/
2ADAMKOSSDenition1.4.Anintervalisthedistancebetweentwomusicalnotes.Ta 2ADAMKOSSDenition1.4.Anintervalisthedistancebetweentwomusicalnotes.Ta

2ADAMKOSSDe nition1.4.Anintervalisthedistancebetweentwomusicalnotes.Ta - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
459 views
Uploaded On 2016-03-14

2ADAMKOSSDe nition1.4.Anintervalisthedistancebetweentwomusicalnotes.Ta - PPT Presentation

IntervalName 0 PerfectUnisonPU1 MinorSecondorhalfstepm22 MajorSecondorwholestepM23 MinorThirdm34 MajorThirdM35 PerfectFourthP46 TritoneTT7 PerfectFifthP58 MinorSixthm69 MajorSixth ID: 255139

IntervalName 0 PerfectUnison(PU)1 MinorSecond orhalf-step(m2)2 MajorSecond orwholestep(M2)3 MinorThird(m3)4 MajorThird(M3)5 PerfectFourth(P4)6 Tritone(TT)7 PerfectFifth(P5)8 MinorSixth(m6)9 MajorSixth

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2ADAMKOSSDe nition1.4.Anintervalisthedis..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2ADAMKOSSDe nition1.4.Anintervalisthedistancebetweentwomusicalnotes.Table1belowgivesacompletelistofmusicalintervalsandtheircommonnames.De nition1.5.Atriadisasetofthreenotessuchthattheintervalsbetweenconsecutivenotesarethirds,eithermajororminor.Table1.ListofIntervalsNumberofHalfSteps IntervalName 0 PerfectUnison(PU)1 MinorSecond,orhalf-step(m2)2 MajorSecond,orwholestep(M2)3 MinorThird(m3)4 MajorThird(M3)5 PerfectFourth(P4)6 Tritone(TT)7 PerfectFifth(P5)8 MinorSixth(m6)9 MajorSixth(M6)10 MinorSeventh(m7)11 MajorSeventh(M7)12 PerfectOctave(PO)2.BasicGroupTheoryInorderforonetounderstandanymusicintermsofmathonemust rstunder-standtheconceptofagroup.De nition2.1.AgroupisasetGwithanoperation:GG!Gsatisfying(1)(associativity)Forallx;y;z2G,(xy)z=x(yz).(2)(identity)Thereexistse2Gsuchthatforallx2G,ex=xe=x(3)(inverses)Forallx2Gthereexistsay2Gsuchthatxy=yx=ewhereeistheidentityelement.Nowwewillde netwogroupsusedtounderstandmusic,byassociatinggroupelementswithmusicalnotes.The rstgroup,Z12,givesanumericalrepresentationofthechromaticscale.De nition2.2.Z12isthesetf0;1;2;3;4;5;6;7;8;9;10;11gwiththeoperationde nedbyxy=x+y(mod12).Remark2.3.Foranyx2Z,x(mod12)istheelementoff0;1;2;:::;11gsuchthatx(mod12)+12k=xforsomek2Z.WeuseZ12torepresentthechromaticscalebyassociatingeachelementtoanote,pairingthemsothatC=0andC]=1andfollowingthispatternuntilB=11.Proposition2.4.(Z12;)isagroup. 4ADAMKOSSExample3.4.Wecanalsode nethediatonicGIS(Z7;Z7;int)withint(x;y)=y�xmod7.Thefunctionintsatis esthetwopropertiesbecause.int(x;y)+int(y;z)=(y�x)+(z�y)=y�x+z�y=z�x=int(x;z):(alloperationsabovebeingmod7).Alsoforanyx2Z7andg2Z7thereexistsoneuniquey2Z7suchthaty�x=g.Thusthereexistsonlyoney2Z7suchthatint(x;y)=gbythede nitionofint.Thus(Z7;Z7;int)isacommutativegeneralizedintervalsystem.Remark3.5.Thefunctionintde nedintheGISforZ12isthechromaticinterval,thatistosay,int(x;y)givesthenumberofhalfstepsbetweenthenotesxandy,whenweidentifynoteswithelementsofZ12.However,thefunctionintfortheGISofZ7doesnotrepresentthechromaticintervals,butthenumberofscalestepsbetweentwonotes.4.TheGeneralizedTonnetzInthissectionwewillintroducethegeneralizedTonnetz.De nition4.1.LetG0=(S;G;int)beacommutativeGISandassumethatthegroupGisgeneratedbya nitesubsetB.AgeneralizedTonnetzT(G;B)isthedirectedgraph(S;A;B;int)whereAisthecompleteinverseimageofBunderintandintistherestrictionofinttoA.ThegroupGisthesetofverticesofthisgraph,andtwoverticesxandyareconnectedbyanedgedirectedfromxtoywheneverint(x;y)isanelementofB.[2]ThecompleteinverseimageofBunderint:SS!Gisthesetofallorderpairsofvertices(x;y)suchthattheirimageint(x;y)isinB.NextaretwoexamplesofgeneralizedTonnetze.Example4.2.The rstexampleofaGISisbasedonthechromaticscale.InthisexampletheGISis(Z12;Z12;int).De nethegeneratorsasthesetf3;4;7g.ThesetZ12isgeneratedbythesetf3;4;7gbecauseanynumbercanbewrittenasasumofmultiplesof3;4and7mod12.ThegraphhasthesetofverticeswhichisthesetZ12andthesetoftheedgeslistedinTable2.ThegraphofthegeneralizedTonnetzofthechromaticscaleisembeddedonthetorusorthedonutandnottheplane.ForavisualrepresentationseeFigure1.ThemainideaofthispaperisthegraphorgeneralizedTonnetzofthediatonicscale.Example4.3.StartwiththeGIS(Z7;Z7;int).De nethegeneratorsofthetonnetzfromthisGISasthesetf2;4g.ThesetZ7isgeneratedbythesetf2;4gbecauseifwestartwiththe0elementandaddthegenerator2repeatedlywewillobtainallthedi erentelementsoftheset.ThesetofverticesisZ7andthesetofedgesisasfollows.SeeFigure2forabetterimageofthegraph. 6ADAMKOSSTable3.ThesetofedgesforT(Z7;f2;4g)(0,2)(0,4)(1,3)(1,5)(2,4)(2,6)(3,5)(3,0)(4,6)(4,1)(5,0)(5,2)(6,1)(6,3)TonnetzoftheDiatonicScale.pdf Figure2.Thelatticestructuregraphofthediatonicscale.5.ComparisonoftheChromaticScaleandDiatonicScaleThereasonthatthegraphofthechromaticscalegeneralizedTonnetzembedsonatorusisbasedonthefactthateachvertexhasdegree6,whichmeansthatthegraphis6�regular.OntheotherhandthegraphofthediatonicscalegeneralizedTonnetzembedsonaMobiusstripbecauseeachvertexisofdegree4,orthegraphis4�regular.Thatiswhythegraphbasedonthediatonicscaledoesnotembedonthesamespaceasthechromaticscale.Thedi erencesinthesegraphsindicatethedi erencesinmusicalstructureofthetwoscales.Acknowledgments.Itisapleasuretothankmymentor,KatieMannhelpingthroughthispaperandgettingabettersenseofhowtowriteaMathematicalPaper.IwouldalsoliketothankProfessorTomFioreforhelpingmeunderstandtheideasbehindthepaperandforprovidingthisinterestingtopictoexplore.IwouldalsoliketothankProfessorPeterMayfororganizingtheREUandtheNationalScienceFoundationforfundingmyparticipationintheREU. ACOMPARISONOFTHEGRAPHSOFTHECHROMATICANDDIATONICSCALE7Strip.pdf Figure3.AGreatPictureoftheMobiusStrip!References[1]Lewin,D.GeneralizedMusicalIntervalsandTransformations.OxfordUniversityPress.2007.(OriginallyYaleUniversityPress,1987)[2]Zabka,Marek.GeneralizedTonnetzandWell-FormedGTS:AScaleTheoryInspiredbytheNeo-Riemannians.Springer-VerlagBerlinHeidelberg.2009.MathematicsandComputationinMusicSecondInternationalConference,MCM2009,NewHaven,CT,USA,June19-22,2009.ProceedingsSeries:CommunicationsinComputerandInformationScience,Vol.38Chew,Elaine;Childs,Adrian;Chuan,Ching-Hua(Eds.)2009,XVI,299p.,Softcover.[3]Mazzola,G.TheToposofMusic:GeometricLogicofConcepts,Theory,andPerformance.Birkhauser,Basel.2002