PPT-Hierarchical Neural Networks for Object Recognition and Sce
Author : jane-oiler | Published Date : 2016-02-20
Object Recognition Task Given an image containing foreground objects predict one of a set of known categories Airplane Motorcycle Fox 2 From Mick Thomure PhD
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Hierarchical Neural Networks for Object ..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Hierarchical Neural Networks for Object Recognition and Sce: Transcript
Object Recognition Task Given an image containing foreground objects predict one of a set of known categories Airplane Motorcycle Fox 2 From Mick Thomure PhD Defense. 1. Recurrent Networks. Some problems require previous history/context in order to be able to give proper output (speech recognition, stock forecasting, target tracking, etc.. One way to do that is to just provide all the necessary context in one "snap-shot" and use standard learning. Zhiyong Yang. Brain and Behavior Discovery Institute. James and Jean Culver Vision . Discovery Institute. Department of Ophthalmology. Georgia Regents University. April. . 4, 2013. Outline. A model of pattern recognition . Cost function. Machine Learning. Neural Network (Classification). Binary classification. . . 1 output unit. Layer 1. Layer 2. Layer 3. Layer 4. Multi-class classification . (K classes). K output units. Table of Contents. Part 1: The Motivation and History of Neural Networks. Part 2: Components of Artificial Neural Networks. Part 3: Particular Types of Neural Network Architectures. Part 4: Fundamentals on Learning and Training Samples. Nitish Gupta, Shreya Rajpal. 25. th. April, 2017. 1. Story Comprehension. 2. Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk. Joe travelled to his office. Joe left the milk. Joe went to the bathroom. . Dongwoo Lee. University of Illinois at Chicago . CSUN (Complex and Sustainable Urban Networks Laboratory). Contents. Concept. Data . Methodologies. Analytical Process. Results. Limitations and Conclusion. Introduction 2. Mike . Mozer. Department of Computer Science and. Institute of Cognitive Science. University of Colorado at Boulder. Hinton’s Brief History of Machine Learning. What was hot in 1987?. . Rekabdar. Biological Neuron:. The Elementary Processing Unit of the Brain. Biological Neuron:. A Generic Structure. Dendrite. Soma. Synapse. Axon. Axon Terminal. Biological Neuron – Computational Intelligence Approach:. Daniel Boonzaaier. Supervisor – Adiel Ismail. April 2017. Content. Project Overview. Checkers – the board game. Background on Neural Networks. Neural Network applied to Checkers. Requirements. Project Plan. Dr. Abdul Basit. Lecture No. 1. Course . Contents. Introduction and Review. Learning Processes. Single & Multi-layer . Perceptrons. Radial Basis Function Networks. Support Vector and Committee Machines. Goals for this Unit. Basic. understanding of Neural Networks and how they work. Ability to use Neural Networks to solve real problems. Understand when neural networks may be most appropriate. Understand the strengths and weaknesses of neural network models. Dr David Wong. (With thanks to Dr Gari Clifford, G.I.T). The Multi-Layer Perceptron. single layer can only deal with linearly separable data. Composed of many connected neurons . Three general layers; . Developing efficient deep neural networks. Forrest Iandola. 1. , Albert Shaw. 2. , Ravi Krishna. 3. , Kurt Keutzer. 4. 1. UC Berkeley → DeepScale → Tesla → Independent Researcher. 2. Georgia Tech → DeepScale → Tesla. App--.'ae AD-A277 375 NTATION PAGE OMBN8w :Ied re. r O' C ," ,'c' te ,'e re .e TC, M)J Or zr's. seaetn.rlg e t.nq Gala soC./ " re~~.'~ '
Download Document
Here is the link to download the presentation.
"Hierarchical Neural Networks for Object Recognition and Sce"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents