrictioncoefficient m isexpectedtobe relativelyinsensitivetomeltviscosity.Instead,theweak- enedfrictioncoefficientiswellapproximatedbyequation (6),whichiscontrolledbytheratiooftheslipratetothe thresholdvaluerequiredforweakeningtobegin V / V w ,and theStefannumber S ,whichmeasurestheratiooflatentto sensibleheat.Atthehighestslipratesandatthehigher Stefannumbersthatcorrespondtoslipatambienttemper- aturesnearertomeltonset,equation(7)givesabetter approximationtotheexpectedbehavior,withaweak dependenceonmeltviscosityenteringthroughtheinfluence of V / V h on m . [ 39 ]Formanymineralsystems,thehighconfiningpres- suresexpectedofasperitycontactsaresufficienttopromote solid-statephasetransformations,buttheshortdurationof asperitycontactmaynotbesufficientforequilibriumtobe achieved.Confidenceinappropriateparameterchoicesis hamperedbysuchcomplications,togetherwithuncertain- B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 11of14 B11308 tiesinfactorsthatincludetheavailabilityofwatertoalter thephasebehaviorandmeltviscosity.Flashweakeningis expectedtocommonlyoccurinconcertwithotherimpor- tantprocessesincludingthethermalpressurizationofpore fluids,theproductionofgouge,andchangesinthethick- nessandlocationoftheshearzone.Quantificationofthese effectsisnecessarytoachieveamorecompleteunderstand- ingofthestrengthevolutionduringhigh-speedseismicand laboratoryshear. AppendixA:AnAlternativeModelforMeltFilm Growth [ 40 ]Themodelforflashmeltingdevelopedinsection2 makesuseofanapproximatetreatmentoftheheatflow fromthemeltfilm,whilethepossibilityofrheologically significanttemperatureincreasesinthefilminterioris neglected.Furtherinsightintothevalidityofthisisothermal modelisgainedbycomparingitspredictionswiththoseofa two-layer(melt/solid)modelformeltproductionthatis formulatedtobothallowfortemperatureincreaseswithin thefilmitselfandsolveforthechangingheatfluxoutofthe growingfilm. [ 41 ]Inthemeltfilm,energyconservationrequiresthat  T  q  a th  2 T  y 2  V 2 h avg r Ch 2 m   A1  andbeyond y =± h m /2thetemperaturesatisfiesthediffusion equation.Theboundaryconditionsaretheheatflux condition(comparewithequation(4))  2 k  T  y     y  h  m  2  2 k  T  y     y  h  m  2  r L  h m  q   A2  thesymmetryrequirementthat  T /  y =0at y =0,thefar- fieldconditionthat T  T 0 atlarge y ,andthemelt equilibriuminterfacecondition T = T m at y =± h m /2.The symmetryvariableisdefinedas x  y /(2  a th q )andthe evolutionoffilmthicknessissoughtintheform h m = 2 l  a th q .Thetransformedgoverningequationinthemelt regioncanbeintegratedtowritethetemperaturegradientas d T d x  V 2 h avg k l 2 e  x 2  x 0 e t 2 d t   where k  r C a th isthethermalconductivity,andtheterm inbracketsontherightisDawson’sintegral[ Abramowitz andStegun ,1964],whichsatisfiesthesymmetrycondition at x =0.Outsidethemeltregionthetemperatureprofile satisfies T ( x )= T 0 +( T w  T 0 )erfc( x )/erfc( l /2).Theheat fluxconditionat x = l /2describedbyequation(A2)canbe writtenas  2 erfc l 2  p 3  2 V 2 S l 2 V 2 h  l  2 0 e t 2 d t  S  p l e l 2  4   A3  whichissolvedfortheunknowninterfacecoordinate. Differencesinthermalpropertiesbetweenthesolidandmelt componentshavebeenneglectedforsimplicity.Takingthe limitingcaseofsmall l forillustrativepurposesgives l  p 3/2 /(4 S )( V / V h ) 2 .Thisissubstitutedintoequation(1)forthe effectivecontactstrengthusingthemodifiedweakening time  q w = pq w V 4 /(4 l 2 V h 4 S 2 )  4 q w / p 2 atwhich V h avg / h = t c forthismodel,tocalculate  t c andfindthattheeffective frictioncoefficientfor q �  q w is m  m 0 4 p  V w V  1   V w p  V    A4  Moregenerally,forlarger l thismodelpredictsthat m  m 0  p V w V 3  l V 2 h S 1   p V w V 3  4 l V 2 h S    A5  [ 42 ]Thesourceterminequation(A1)isproportionalto theresistancetoshearinthemeltfilm t a = h  g .Force equilibriumrequiresthat  t a /  y =0sotheeffectsof gradientsinfluidviscositymustbecompensatedby correspondinggradientsinstrainrate  g .Weapproximate thestrainrateas  g  V / h m andregardthefluidviscosityas anaverageoverthemeltlayer h avg .Forthesimilarity solutionleadingtoequation(A5)tobevalid, h avg isfurther approximatedasanaverageoverthecontactlifetime,as wellasoverthefilmthicknesssothat h avg  2 l  l  2 0 h T  d x  Here h ( T )iscalculatedusingtheempiricaldependenceof meltviscosityontemperaturethatischaracterizedbythe parameterslistedinTable2.Toevaluatetheeffective frictioncoefficientfromequation(A5),wefirstobtainedan approximationfor l with h avg  h m s .Wethenusedthis resulttodeterminetheapproximatetemperatureprofile withinthefilmandobtainarevisedapproximationfor h avg thatweusedtoadjustthevalueof V h inequation(A3)so thatanewapproximatevalueof l couldbedetermined.The processwasrepeateduntilfurtherchangesto l were insignificant. [ 43 ]Comparisonsbetweentheeffectivefrictioncoeffi- cientspredictedbytheflash-meltingmodelsforthecaseof albitewith T 0 =210  CareshowninFigure6.Thesolid curveshowsthepredictionsofthesimilaritysolutionfrom equation(A5),calculatedwith V h determinedfortheaver- agemeltviscosity h avg .Thedashedcurvegivesthepre- dictionsoftheisothermalmodeldescribedinsection2.At lowslidingrates,thesimilaritysolutionisexpectedtobe lessreliablebecauseitdoesnotproperlycapturethe frictionalbehaviorpriortomeltonset.Athighslidingrates, theisothermalmodelsuffersbecauseitdoesnotaccountfor theenergythatgoesintochangingmelttemperatureinthe interiorofthefilm;nordoesitaccuratelytreatthedistrib- utednatureofviscousheating.Overall,however,the agreementbetweenthetwoapproachesisreasonablygood. Forreference,thepredictionsofthesmall l limitof equation(A4)areshownwiththedottedcurve,andthe predictionsofthesimilaritysolutionwith V h determined using h = h m s areshownwiththedot-dashedcurve. Temperatureincreasesinthefilminteriorcanproduce B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 12of14 B11308 significantreductionsto h ,andthedot-dashedcurvecanbe thoughtofasacrudeupperboundon m .Bycontrast,inthe limitofsmall l describedbyequation(A4),thefluid viscosityisunimportantandthedottedcurveisalower boundonthepredictionsofthesimilaritysolutionfor m .In thislimit,differenceswiththepredictionsshownbythe dashedcurveareprimarilyduetoinaccuraciesinthe approximationoftheeffectsofheatflowfromthefilmin theisothermalmodel. [ 44 ] Acknowledgments. WethankPaulWallaceformanyhelpful discussionsandDavidGoldsbyforsharingunpublishedexperimental results.ThisworkwasimprovedbythecarefulreviewsofStefanNielsen andHiroyukiNodaandthecommentsofAssociateEditor,EricDunham. FundingcamefromNSFEAR-0711048. References Abramowitz,M.,andI.A.Stegun(1964), HandbookofMathematical Functions ,p.298,Natl.Bur.ofStand.,Washington,D.C. Anderson,G.M.(2005), ThermodynamicsofNaturalSystems ,2nded., 438pp.,CambridgeUniv.Press,NewYork. Andrews,D.J.(2002),Afaultconstitutiverelationaccountingforthermal pressurizationofporefluid, J.Geophys.Res. , 107 (B12),2363, doi:10.1029/2002JB001942. Baumberger,T.(1997),Contactdynamicsandfrictionatasolid–solid interface:Materialversusstatisticalaspects, SolidStateCommun. , 102 , 175–185. Beeler,N.M.,T.E.Tullis,andD.L.Goldsby(2008),Constitutiverelation- shipsandphysicalbasisoffaultstrengthduetoflash-heating, J.Geophys. Res. , 113 ,B01401,doi:10.1029/2007JB004988. Benatov,L.,andJ.S.Wettlaufer(2004),Abruptgrainboundarymeltingin ice, Phys.Rev.E , 70 ,0161606. Bowden,F.P.,andD.Tabor(1950), TheFrictionandLubricationofSolids , 337pp.,Clarendon,Oxford,U.K. Bowden,F.P.,andP.H.Thomas(1954),Thesurfacetemperatureofsliding solids, Proc.R.Soc.London,Ser.A , 223 ,29–40. Brodsky,E.E.,andH.Kanamori(2001),Elastohydrodynamiclubrication offaults, J.Geophys.Res. , 106 ,16,357–16,374. Brown,K.M.,Y.Fialko,andC.Hartsig(2007),Complexevolutionof frictionduringseismicslip:Newexperimentalresults, EosTrans.AGU , 88 (52),FallMeet.Suppl.,AbstractS11E-02. Broz,M.E.,R.F.Cook,andD.L.Whitney(2006),Microhardness,tough- ness,andmodulusofMohsscaleminerals, Am.Mineral. , 91 ,135–142. Brune,J.N.,S.Brown,andP.A.Johnson(1993),Rupturemechanismand interfaceseparationinfoamrubbermodelsofearthquakes:Apossible solutiontotheheatflowparadoxandtheparadoxoflargeoverthrusts, Tectonophysics , 218 ,59–67. Bucher,K.,andM.Frey(2002), PetrogenesisofMetamorphicRocks , 7thed.,341pp.,Springer,NewYork. Byerlee,J.(1978),Frictionofrocks, PureAppl.Geophys. , 116 ,615–626. Byrnes,A.P.,andP.J.Wyllie(1981),Subsolidusmeltingrelationsforthe joinCaCO 3 –MgCO 3 at10kbar, Geochim.Cosmochim.Acta , 45 ,321– 328. Carslaw,H.S.,andJ.C.Jaeger(1948), ConductionofHeatinSolids , pp.56–57,Clarendon,Oxford,U.K. Clauser,C.,andE.Huenges(1995),Thermalconductivityofrocksand minerals,in RockPhysicsandPhaseRelations , AGURef.Shelf ,vol.3, editedbyT.J.Ahrens,pp.105–126,AGU,Washington,D.C. Dash,J.G.(2002),Meltingfromonetotwotothreedimensions, Contemp. Phys. , 43 ,427–436. Dash,J.G.,A.W.Rempel,andJ.S.Wettlaufer(2006),Thephysicsof premeltediceanditsgeophysicalconsequences, Rev.Mod.Phys. , 78 (3), 695–741. Deer,W.A.,R.A.Howie,andJ.Zussman(1966), AnIntroductiontothe Rock-FormingMinerals ,529p.,JohnWiley,NewYork. Dieterich,J.H.(1978),Time-dependentfrictionandthemechanicsofstick- slip, PureAppl.Geophys. , 116 ,790–806. Dieterich,J.H.(1979),Modelingofrockfriction:1.Experimentalresults andconstitutiveequations, J.Geophys.Res. , 84 ,2161–2168. Dieterich,J.H.,andB.D.Kilgore(1994),Directobservationoffrictional contacts:Newinsightsforstate-dependentproperties, PureAppl.Geo- phys. , 143 ,283–302. Dieterich,J.H.,andB.D.Kilgore(1996),Imagingsurfacecontacts:power lawcontactdistributionsandcontactstressesinquartz,calcite,glassand acrylicplastic, Tectonophysics , 256 ,219–239. DiToro,G.,T.Hirose,S.Nielsen,G.Pennacchioni,andT.Shimamoto (2006a),Naturalandexperimentalevidenceofmeltlubricationoffaults duringearthquakes, Science , 311 ,647–649. DiToro,G.,T.Hirose,S.Nielsen,andT.Shimamoto(2006b),Relating high-velocityrock-frictionexperimentstocoseismicslipinthepresence ofmelts,in Earthquakes:RadiatedEnergyandthePhysicsofFaulting , Geophys.Monogr.Ser. ,vol.170,editedbyR.E.Abercrombieetal., pp.121–134,AGU,Washington,D.C. Dobson,D.P.,A.P.Jones,R.Rabe,T.Sekine,K.Kurita,T.Taniguchi, T.Kondo,T.Kato,O.Shimomura,andS.Urakawa(1996),In-situ measurementsofviscosityanddensityofcarbonatemeltsathigh pressure, EarthPlanet.Sci.Lett. , 143 ,207–215. Ennis,D.O.,S.W.Butters,R.Lingle,R.G.V.Buskirk,andF.R.Prater (1979),Capabilitiestomeasuregeothermalmaterialpropertiesatsimu- latedinsituconditions, Rep.DOE/ET/28301-1 ,86pp.,Dep.ofEnergy, Washington,D.C. Friedman,M.,J.M.Logan,andJ.A.Rigert(1974),Glass-induratedquartz gougeinsliding-frictionexperimentsonsandstone, Geol.Soc.Am.Bull. , 85 ,937–942. Goldsby,D.L.,andT.E.Tullis(2002),Lowfrictionalstrengthofquartz rocksatsubseismicsliprates, Geophys.Res.Lett. , 29 (17),1844, doi:10.1029/2002GL015240. Goldsby,D.L.,A.Rar,G.M.Pharr,andT.E.Tullis(2004),Nanoindenta- tioncreepofquartz,withimplicationsforrate-andstate-variablefriction lawsrelevanttoearthquakemechanics, J.Mater.Res. , 19 ,357–365. Granick,S.(1991),Motionsandrelaxationsofconfinedliquids, Science , 253 ,1374–1379. Greenwood,J.A.,andJ.B.P.Williamson(1966),Contactofnominallyflat surfaces, Proc.R.Soc.London,Ser.A , 295 ,300–319. Han,R.,T.Shimamoto,T.Hirose,J.-H.Ree,andJ.Ando(2007),Ultralow frictionofcarbonatefaultscausedbythermaldecomposition, Science , 316 ,878–881. Hirose,T.,andM.Bystricky(2007),Extremedynamicweakeningoffaults duringdehydrationbycoseismicshearheating, Geophys.Res.Lett. , 34 , L14311,doi:10.1029/2007GL030049. Hirose,T.,andT.Shimamoto(2005),Growthofmoltenzoneasamechan- ismofslipweakeningofsimulatedfaultsingabbroduringfrictional melting, J.Geophys.Res. , 110 ,B05202,doi:10.1029/2004JB003207. Holland,T.J.B.(1980),Thereactionalbite=jadeite+quartzdetermined experimentallyintherange600–1200  C, Am.Mineral. , 65 ,129–134. Hui,H.J.,andY.X.Zhang(2007),Towardageneralviscosityequationfor naturalanhydrousandhydroussilicatemelts, Geochim.Cosmochim. Acta , 2 ,403–416. Irving,A.J.,andP.J.Wyllie(1975),Subsolidusandmeltingrelationships forcalcite,magnesiteandthejoinCaCO 3 -MgCO 3 to36kb, Geochim. Cosmochim.Acta , 39 ,35–53. Kilgore,B.D.,M.L.Blanpied,andJ.H.Dieterich(1993),Velocityde- pendentfrictionofgraniteoverawide-rangeofconditions, Geophys.Res. Lett. , 20 ,903–906. Kingma,K.J.,C.M.Meade,R.J.Hemley,H.Mao,andD.R.Veblen (1993),Microstructuralobservationsof a -quartzamorphization, Science , 259 ,666–669. Kushiro,I.(1976),ChangesinviscosityandstructureofmeltofNaAl- Si2O6compositionathighpressures, J.Geophys.Res. , 81 ,6347–6350. Lange,R.A.,K.V.Cashman,andA.Navrotsky(1994),Directmeasure- mentsofthedistributionoflatentheatduringcrystallizationandmelting ofauganditeandanolivinebasalt, Contrib.Mineral.Petrol. , 118 ,169– 181. Logan,J.M.,andL.W.Teufel(1986),Theeffectofnormalstressonthe realareaofcontactduringfrictionalslidinginrocks, PureAppl.Geo- phys. , 124 ,471–486. Mair,K.,andC.Marone(1999),Frictionofsimulatedfaultgougefora widerangeofvelocitiesandnormalstresses, J.Geophys.Res. , 104 , 28,899–28,914. Marone,C.(1998),Laboratory-derivedfrictionlawsandtheirapplicationto seismicfaulting, Annu.Rev.EarthPlanet.Sci. , 26 ,643–696. Melosh,J.(1996),Dynamicweakeningoffaultsbyacousticfluidization, Nature , 397 ,601–606. Molinari,A.,Y.Estrin,andS.Mercier(1999),Dependenceofthecoeffi- cientoffrictiononslidingconditionsinthehighvelocityrange, J.Tri- bol. , 121 ,35–41. Moore,D.E.,D.A.Lockner,H.Tanaka,andK.Iwata(2004),Thecoeffi- cientoffrictionofchrysotilegougeatseismogenicdepths, Int.Geol. Rev. , 46 ,385–398,doi:10.2747/0020-6814.46.5.385. Morse,S.A.(1980), BasaltsandPhaseDiagrams ,493pp.,Springer, NewYork. Nielsen,S.,G.DiToro,T.Hirose,andT.Shimamoto(2008),Frictional meltandseismicslip, J.Geophys.Res. , 113 ,B01308,doi:10.1029/ 2007JB005122. B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 13of14 B11308 Noda,H.(2008),Frictionalconstitutivelawatintermediateslipratesac- countingforflashheatingandthermallyactivatedslipprocess, J.Geo- phys.Res. , 113 ,B09302,doi:10.1029/2007JB005406. O’Hara,K.(2005),Evaluationofasperity-scaletemperatureeffectsduring seismicslip, J.Struct.Geol. , 27 ,1892–1898. Prakash,V.(2004),Pilotstudiestodeterminethefeasibilityofusing newexperimentaltechniquestomeasureslidingresistanceatseismic sliprates, Annu.Prog.Rep.2004 ,South.Calif.EarthquakeCent.,Los Angeles. Presnall,D.,Y.-H.Weng,C.Milholland,andM.Walter(1998),Liquidus phaserelationsinthesystemMgO-MgSiO3atpressuresupto25GPa— ConstraintsoncrystallizationofamoltenHadeanmantle, Phys.Earth Planet.Inter. , 107 ,83–95. Rempel,A.W.(2006),Theeffectsofflash-weakeninganddamageonthe evolutionoffaultstrengthandtemperature,in Earthquakes:Radiated EnergyandthePhysicsofFaulting , Geophys.Monogr.Ser. ,vol.170, editedbyR.E.Abercrombieetal.,pp.263–270,Washington,D.C. Rice,J.R.(1999),Flashheatingatasperitycontactsandrate-dependent friction, EosTrans.AGU , 84 (46),FallMeet.Suppl.,AbstractS41G-01. Rice,J.R.(2006),Heatingandweakeningoffaultsduringearthquakeslip, J.Geophys.Res. , 111 ,B05311,doi:10.1029/2005JB004006. Rice,J.R.(2007),Heatingandweakeningofmajorfaultsduringseismic rupture, EosTrans.AGU , 88 (52),FallMeet.Suppl.,AbstractS11E-01. Rice,J.R.,andA.L.Ruina(1983),Stabilityofsteadyfrictionalslipping, J.Appl.Mech. , 50 ,343–349. Rice,J.R.,J.W.Rudnicki,andV.C.Tsai(2005),ShearLocalizationin Fluid-SaturatedFaultGougebyInstabilityofSpatiallyUniform,Adia- batic,UndrainedShear, EOSTrans.AGU , 86 ,FallMeet.Suppl.,Abstract T13E-05. Robie,R.A.,andB.S.Hemingway(1978),Thermodynamicpropertiesof mineralsandrelatedsubstancesat298.15Kand1bar(10 5 Pascals) pressureandathighertemperatures, U.S.Geol.Surv.Bull. , B1452 . Robie,R.A.,andB.S.Hemingway(1995),Thermodynamicpropertiesof mineralsandrelatedsubstancesat298.15Kand1bar(10 5 Pascals) pressureandathighertemperatures, U.S.Geol.Surv.Bull. , B2131 . Ruina,A.(1983),Slipinstabilityandstatevariablefrictionlaws, J.Geo- phys.Res. , 88 ,359–370. Scholz,C.H.(2000),EvidenceforastrongSanAndreasfault, Geology , 28 , 163–166. Scholz,C.H.(2002), TheMechanicsofEarthquakesandFaulting ,2nded., 496pp.,CambridgeUniv.Press,NewYork. Sibson,R.H.(1973),Interactionsbetweentemperatureandpore-fluidpres- sureduringearthquakefaultingandamechanismforpartialortotalstress relief, Nature , 243 (126),66–68. Smith,C.S.(1948),Grains,phasesandinterfaces:Anintroductionto microstructures, Trans.Metall.Soc.AIME , 175 ,15–51. Sirono,S.,K.Satomi,andS.Watanabe(2006),Numericalsimulationsof frictionalmelting:Smalldependenceofshearstressdroponviscosity parameters, J.Geophys.Res. , 111 ,B06309,doi:10.1029/2005JB003858. Spera,F.J.(2000),Physicalpropertiesofmagma,in Encyclopediaof Volcanoes ,editedbyH.Sigurdssonetal.,pp.171–190,Academic, SanDiego,Calif. Spray,J.G.(1993),Viscositydeterminationsofsomefrictionallygenerated silicatemelts:Implicationsforfaultzonerheologyathighstrainrates, J.Geophys.Res. , 98 ,8053–8068. Stern,C.,andP.Wyllie(1973),Water-saturatedandundersaturatedmelting relationsofagraniteto35kilobars, EarthPlanet.Sci.Lett. , 18 ,163– 167. Tinker,D.,C.E.Lesher,G.M.Baxter,T.Uchida,andY.Wang(2004), High-pressureviscometryofpolymerizedsilicatemeltsandlimitationsof theEyringequation, Am.Mineral. , 89 ,1701–1708. Townend,J.,andM.D.Zoback(2000),Howfaultingkeepsthecrust strong, Geology , 28 ,399–402. Tsutsumi,A.,andT.Shimamoto(1997),High-velocityfrictionalproperties ofgabbro, Geophys.Res.Lett. , 24 ,699–702. Tullis,T.E.,andD.L.Goldsby(2003a),Flashmeltingofcrustalrocksat almostseismicsliprates, EosTrans.AGU , 84 (46),FallMeet.Suppl., AbstractS51B-05. Tullis,T.E.,andD.L.Goldsby(2003b),Laboratoryexperimentsonfault shearresistancerelevanttocoseismicearthquakeslip, Annu.Prog.Rep. 2003 ,South.Calif.EarthquakeCent.,LosAngeles. Vosteen,H.-D.,andR.Schellschmidt(2003),Influenceoftemperatureon thermalconductivity,thermalcapacityandthermaldiffusivityfordiffer- enttypesofrock, Phys.Chem.Earth , 28 ,499–509. Wang,W.,andE.Takahashi(1999),Subsolidusandmeltingexperimentsof aK-richbasalticcompositionto27GPa:Implicationsforthebehaviorof potassiuminthemantle, Am.Mineral. , 84 ,357–361. Weeks,J.D.,andT.E.Tullis(1985),Frictionalslidingofdolomite:A variationinconstitutivebehavior, J.Geophys.Res. , 90 ,7821–7826. Williams,D.W.,andG.C.Kennedy(1970),Themeltingofjadeiteto 60kilobars, Am.J.Sci. , 269 ,481–488. Zhang,J.,R.C.Liebermann,T.Gasparik,andC.Herzberg(1993),Melting andsubsolidusrelationsofSiO2at9–14GPa, J.Geophys.Res. , 98 , 19,785–19,793.                        A.W.RempelandS.L.Weaver,DepartmentofGeologicalSciences, UniversityofOregon,1272UniversityofOregon,Eugene,OR97403- 1272,USA.(rempel@uoregon.edu) B11308 REMPELANDWEAVER:FLASHWEAKENINGANDMELTING 14of14 B11308