/
Matrix with Degenerate Eigen alues Here is matrix whic Matrix with Degenerate Eigen alues Here is matrix whic

Matrix with Degenerate Eigen alues Here is matrix whic - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
456 views
Uploaded On 2015-05-26

Matrix with Degenerate Eigen alues Here is matrix whic - PPT Presentation

e ultiplicit 2 will sho ho to calculate the eigen alues and the asso ciated eigen ectors in this situation 1 First need to solv the secular equation to get eigen alues 1 2 1 Therefore the eigen alues of are 2 Then can 64257nd the corresp onding eigen ID: 74940

ultiplicit will sho

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Matrix with Degenerate Eigen alues Here ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

MatrixwithDegenerateEigenvaluesHereisamatrixwhichhasanondegenerateeigenvalue(1=2)andtwodegenerateeigenvalues=1(i.e.multiplicityg=2).A=0@0111011101AWewillshowhowtocalculatetheeigenvaluesandtheassociatedeigenvectorsinthissituation:1.First,weneedtosolvethesecularequationjA1jtogeteigenvalues:jA1j= 111111 (1)=3+2+3=(2)(+1)2=0Therefore,theeigenvaluesofAare=1;1;2:2.Then,wecan ndthecorrespondingeigenvectors:(a)=20@2111211121A0@x1x2x31A=0Wegetthreeequations:2x1+x2+x3=0(2)x12x2+x3=0(3)x1+x22x3=0(4)Onlytwoofthreeequationsarelinearlyindependent.Thesolutionisx1= 0@1111A:Thegeometricalinterpretationisthatanyvectorlyinginthissubspace(aline)isaneigenvectorwitheigenvalue=2,thoughtheyarealllinearlydepedent.Sinceweareonlyinterestedinthelinearlydependentsolution,itisconvenienttochoosethenormalizedsolution:x1=1p30@1111A(5)1 (b)=1isadegenerateeigenvaluewithmultiplicityg=2.Substituethisvaluebacktothesecularequation,Eq.(1),weget0@1111111111A0@x1x2x31A=0:Duetothedegeneracyg=2,weonlyhaveoneequationx1+x2+x3=0leftforthreeunknowns!Anyvectorinthissubspace(aplanepassingthroughtheorigin)isaneigenvectorwitheigenvalue=1.Wecanarbitrarilychoosetwolinearlyindependentvectorsinthissubspaceasx2=0@1121Ax3=0@2111A:Notealsothatthesetwoeigenvectorsarelinearlyindependent,butnotorthogonaltoeachother.WecanmakethemorthonormalbyGram-Schmidtprocedure:y2=x2jx2j=1p60@1121Ay03=x3x2xT2xT2x2x3=0@2111A0@1121A36=0@323201AAfternormalization:y3=y03jy03j=1p20@1101AThereforewegettwoorthonormaleigenvectors[y2y3]belongingtothedegenerateeigenvalue=1.However,theyarenottheonlyeigenvectorsassociatedwiththiseigenvalue,anylinearcombinationy=c2y2+c3y3isalsoaneigenvector.Besidesy2andy3,therearein nitewaystochoosethebasistorepresenttheeigensubspaceassociatedwith=1.Inpresentsituation,theeigensubspaceisaplanepassingthroughtheorigin,butorthogonaltothelinede nedbyvectorxT1=[111].Ifweallowedcomplexvalues,anotherpossiblechoiceofbasisfortheeigenvectorsinthedegeneratemanifoldisx02=1p30@11Ax03=1p30@11A2