/
Denition1.1(UniqueGame).AuniquegameconsistsofaconstraintgraphG=(V;E), Denition1.1(UniqueGame).AuniquegameconsistsofaconstraintgraphG=(V;E),

De nition1.1(UniqueGame).AuniquegameconsistsofaconstraintgraphG=(V;E), - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
451 views
Uploaded On 2016-08-18

De nition1.1(UniqueGame).AuniquegameconsistsofaconstraintgraphG=(V;E), - PPT Presentation

log1fractionofallconstraintsif1fractionofallconstraintsissatis ableRecentlyTrevisan17developedanalgorithmthatsatis es1O3p lognfractionofallconstraintsthiscanbeimprovedto1Op logn9 ID: 451658

log(1="))fractionofallconstraintsif1"fractionofallconstraintsissatis able.RecentlyTrevisan[17]developedanalgorithmthatsatis es1O(3p "logn)fractionofallconstraints(thiscanbeimprovedto1O(p "logn)[9])

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "De nition1.1(UniqueGame).Auniquegamecons..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

De nition1.1(UniqueGame).AuniquegameconsistsofaconstraintgraphG=(V;E),asetofvariablesxu(forallverticesu)andasetofpermutationsuvon[k]=f1;:::;kg(foralledges(u;v)).Eachpermutationuvde nestheconstraintuv(xu)=xv.Thegoalistoassignavaluefromtheset[k]toeachvariablexusoastomaximizethenumberofsatis edconstraints.Asinthesettingoflinearequations,instancesofuniquegameswhereallconstraintsaresatis- ableareeasytohandle.Givenaninstancewhere1�"fractionofconstraintsaresatis able,theUniqueGamesConjecture(UGC)ofKhot[10]saysthatitishardtosatisfyevenfractionoftheconstraints.Moreformally,theconjectureisthefollowing.Conjecture1(UniqueGamesConjecture[10]).Foranyconstants";�0,foranyk�k(";),itisNP-hardtodistinguishbetweeninstancesofuniquegameswithdomainsizekwhere1�"fractionofconstraintsaresatis ableandthosewherefractionofconstraintsaresatis able.Thisconjecturehasattractedalotofrecentattentionsinceithasbeenshowntoimplyhardnessofapproximationresultsforseveralimportantproblems:MaxCut[11,15],Min2CNFDeletion[3,10],MultiCutandSparsestCut[3,14],VertexCover[13],andcoloring3-colorablegraphs[5](basedonavariantoftheUGC),thatseemdiculttoobtainbystandardcomplexityassumptions.Notethatarandomassignmentsatis esa1=kfractionoftheconstraintsinauniquegame.Andersson,Engebretsen,andHastad[2]consideredsemide niteprogram(SDP)basedalgorithmsforsystemsoflinearequationsmodp(withtwovariablesperequation)andgaveanalgorithmthatperforms(veryslightly)betterthanarandomassignment.The rstapproximationalgorithmforgeneraluniquegameswasgivenbyKhot[10],andsatis es1�O(k2"1=5p log(1="))fractionofallconstraintsif1�"fractionofallconstraintsissatis able.RecentlyTrevisan[17]developedanalgorithmthatsatis es1�O(3p "logn)fractionofallconstraints(thiscanbeimprovedto1�O(p "logn)[9]),andGuptaandTalwar[9]developedanalgorithmthatsatis es1�O("logn)fractionofallconstraints.Theresultof[9]isbasedonroundinganLPrelaxationfortheproblem,whilepreviousresultsuseSDPrelaxationsforuniquegames.Thereareveryfewresultsthatshowhardnessofuniquegames.FeigeandReichman[7]showedthatforeverypositive"thereiscs.t.itisNP-hardtodistinguishwhethercfractionofallconstraintsissatis able,oronly"cfractionissatis able.OurResults.Wepresenttwonewapproximationalgorithmsforuniquegames.Westateourguaranteesforinstanceswhere1�"fractionofconstraintsaresatis able.The rstalgorithmsatis es min(1;1 p "logk)(1�")2k p logk�"=(2�")!(1)fractionofallconstraints.Thesecondalgorithmsatis es1�O(p "logk)fractionofallconstraintsandhasabetterguaranteefor"=O(1=logk).Weapplythesametechniquesford-to-1gamesaswell.Inordertounderstandthecomplexitytheoreticimplicationsofourresults,itisusefultokeepinmindthatinapproximabilityreductionsfromuniquegamestypicallyusethe\LongCode",whichincreasesthesizeoftheinstancebya2kfactor.Thus,suchapplicationsofuniquegamesusuallyhavedomainsizek=O(logn).InFigure1,wesummarizeknownalgorithmicguaranteesforuniquegames.Inordertocomparethesedi erentguaranteesinthecontextofhardnessapplications(i.e.k=O(logn)),wecomparetherangeofvaluesof"(asafunctionofk)forwhicheachofthesealgorithmsbeatstheperformanceofarandomassignment.2 everyvariableu,oneforeveryvaluei2[k].Givenaconstraintuvonuandv,thevectorsuiandvuv(i)areclose.IncontrasttothealgorithmsofTrevisan[17]andGupta,Talwar[9],ourroundingalgorithmsignoretheconstraintgraphentirely.WeinterprettheSDPsolutionasaprobabilitydistributiononassignmentsofvaluestovariablesandthegoalofourroundingalgorithmistopickanassignmenttovariablesbysamplingfromthisdistributionsuchthatvaluesofvariablesconnectedbyconstraintsarestronglycorrelated.Theroughideaistopickarandomvectorandexaminetheprojectionsofthisvectoronui,pickingavalueiforuforwhichuihasalargeprojection.(Infact,thisisexactlythealgorithmofKhot[10]).Wehavetomodifythisbasicideatoobtainourresultssincetheui'scouldhavedi erentlengthsandothercomplicationsarise.Insteadofpickingonerandomvector,wepickseveralGaussianrandomvectors.Our rstalgorithm(suitableforlarge")picksasmallsetofcandidateassignmentsforeachvariableandchoosesrandomlyamongstthem(independentlyforeveryvariable).Itisinterestingtonotethatsuchamultipleassignmentisoftenencounteredinalgorithmsimplicitinhardnessreductionsinvolvinglabelcover.Incontrasttopreviousresults,thisalgorithmhasanon-trivialguaranteeevenforverylarge".As"approaches1(i.e.forinstanceswheretheoptimalsolutionsatis esonlyasmallfractionoftheconstraints),theperformanceguaranteeapproachesthatofarandomassignment.Oursecondalgorithm(suitableforsmall")carefullypicksasingleassignmentsothatalmostallconstraintsaresatis ed.TheperformanceguaranteeofthisalgorithmgeneralizesthatobtainedbyGoemansandWilliamson[8]fork=2.Notethatauniquegameofdomainsizek=2where1�"fractionofconstraintsissatis ableisequivalenttoaninstanceofMax-Cutwheretheoptimalsolutioncuts1�"fractionofalledges.Forsuchinstances,therandomhyperplaneroundingalgorithmof[8]givesasolutionofvalue1�O(p "),andourguaranteecanbeviewedasageneralizationofthistolargerk.Thereadermightwonderaboutthecon uenceofourboundsandthelowerboundsobtainedbyKhotetal.[12].Infact,botharisefromtheanalysisofthesamequantity:Giventwounitvectorswithdotproduct1�",conditionedontheprobabilitythatonehasprojection(p logk)onarandomGaussianvector,whatistheprobabilitythattheotherhasalargeprojectionaswell?Thisquestionarisesnaturallyintheanalysisofourroundingalgorithms.Ontheotherhand,theboundsobtainedbyKhotetal.[12]dependonthenoisestabilityofcertainfunctions.Viatheresultsof[15],thisisboundedbytheanswertotheabovequestion.InSection2,wedescribethesemide niterelaxationforuniquegames.InSections3and4,wepresentandanalyzeourapproximationalgorithms.InSection5,weapplyourresultstod-to-1games.WedefersomeofthetechnicaldetailsofouranalysistotheAppendix.Recently,Chlamtac,MakarychevandMakarychev[4]havecombinedourapproachwithtech-niquesofmetricembeddings.Theirapproximationalgorithmforuniquegamessatis es1�O("p lognlogk)fractionofallconstraints.ThisgeneralizestheresultofAgarwal,Charikar,Maka-rychev,andMakarychev[1]fortheMinUnCutProblem(i.e.thecasek=2).Notethattheirapproximationguaranteeisnotcomparablewithours.2Semide niteRelaxationFirstwereduceauniquegametoanintegerprogram.Foreachvertexuweintroducekindicatorvariablesui2f0;1g(i2[k])fortheeventsxu=i.Foreveryu,theintendedsolutionhasui=1forexactlyonei.Theconstraintuv(xu)=xvcanberestatedinthefollowingform:foralliui=vuv(i):4 productwithgareabovesomethresholdtothesetSu;wechoosethethresholdinsuchawaythatthesetSucontainsonlyoneelementinexpectation.ThenpickarandomstatefromSuandassignittothevertexu(ifSuisemptydonotassignanystatestou).Whatistheprobabilitythatthealgorithmsatis esaconstraintbetweenverticesuandv?Looselyspeaking,thisprobabilityisequaltoEjSu\uv(Sv)j jSujjSvjE[jSu\uv(Sv)j]:AssumeforamomentthattheSDPsolutionissymmetric:thelengthsofallvectorsuiarethesameandthesquaredEuclideandistancebetweeneveryuiandvuv(i)isequalto2".(Infact,theseconstraintscanbeaddedtotheSDPinthespecialcaseofsystemsoflinearequationsoftheformxi�xj=cij(modp).)SincewewanttheexpectedsizeofSutobe1,wepickthresholdsuchthattheprobabilitythathg;uiiequals1=k.Therandomvariableshg;p kuiiandhg;p kvuv(i)iarestandardnormalrandomvariableswithcovariance1�"(notethatwemultipliedtheinnerproductsbyanormalizationfactorofp k).Forsuchrandomvariablesiftheprobabilityoftheeventhg;p kuiitp kequals1=k,thenroughlyspeakingtheprobabilityoftheeventhg;p kuiitp kandhg;p kvuv(i)itp kequalsk�"=21=k.ThustheexpectedsizeoftheintersectionofthesetsSuanduv(Sv)isapproximatelyk�"=2.Unfortunatelythisnolongerworksifthelengthsofvectorsaredi erent.Themainproblemisthatif,say,u1istwotimeslongerthanu2,thenPr(u12Su)ismuchlargerthanPr(u22Su).Oneofthepossiblesolutionsistonormalizeallvectors rst.InordertotakeintoaccountoriginallengthsofvectorswerepeattheprocedureofaddingvectorstothesetsSumanytimes,buteachvectoruihasachancetobeselectedinthesetSuonlyinthe rstsu;itrials,wheresu;iissomeintegernumberproportionaltotheoriginalsquaredEuclideanlengthofui.WenowformallypresentaroundingalgorithmfortheSDPdescribedintheprevioussection.InAppendixD,wedescribeanalternateapproachtoroundingtheSDP.Theorem3.1.Thereisapolynomialtimealgorithmthat ndsanassignmentofvariableswhichsatis es min(1;1 p "logk)(1�")2k p logk�"=(2�")!fractionofallconstraintsiftheoptimalsolutionsatis es(1�")fractionofallconstraints.RoundingAlgorithm1Input:AsolutionoftheSDP,withtheobjectivevalue"jEj.Output:Anassignmentofvariablesxu.1.De ne~ui=ui=juijifui6=0,0otherwise.Notethatvectors~u1;:::;~ukareorthogonalunitvectors(exceptforthosevectorsthatareequaltozero).2.PickrandomindependentGaussianvectorsg1;:::;gkwithindependentcomponentsdis-tributedasN(0;1).3.Foreachvertexu:(a)Setsui=djuij2ke.6 De nition3.4.Forbrevity,denote�p logk=k2=(2�x)byfk(x).Remark3.1.ItisinstructivetoconsiderthecasewhentheSDPsolutionisuniforminthefol-lowingsense:1.Thelengthsofallvectorsuiarethesameandareequalto1=p k.2.All"iuvareequalto".Inthiscaseallsuiareequalto1.Andthustheprobabilitythataconstraintissatis edisktimestheprobability(6)whichisequal,uptoalogarithmicfactor,tok�"=(2�").Multiplyingthisprobabilitybythenumberofedgeswegetthattheexpectednumberofsatis edconstraintsisk�"=(2�")jEj.Inthegeneralcasehoweverweneedtodosomeextraworktoaveragetheprobabilitiesamongallstatesiandedges(u;v).Recallthatweinterpretjuij2astheprobabilitythatthevertexuisinthestatei.Supposenowthattheconstraintbetweenuandvissatis ed,whatistheconditionalprobabilitythatuisinthestateiandvisinthestateuv(i)?Roughlyspeaking,itshouldbeequalto(juij2+jvuv(i)j2)=2.Thismotivatesthefollowingde nition.De nition3.5.De neameasureuvontheset[k]:uv(T)=Xi2Tjuij2+jvuv(i)j2 2;whereT[k]:Notethatuv([k])=1.Thisfollowsfromconstraint(3).Thefollowinglemmashowswhythismeasureisuseful.Lemma3.6.Foreveryedge(u;v)thefollowingstatementshold.1.Theaveragevalueof"iuvw.r.t.themeasureuvislessthanorequalto"uv:kXi=1uv(i)"iuv"uv:2.Foreveryi,min(sui;svuv(i))(1�"iuv)2uv(i)k:Proof.1.Indeed,kXi=1uv(i)"iuv=kXi=1juij2+jvuv(i)j2�(juij2+jvuv(i)j2)cos i 2kXi=1juij2+jvuv(i)j2�2juijjvuv(i)jcos i 2=kXi=1jui�vuv(i)j2 2="uv8 Proof.LetusrestrictourattentiontoasubsetofedgesE0=f(u;v)2E:"uv2"g.For(u;v)inE0,since"uvlogk2"logk,wehavePuv= k p logkmin(1;1 p "logk)(1�"uv)2fk("uv):Summingthisprobabilityoveralledges(u;v)inE0andusingconvexityofthefunction(1�x)2fk(x)wegetthestatementofthetheorem. 4AlmostSatis ableInstancesSupposethat"isO(1=logk).Intheprevioussectionwesawthatinthiscasethealgorithm ndsanassignmentofvariablessatisfyingaconstantfractionofconstraints.Butcanwedobetter?Inthissectionweshowhowto ndanassignmentsatisfying1�O(p "logk)fractionofconstraints.ThemainissueweneedtotakecareofistoguaranteethatthealgorithmalwayspicksonlyoneelementinthesetSu(otherwisewelooseaconstantfactor).Thiscanbedonebyselectingthelargestinabsolutevalueui;s(atstep3.d).Wewillalsochangethewaywesetsui.Denoteby[x]rthefunctionthatroundsxupordowndependingonwhetherthefractionalpartofxisgreaterorlessthanr.Notethatifrisarandomvariableuniformlydistributedintheinterval[0;1],thentheexpectedvalueof[x]risequaltox.RoundingAlgorithm2Input:AsolutionoftheSDP,withtheobjectivevalue"jEj.Output:Anassignmentofvariablesxu.1.Pickanumberrintheinterval[0;1]uniformlyatrandom.2.PickrandomindependentGaussianvectorsg1;:::;g2kwithindependentcomponentsdis-tributedasN(0;1).3.Foreachvertexu:(a)Setsui=[2kjuij2]r.(b)Foreachiprojectsuivectorsg1;:::;gsuito~ui:ui;s=hgs;~uii;1ssui:(c)Selectui;swiththelargestabsolutevalue,wherei2[k]andssui.Assignxu=i.We rstelaborateonthedi erencebetweenthechoiceofsuiinthealgorithmaboveandthatinAlgorithm1presentedearlier.Consideraconstraintuv(xu)=xv.Projectionui;sgeneratedbyuiandvuv(i);sgeneratedbyvuv(i)areconsideredtobematched.Ontheotherhand,aprojectionui;ssuchthatthecorrespondingvuv(i);sdoesnotexist(orviceversa)isconsideredtobeunmatched.Unmatchedprojectionsarisewhensui6=svuv(i)andthefractionofsuchprojectionslimitstheprobabilityofsatisfyingtheconstraint.RecallthatinAlgorithm1,wesetsui=djuij2ke.Evenifuiandvuv(i)arein nitesimallyclose,itmayturnoutthatsuiandsvuv(i)di erby1,yieldinganunmatchedprojection.Asaresult,someconstraintsthatarealmostsatis edbytheSDPsolution(i.e."uviscloseto0)couldbesatis edwithlowprobability(bythe rstroundingalgorithm).In10 Lemma4.3.1.TheexpectedsizeofMcisatmost4"uvk:E[jMcj]4"uvk:2.ThesetMalwayscontainsatleastk=2elements:jMjk=2.Proof.1.Firstwe ndtheexpectedvalueofjsui�svuv(i)jfora xedi.ThisvalueisequaltoEr [2kjuij2]r�[2kjvuv(i)j2]r =2k juij2�jvuv(i)j2 :Nowbythetriangleinequalityconstraint(5),2k juij2�jvuv(i)j2 2kjui�vuv(i)j2:Summingoveralliin[k]we nishtheproof.2.Observethatmin(sui;svuv(i))2kmin(juij2;jvuv(i)j2)�1andmin(juij2;jvuv(i)j2)juij2�jjuij2�jvuv(i)j2jjuij2�jui�vuv(i)j2:SummingoveralliwegetjMj=Xi2[k]min(sui;svuv(i))Xi2[k]�2kjuij2�2kjui�vuv(i)j2�12k�4k"uv�kk=2: Lemma4.4.Thefollowinginequalityholds:E241 jMjX(i;s)2M"iuv354"uv:Proof.RecallthatMalwayscontainsatleastk=2elements.Theexpectedvalueofmin(sui;svuv(i))isequalto2kmin(juij2;jvuv(i)j2)andislessthanorequalto2kuv(i).ThuswehaveEr241 jMjX(i;s)2M"iuv35=Er"1 jMjkXi=1min(sui;svuv(i))"iuv#2 kkXi=12kuv(i)"iuv4kXi=1uv(i)"iuv4"uv: 12 Notethatevenifallconstraintsofad-to-1gamearesatis ableitishardto ndanassignmentofvariablessatisfyingallconstraints.Wewillshowhowtosatisfy 0@1 p logk(1�")4k p logk�p d�1+" p d+1�"1Afractionofallconstraints(themultiplicativeconstantinthe notationdependsond).Noticethatthisvaluecanbeobtainedbyreplacing"informula(1)with"0=1�(1�")=p d(andchanging(1�")2to(1�")4).Eventhoughwedonotrequirethatforaconstraintuveachiin[k]belongstosomepair(i;j)2uv,letusassumethatforeachithereexistsjs.t.(i;j)2uv;andforeachjthereexistsis.t.(i;j)2uv.Asweseelaterthisassumptionisnotimportant.Inordertowritearelaxationford-to-1gamesintroducethefollowingnotation:wiuv=Xj:(i;j)2uvvj:TheSDPisasfollows:minimize1 2X(u;v)2E kXi=1 ui�wiuv 2!subjectto8u2V8i;j2[k];i6=jhui;uji=0(9)8u2VkXi=1juij2=1(10)8(u;v)2Vi;j2[k]hui;vji0(11)8(u;v)2Vi2[k]0hui;wiuvimin(juij2;jwiuvj2)(12)Animportantobservationisthatjw1uvj2+:::+jwkuvj2=1,hereweusethefactthatfora xededge(u;v)eachvjisasummandinoneandonlyonewiuv.WeuseAlgorithm1forroundingavectorsolution.Foranalysiswewillneedtochangesomenotation:~wiuv=(wiuv=jwiuvj;ifwiuv6=0;0;otherwise"iuv=j~ui�~wiuvj2 2"iuv0=1�1�"iuv p duv(i)=juij2+jwiuvj2 2Thefollowinglemmaexplainswhywegetthenewdependencyon".14 Wenowaddresstheissuethatforsomeedges(u;v)andstatesjtheremaynotnecessarilyexistis.t.(i;j)2uv.Wecallsuchjastateofdegree0.Thekeyobservationisthatinouralgorithmswemayenforceadditionalconstraintslikexu=iorxu6=ibysettingui=1orui=0respectfully.Thuswecanaddextrastatesandenforcethattheverticesarenotinthesestates.Thenweaddpairs(i;j)whereiisanewstate,andjisastateofdegree0(orvice-versa).Alternativelywecanrewritetheobjectivefunctionbyaddinganextraterm:minimize1 2X(u;v)2E kXi=1 ui�wiuv 2+jw0uvj2!;wherew0uvisthesumofvjoverjofdegree0.AcknowledgementsWewouldliketothankSanjeevArora,UriFeige,JohanHastad,MuliSafraandLucaTrevisanforvaluablediscussionsandEdenChlamtacforhiscomments.ThesecondandthirdauthorsthankMicrosoftResearchfortheirhospitality.References[1]A.Agarwal,M.Charikar,K.Makarychev,andY.Makarychev.O(p logn)approximationalgorithmsforMinUnCut,Min2CNFDeletion,anddirectedcutproblems.InProceedingsofthe37thAnnualACMSymposiumonTheoryofComputing,pp.573{581,2005.[2]G.Andersson,L.Engebretsen,andJ.Hastad.Anewwaytousesemide niteprogrammingwithapplicationstolinearequationsmodp.JournalofAlgorithms,Vol.39,pp.162{204,2001.[3]S.Chawla,R.Krauthgamer,R.Kumar,Y.Rabani,andD.Sivakumar.Onthehardnessofapproximatingmulticutandsparsest-cut.InProceedingsofthe20thIEEEConferenceonComputationalComplexity,pp.144{153,2005.[4]E.Chlamtac,K.MakarychevandY.Makarychev.HowtoplayanyUniqueGame.manuscript,February2006.[5]I.Dinur,E.Mossel,andO.Regev.Conditionalhardnessforapproximatecoloring.ECCCTechnicalReportTR05-039,2005.[6]U.FeigeandL.Lovasz.Two-proveroneroundproofsystems:Theirpowerandtheirproblems.InProceedingsofthe24thACMSymposiumonTheoryofComputing,pp.733{741,1992.[7]U.FeigeandD.Reichman.Onsystemsoflinearequationswithtwovariablesperequa-tion.InProceedingsofthe7thInternationalWorkshoponApproximationAlgorithmsforCombinatorialOptimization,vol.3122ofLectureNotesinComputerScience,pp.117{127,2004.16 2.Thereexistpositiveconstantsc1;C1;c2;C2suchthatforall0p1=3,t0and1thefollowinginequalitieshold:c1 p 2(t+1)e�t2 2~(t)C1 p 2(t+1)e�t2 2;c2p log(1=p)~�1(p)C2p log(1=p);3.ThereexistsapositiveconstantC3,s.t.forevery02andt1=thefollowinginequalityholds:~(t+1 t)C3(t~(t))2t�1:Proof.1.Firstnoticethat~(t)=1 p 2Z1te�x2 2dx=1 p 224�e�x2 2 x 1t�Z1te�x2 2 x2dx35=1 p 2te�t2 2�1 p 2Z1te�x2 2 x2dx:Thus~(t)1 p 2te�t2 2:Ontheotherhand1 p 2Z1te�x2 2 x2dx1 p 2t2Z1te�x2 2dx=~(t) t2:Hence~(t)�1 p 2te�t2 2�~(t) t2;and~(t)�t p 2(t2+1)e�t2 2:2.Thistriviallyfollowsfrom(1).3.Using(2)weget~(t+1 t)C1+t+1 t�1e�(t+1 t)2 2C0(t+1)�1e�2t2 2C000@e�t2 2 t+11A2t2t�1C000(t~(t))2t�1 18 Noticethat1=221.Wenowestimatetheprobability(13)asfollowsPr�tandt=PrXt+p 1�2jYjPrXt + tPrjYj2 p 1�2tByLemmaA.1(3)wegetPr�tandtCt�1(t~(t))1=2min1;2 p 1�2tC0min((p "t)�1;1)t�1(t~(t))2 2�": CorollaryB.2.Letandbestandardnormalrandomvariableswithcovariancegreaterthanorequalto1�";let~(t)=1=k.ThenPr(tandt) min1;1 p "logk1 p logkk p logk�2 2�"!:LemmaB.3.Let,,",kandtbeasinCorollaryB.2,andlet1;:::;mbei.i.d.standardnormalrandomvariablesandm2k,thenE"mXi=1Ifitgjtandt#=O(1);whereIfitgistheindicatoroftheeventfitg.Proof.LetXandYbeasintheproofofLemmaB.1.Put i=cov(X;i)andexpresseachiasi= iX+q 1� 2iZi.ByBessel'sInequality 21++ 2m1(sincerandomvariablesiareorthogonal).WenowestimatePr(itjXt+p 1�2jYj)=PritjXt+p 1�2jYjandX4tPrX4tjXt+p 1�2jYj+PritjXt+p 1�2jYjandX�4tPrX�4tjXt+p 1�2jYjNoticethatPr�itjXt+p 1�2jYjandX4t=Pr� iX+q 1� 2iZitjXt+p 1�2jYjandX4t=Z4tt=Pr� ix+q 1� 2iZitjxt+p 1�2jYjdF(x)maxx2[t=;4t]Prq 1� 2iZit� ixjp 1�2jYjx�tbyCorollaryA.3maxx2[t=;4t]Prq 1� 2iZit� ixPr(Zi(1�4 i)t):20 Proof.WehavePrtand+t=Z10Pr(tand+xt)dF(x)=1 p 2Z10Pr(tand+xt)e�x2 22dx=1 p 2Z10Pr(tand+yt)e�y2 2dy=1 p 2Zt=0Pr(t�yt)e�y2 2dy+1 p 2Z1t=Pr(t�yt)e�y2 2dy:Letusboundthe rstintegral.Sincethedensityoftherandomvariableontheinterval(t�y;t)isatmost1 p 2e�(t�y)2 2andyey,wehavePr(t�yt)y1 p 2e�(t�y)2 2 p 2e�t2 2e(t+1)y:Therefore,1 p 2Zt=0Pr(t�yt)e�y2 2dye�t2 2 2Zt=0e(t+1)ye�y2 2dye�t2 2 2Z1�1e�(y�(t+1))2 2e(t+1)2 2dy=Oe�t2 2e(t+1)2 2:Wenowupperboundthesecondintegral.Ift1,then1 p 2Z1t=Pr(t�yt)e�y2 2dy1 p 2Z1t=e�y2 2dy=~(t=)=O0@e�t2 22 t=+11A=O0@e�t2 2 t+1A=Oe�t2 2:Ift1,then1 p 2Z1t=Pr(t�yt)e�y2 2dy1 p 2Z10ye�y2 2dy=O()=Oe�t2 2:Thedesiredinequalityfollowsfromtheupperboundsonthe rstandsecondintegrals. Weneedaslightgeneralizationofthelemma.CorollaryC.2.Letandbetwoindependentrandomnormalvariableswithvariance1and2respectively(01).Thenforeveryt0and0"1Pr(+(1�")tjjjt)=O (+"t)c(";;t)e�t2=2 1�2~(t)!;22 similarly,2= 21+ 22+2:Notethat 1=cov(1;1)1�"and 1=cov(1;2)0.ThusVar[1]Var[1]� 211�(1�")22":Similarly, 20, 21�",andVar[2]2".Since1and2areindependent,wehave 1 2+ 1 2+cov(1;2)=cov(1;2)=0:Therefore(notethatcov(1;2)0; 1 20; 1 20), 2=� 1 2�cov(1;2) 1p Var[1]Var[2] 1�"2" 1�":Takingintoaccountthat 21,weget 2min(1;2" 1�")3".Similarly, 13".Finally,wehavej1j�j2j( 1� 2)j1j�( 1+ 2)j2j�j1j�j2j(1�4")j1j�(1+3")j2j�j1j�j2j: Inwhatfollowsweassumethat1isthelargestr.v.inabsolutevalueamong1;:::;manditsabsolutevalueist.Forconveniencewede nethreeevents:At=fjijtforall3img;Et=At\fj1j=tandj2jtg;E=fj1jjijforallig=[t0Et:NowwearereadytocombineCorollaryC.2andLemmaC.3.LemmaC.4.Let1;;mand1;;mbetwosequencesofstandardnormalrandomvariables.Supposethat1.therandomvariablesineachofthesequencesareindependent,2.thecovarianceofeveryiandjisnonnegative,3.cov(1;1)1�"andcov(2;2)1�",where"1=7.ThenPr(j1jj2jjEt)=O (p "+"t)e�t2=2c(7";p 8";t) 1�2~(t)!;(15)wherec(";;t)isfromCorollaryC.2.24 Noticethat(p "+"t)e�t2=2 1�2~(t)=O (p "+"t)(t+1)~(t) 1�2~(t)!;since~(t)= e�t2=2 t!:2.If"�1=32thestatementholdstrivially.Soassumethat"1=32.Then(p 8"t+1)2 2+7"t23t2 8+O(t):Thuste�t2 2c(7";p 8";t)isupperboundedbysomeabsoluteconstant.Sincet1,thedenominator1�2~(t)oftheexpression(15)isboundedawayfrom0. Wenowgiveaboundonthe\typical"absolutevalueofthelargestrandomvariable.LemmaC.6.Thefollowinginequalityholds:Prj1j2p logmjE1 m:Proof.NotethattheprobabilityoftheeventEis1=m,sinceallrandomvariables1;:::;mareequallylikelytobethelargestinabsolutevalue.ThuswehavePrj1j2p logmjEPr�j1j2p logm Pr(E)1 m21 m=1 m: LemmaC.7.Let1;;mand1;;mbetwosequencesofstandardnormalrandomvari-ablesasinTheorem4.1.Assumethatcov(1;1)1�"andcov(2;2)1�",where"min(1=(4logm);1=7).ThenPr(j1jj2jjE)=Op "logm m:Proof.Writethedesiredprobabilityasfollows:Pr(j1jj2jjE)=Prj1jj2jandj1j2p logmjE+Prj1jj2jandj1j2p logmjEFirstconsiderthecasej1j2p logm.DenotebydFj1jthedensityofj1jconditionalonE.ThenPrj1jj2jandj1j2p logmjE=Z2p logm0Pr(j1jj2jjEandj1j=t)dFj1j(t)=Z2p logm0Pr(j1jj2jjEt)dFj1j(t)26 Applyingtheunionbound,wegetPr(j1jmaxi2jjjjj1jmaxj2jjj)=O p logm mmXi=2q max("1;"i)!=O p logm m mp "1+mXi=1p "i!!byJensen'sinequalityOp logm(p "1+p "):Sincetheprobabilitythatjij=maxjjjjequals1=mforeachi,theprobabilitythatthelargestr.v.inabsolutevalueamongi,andthelargestr.v.inabsolutevalueamongjhavedi erentindexesisatmostO 1 mmXi=1p logm(p "i+p ")!Op logm(p "+p ")=Op "logm: ProofofTheorem4.1.Denote"i=1�cov(i;i).Then("1++"m)m".Wemayassumethat"min(1=(4logm);1=7)|otherwise,thetheoremfollowstrivially.ConsiderthesetI=fi:"imin(1=(4logm);1=7)g.Since"min(1=(4logm);1=7),thesetIisnotempty.ApplyingLemmaC.8torandomvariablesfigi2Iandfigi2I,weconcludethatthethelargestr.v.inabsolutevalueamongfigi2Ihasthesameindexasthelargestr.v.inabsolutevalueamongfigi2Iwithprobability1�O0@s logjIj1 jIjXi2I"i1A=1�Op "logm:Sinceeachiisthelargestr.v.among1,...,minabsolutevaluewithprobability1=m,theprobabilitythatthelargestr.v.among1,...,mdoesnotbelongtofigi2Iism�jIj m.Similarly,theprobabilitythatthelargestr.v.among1,...,mdoesnotbelongtofigi2Iis(m�jIj)=m.Therefore,bytheunionbound,theprobabilitythatthelargestr.v.inabsolutevalueamongi,andthelargestr.v.inabsolutevalueamongjhavedi erentindexesisatmost1�O(p "logm)�2m�jIj m:(16)Wenowupperboundthelastterm.2m�jIj mbytheMarkovinequality2" min(1=(4logm);1=7)2(4logm+7)"=O("logm)=O(p "logm):(Hereweusethat"logm1.)Pluggingthisboundinto(16)wegetthatthedesiredprobabilityis1�O(p "logm).This nishestheproof. 28