PPT-ELLIPTIC CURVE CRYPTOGRAPHY
Author : jane-oiler | Published Date : 2018-11-07
By Abhijith Chandrashekar and Dushyant Maheshwary Introduction What are Elliptic Curves Curve with standard form y 2 x 3 ax b a b ϵ ℝ Characteristics
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "ELLIPTIC CURVE CRYPTOGRAPHY" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
ELLIPTIC CURVE CRYPTOGRAPHY: Transcript
By Abhijith Chandrashekar and Dushyant Maheshwary Introduction What are Elliptic Curves Curve with standard form y 2 x 3 ax b a b ϵ ℝ Characteristics of Elliptic Curve. By . Abhijith. . Chandrashekar. . and . Dushyant. . Maheshwary. Introduction. What are Elliptic Curves?. Curve with standard form y. 2. = x. 3 . + ax + b a, b . ϵ ℝ. Characteristics of Elliptic Curve. Number Theory and Cryptography. A Pile of Cannonballs A Square of Cannonballs. 1. 4. 9. .. .. .. 1 + 4 + 9 + . . . + x. 2. . = x (x + 1) (2x + 1)/6. x=3:. 1 + 4 + 9 = 3(4)(7)/6 = 14. Sixth Edition. by William Stallings . Chapter 10. Other Public-Key Cryptosystems. “Amongst the tribes of Central Australia every man, woman, and child has a secret or sacred name which is bestowed by the older men upon him or her soon after birth, and which is known to none but the fully initiated members of the group. This secret name is never mentioned except upon the most solemn occasions; to utter it in the hearing of men of another group would be a most serious breach of tribal custom. When mentioned at all, the name is spoken only in a whisper, and not until the most elaborate precautions have been taken that it shall be heard by no one but members of the group. The native thinks that a stranger knowing his secret name would have special power to work him ill by means of magic.”. Itay. . Khazon. Eyal. . Tolchinsky. Instructor: . Barukh. . Ziv. Introduction. Public key cryptography is based on the hardness of several mathematical problems such as factoring and DLP.. The public key protocols in use today are based on the discrete logarithm problem over . This problem can be solved in sub-exponential time.. ATM Conference, Telford. Jonny Griffiths, April 2011. 10. 3. +9. 3. =12. 3. +1. 3. = 1729. x. 3. +y. 3. = 1729. Symmetrical about y = x. x. 3. +y. 3. =(. x+y. )(x. 2. -xy+y. 2. ). (1,12). (9,10). (10,9). Keeping the Smart Grid Secure. A . smart grid. delivers electricity from suppliers to consumers using digital technology to monitor (and optionally control) appliances at consumers' . homes.. Utilize . w. ith reference to . Lyness. cycles. Jonny Griffiths, UEA, November 2010. a. x. + by + c = 0. Straight line. a. x. 2. + . bxy. + cy. 2. + . dx. + . ey. + f = 0. Conics. Circle, ellipse, parabola, hyperbola, . Curves, Pairings, Cryptography. Elliptic Curves. Basic elliptic . cuves. :. Weierstrass. equation:. , with . . The values . come from some set, usually a field. . Part 1. Sets, Groups, Rings, Fields. & . ECC Diffie-Hellman. Presenter. : Le . Thanh. . Binh. Outline. What is . Elliptic Curve ?. Addition on an elliptic curve. Elliptic Curve Crypto (ECC). ECC Diffie–Hellman . Lets start with a puzzle…. A Pile of Cannonballs A Square of Cannonballs. 1. 4. 9. .. .. .. 1 4 9 . . . x. 2. . = x (x 1) (2x 1)/6. x=3:. 1 4 9 = 3(4)(7)/6 = 14. The number of cannonballs in x layers is. Daniel Dreibelbis. University of North Florida. Outline. Define the Key Exchange Problem. Define elliptic curves and their group structure. Define elliptic curves mod . p. Define the Elliptic Curve Discrete Log Problem. Daniel Dreibelbis. University of North Florida. Outline. Define the Key Exchange Problem. Define elliptic curves and their group structure. Define elliptic curves mod . p. Define the Elliptic Curve Discrete Log Problem. Algorithms. draft-mcgrew-fundamental-ecc-02. mcgrew@cisco.. com. kmigoe@nsa.gov. Elliptic Curve Cryptography. Alternative to integer-based Key Exchange and Signature algorithms. Smaller keys and signatures. Session 6 . – . Contents. Cryptography Basics. Elliptic Curve (EC) Concepts. Finite Fields. Selecting an Elliptic Curve. Cryptography Using EC. Digital Signature. Cryptography Basics. Security Services Security Mechanisms.
Download Document
Here is the link to download the presentation.
"ELLIPTIC CURVE CRYPTOGRAPHY"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents