121K - views

Essence of the Root Locus echnique In this chapter we study method for nding locations of system poles

The method is presented for very general setup namely for the case when the closedloop system poles are functions of an unknown parameter In most cases the parameter of interest is the system static gain satisfying However any other unknown and vari

Embed :
Pdf Download Link

Download Pdf - The PPT/PDF document "Essence of the Root Locus echnique In th..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Essence of the Root Locus echnique In this chapter we study method for nding locations of system poles






Presentation on theme: "Essence of the Root Locus echnique In this chapter we study method for nding locations of system poles"— Presentation transcript:

EssenceoftheRootLocusTechniqueInthischapterwestudyamethodfor ndinglocationsofsystempoles.Themethodispresentedforaverygeneralset-up,namelyforthecasewhentheclosed-loopsystempolesarefunctionsofanunknownparameter.Inmostcasestheparameterofinterestisthesystemstaticgainsatisfying.However,anyotherunknownandvariablesystemparameteraffectingpolelocationscanbeusedinsteadof.Themethodisknownastherootlocustechniqueforsolvingpolynomialequationswithconstantorvariableparameters.ItwasoriginallypresentedinEwans(1948,1950).Theimportanceoftherootlocusmethodforcontrolsystemtheoryliesinthefactthatthelocationofthesystempolesdeterminesthesystem291 stabilityandthesystemtransientresponse.Insomecases,thedesiredcontrolsystemperformancecanbeobtainedbychangingonlythesystemstaticgain.Itisknownfromthatthechoiceofthesystemstaticgaindeterminestheerrorsofthesystemsteadystateresponseinthesensethatabiggervalueforimpliessmallervaluesforsteadystateerrors(assumingthatthesystemremainsasymptoticallystable).However,changingcausesthesystemtransientresponseparametersalsotochange.Ifoneisnotabletoachieveallthecontrolsystemrequirementsbychangingonlythestaticgain(theessenceoftherootlocusmethod),onehastodesignadynamiccompensator(controller).ThequestionofdesigningdynamiccompensatorsbyusingtherootlocusmethodwillbeaddressedindetailinChapter8. Therootlocustechniqueallowsadjustmentofthesystempolesbychangingthefeedbacksystemstaticgain.Theclosed-loopfeedbacksystem,ingeneral,canberepresentedbyablockdiagramasgiveninFigure7.1.G(s)H(s)U(s)+-Y(s)Controller - PlantFeedback ElementFigure7.1:Blockdiagramofafeedbackcontrolsystem Thecharacteristicequationoftheaboveclosed-loopsystemisgivenbywhichcanbewrittenaswhererepresentsallstaticgainspresentintheloop.Usuallythestaticgainscomesolelyfromthecontroller-plantelement.Thatis,theplantiscontrolledbychangingthestaticgain,whichcanberepresentedbyablockdiagramgiveninFigure7.2. G1(s)H1(s)U(s)+-Y(s)ControllerPlantFeedback ElementKFigure7.2:Feedbackcontrolsystemwithastaticcontrollerinthedirectpath Theclosed-looptransferfunctionofthissystemisgivenby \n\n  \n   \r\r \r \r\r \r  Thecorrespondingcharacteristicequationis Thequestiontobeansweredbytherootlocustechniqueis:whatcanbeachievedbychangingthestaticgain,theoretically,fromto?Canwe ndthelocationofsystempolesforallvaluesof?Thepositiveanswertothisquestionledtothedevelopmentoftherootlocustechnique.ItwasdiscoveredbyW.Ewansin1948andwasmathematicallyformulatedin1950inhisfamouspaper(Ewans,1950). Themainideabehindtherootlocustechniqueishiddeninequationwhichisanalgebraicequationinvolvingcomplexnumbers.Itactuallyrepresentstwoequations(forrealandimaginaryparts,orformagnitudesandphaseangles).Inthisbook,wewillconsidertherootlocustechniquefor.Thiswillsimplifyderivationsandmaketherootlocusplotsclearer.Thecomplementaryrootlocusfornegativevaluesofcanbesimilarlyderived.Thisequationproducesthefollowingequationsforthemagnitudes andforthephaseanglesIfwefactorasthen,byusingelementaryalgebrawithcomplexnumbers,weget andThelasttwoequationsarecrucialforthedevelopmentoftherootlocustechnique. Example7.1:Giventheopen-looptransferfunctionThelocationsoftheopen-looppolesandzerosaregiveninFigure7.3.Re!{s}s"1=-2+j2-4d#ca$b-3-2-1j%2j%1Im{s}b&3b&2a'1b&1Figure7.3:Apointinthecomplexplainthatdoesnotlieontherootlocus Takeanypoint(inthecomplexplane.Ifthatpointbelongstotherootlocus,itmustsatisfybothequations(forthemagnitudeandforthephase).Forexample,forthepoint(wehave((((Thus,ifthepoint(belongstotherootlocus,thestaticgainatthatpointmustbeequalto.Itfollowsthatforthepoint(thefollowingmustbesatis ed(((((( whichleadsto))*+,,,,,Wecanconcludethatthepoint)cannotbelongtotherootlocussincethephaseequationisapparentlynotvalid.Thisexampleshowsthatonlyveryselectedpointsfromthecomplexplanecanbelongtotherootlocus. MinumumPhaseSystemsItshouldbeemphasizedthatfromtherootlocusmethoditfollowsthatthesystemshavingunstableopen-loopzerosbecomeunstableforlargevaluesofthestaticgain.Suchkindsofsystemsarecallednonminimumphasesystems,incontrasttominimumphasesystemswhosede nitionisgivenbelow.De nition7.1Systemshavingallopen-loopzerosandpolesintheclosedlefthalfofthecomplexplaneexcludingtheoriginarecalledminimumphasesystems.