/
EVIEW Transcription ActivatorLike Effector Nucleases T EVIEW Transcription ActivatorLike Effector Nucleases T

EVIEW Transcription ActivatorLike Effector Nucleases T - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
484 views
Uploaded On 2015-04-23

EVIEW Transcription ActivatorLike Effector Nucleases T - PPT Presentation

edu ABSTRACT Transcription activatorlike effector TALE nucleases TALENs have recently emerged as a revolution ary genome editing tool in many different organisms and cell types The sitespeci64257c chromosomal doublestrand breaks introduced by TALENs ID: 53839

edu ABSTRACT Transcription activatorlike effector

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "EVIEW Transcription ActivatorLike Effect..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

TranscriptionActivator-LikeEffectorNucleases(TALENs):AHighlyEfÞcientandVersatileToolforGenomeEditingNingSun,HuiminZhaoDepartmentofBiochemistry,UniversityofIllinoisatUrbana-Champaign,600SouthMathewsAvenue,Urbana,Illinois61801 2013WileyPeriodicals,Inc.BiotechnologyandBioengineering,Vol.110,No.7,July,2013 ZFdomainshavelimitedmodularityduetothecontext-dependentDNA-bindingeffects,makingitdifÞcultforZFNstotargetanydesiredDNAsequence(Ramirezetal.,2008).Moreover,lackofspeciÞcityofsomeZFdomainscangenerateoff-targetcleavage,leadingtoundesiredmutationsandchromosomalaberrations(Pattanayaketal.,2011;Radeckeetal.,2010).Recently,transcriptionactivator-likeeffectornucleases(TALENs)haverapidlyemergedasanalternativegenomeeditingtooltoZFNs(recentlyreviewedinJoungandSander,2013).SimilartoZFNs,TALENsusethenon-speciÞcIdomainastheDNAcleavagemoduleandfunctionasdimers(Fig.1B).However,theDNAbindingdomainsofTALENsarecomposedofaseriesoftandemrepeatsasinTALEsoftheplantpathogenicbacteriafromthegenusXanthomonas(asreviewedinBogdanoveandVoytas,2011;MunozBodnaretal.,2013).Eachrepeatcomprises33Ð35aaandrecognizesasinglenucleotide.Thelastrepeattypicallyhasonly20aa,andisthereforecalledaÔÔhalf-repeat.ÕÕTheDNArecognitionspeciÞcityisconferredbythehighlyvariableaminoacidsatpositions12and13(e.g.,NIrecognizesadenine,HDrecognizescytosine,NGrecognizesthymine,andNNrecognizesguanineandadenine)(Bochetal.,2009;MoscouandBogdanove,2009).Unlikethecontext-dependentDNAbindingofZFNs,TALENscanbeeasilyandrapidlyconstructedtotargetalmostanyDNAsequenceduetothesimpleproteinÐDNAcodeandthemodularnature.Inaddition,TALENsexhibitsigniÞcantlyreducedoff-targeteffectsandcytotoxicitiescomparedwithZFNs,makingthemanefÞcientgenomeeditingtool(Dingetal.,2013;Mussolinoetal.,2011).Withinthelast3years,TALENshavebeenwidelyappliedtomodifyendogenousgenesinavarietyoforganisms(TableI).Applicationsincludestudyinggenefunctionsinmodelorganisms,improvingtraitsincropplantsandlivestock,generatingdiseasemodels,andtreatinggeneticdisordersinhumans.Inthisarticle,weprovideacomprehensivereviewofTALENtechnologyincludingtheoptimizationofthescaffold,improvementoftheDNArecognitionspeciÞcity,andassemblyofTALErepeatarrays.DuetotheeaseofdesignandhighefÞciencyofgenomeediting,TALENshaveopenedupmanynewavenuesforbasicandappliedbiologicalresearch.ScaffoldOptimizationTheoriginalTALENconstructionwasreportedbytwoindependentgroups.Lietal.(2011a)fusedthefull-length Figure1.TALEN-mediatedgenomeediting.:Thesite-speciÞcchromosomalDSBisrepairedbyeitherNHEJorHR,resultingingenedisruption,genedeletion,geneinsertionorgenereplacement.:SchematicofTALENarchitecture.ATALENiscomposedofaN-terminalsegment(NTS,pinkbox),acentralrepeatdomain,aC-terminalsegment(CTS,cyanbox),andaIcatalyticdomain(orangeoval).ThecentralrepeatdomaincomprisesaseriesofrepeatunitsthatareresponsibleforspeciÞcrecognitionofthymin(redboxes),adenine(greenboxes),cytosine(blueboxes),andguanine(yellowboxes).TheformationofaheterodimerbytwoTALENsinatail-to-tailorientationatthetargetsiteexecutesasite-speciÞcDNADSB.TheTALEbindingsitesonthetargetDNAareshowninblackandthespacerisshowningray.BiotechnologyandBioengineering,Vol.110,No.7,July,2013 naturalTALE(AvrXa7andPthXo1)withtheIcatalyticdomain,creatingtheTALENsbearinga288aaN-terminalsegment(NTS)anda295aaC-terminalsegment(CTS).Basedonayeastreporterassay,theoptimalspacerlengthbetweenthetwoTALENbindingsiteswasdeterminedtobe16Ð31bp(TableII).Alternatively,theTALENscreatedbyChristianetal.(2010)encompassesa287aaNTSanda231aaCTS.ThisscaffoldallowsefÞcientDNAcleavageagainsttargetsiteswith13Ð30bpspacers(TableII).SincenaturallyoccurringTALEsaretranscriptionactivatorsfromaplantbacterialpathogen,theirNTSsharborproteinsecretionsignalpeptideswhiletheirCTSscontainnuclearlocalizationsignalpeptidesandatranscriptionactivatordomain(Whiteetal.,2009).ThesesequencescanimpairthecatalyticactivitywhenfusedwiththeIcleavagedomain.ToidentifytheoptimumTALENarchitecturewithhighestcleavageefÞciencyandminimalpeptideportion,scaffoldoptimizationhasbeencarriedoutbyseveralgroups.UsingatruncatedNTSwithonly136aa,Milleretal.(2011)constructedaseriesofTALENsbytrimmingtheCTSbetweenthecentralrepeatunitsandtheInucleasedomain.ThisstudyfoundthatdifferentTALENscaffoldspreferdifferentspacerlengthbetweeneachTALENbindingsite.OneTALENscaffoldwasidentiÞedbearinga63aaCTS,whichcoulddriveefÞcientgenemodiÞcationinhumancellswhenseparatedby12Ð20bpspacers(TableII).ThisscaffoldhassincebeenwidelyappliedforefÞcientgenomeeditinginvariousspecies(Cadeetal.,2012;Hockemeyeretal.,2011;Huangetal.,2011;Leietal.,2012;Mooreetal.,2012;Reyonetal.,2012b;Sanderetal.,2011;Tessonetal.,2011;Woodetal.,2011).Inaddition,anotherTALENscaffoldbearingonlya28aaCTSwithanarrowerseparationrangeof12-13bpwasidentiÞed(TableII).Later,Mussolinoetal.(2011)andChristianetal.(2012)reportedTALENswith TableI.ApplicationsofTALENsfortargetedgenomeeditinginvariousorganisms.OrganismsGenesRefs.ArabidopsisthalianaADH1Cermaketal.(2011)BrachypodiumBdABA1Shanetal.(2013)Cattle(BostaurusCarlsonetal.(2012)Cricket(GryllusimaculatusWatanabeetal.(2012)Frog(XenopustropicalisIshibashietal.(2012),Leietal.(2012)Fruitßy(DrosophilamelanogasterLiuetal.(2012)Hamster(CricetulusgriseusCristeaetal.(2013)Human(HomosapiensCermaketal.(2011),Hockemeyeretal.(2011),Kimetal.(2011),Milleretal.(2011),Mussolinoetal.(2011),San-janaetal.(2012),Wangetal.(2012),Reyonetal.(2012b),Sunetal.(2012b),Dingetal.(2013),Schmid-Burgketal.(2013),Stroudetal.(2013)Medaka(OryziaslatipesAnsaietal.(2013)Mouse(MusmusculusSungetal.(2013)Nematode(CaenorhabditiselegansWoodetal.(2011)Rat(RattusnorvegicusTessonetal.(2011),Tongetal.(2012)Rice(OryzasativaL.Lietal.(2012b),Shanetal.(2013)Silkworm(BombyxmoriMaetal.(2012),Sajwanetal.(2013)Swine(SusscrofaCarlsonetal.(2012)Tobacco(NicotianatabacumZhangetal.(2013)Yeast(SaccharomycescerevisiaeLietal.(2011b)ZebraÞsh(DaniorerioHuangetal.(2011),Sanderetal.(2011),Bedelletal.(2012),Cadeetal.(2012),Dahlemetal.(2012),Mooreetal.(2012),Chenetal.(2013)SunandZhao:TranscriptionActivator-LikeEffectorNucleasesBiotechnologyandBioengineering evenshorterCTSsthatexhibitnarrowoptimalrangesofspacers(TableII).AsystematicstudywascarriedoutbySunetal.(2012b)whoconstructed10differentTALENscaffoldswithvariousNTSsandCTSs.TheDNAcleavageactivityofeachscaffoldwasassayedagainst10substrateswithdifferentspacersinayeastreportersystem.Basedonthis10matrix,twoTALENscaffoldswithhighDNAcleavageefÞciencyinbothyeastandhumancellswereidentiÞed.Onebearinga207aaNTSanda31aaCTSpreferstargetsiteswith10Ð16bpspacerswhileanotherbearinga207aaNTSanda63aaCTShashighestefÞciencywhenseparatedby14Ð32bpspacers(TableII).ItisnoteworthythattheTALENwitha50aaNTShasnocatalyticactivityagainstanytargetsites.Lateron,Gaoetal.(2012)solvedthecrystalstructureoftheTALENTSanddiscoveredanextendedN-terminalDNAbindingregioncomposedofthe127aaimmediatelyprecedingthecentralrepeatunits.The127aaNTSfeaturesfourcontinuousrepeats.Eachrepeatcontainstwoandaninterveningloop(Fig.2A),astructuralfeaturehighlysimilartothatofthecentralrepeatunit.Althoughthe127aaNTSdoesnotconfersequencespeciÞcity,itiscrucialforDNAbinding.ThisfeatureexplainswhyalltheeffectiveTALENscaffoldshaveatleast127aaprecedingthecentralrepeatunits(TableII).Asecond-generationGoldyTALENscaffoldhasbeendemonstratedtoimprovethegenomeeditingefÞciencyinzebraÞsh(Bedelletal.,2012).GoldyTALENisbasedonascaffoldpreviouslyreportedbyMilleretal.(2011)whichconsistsofa136aaNTSanda63aaCTS.However,ithasninedifferentaasubstitutionsattheNTSandÞvedifferentaasubstitutionsattheCTS.UsingtheGoldyTALENscaffoldandzebraÞshdeliverysystem,certainlociweremodiÞedwith100%efÞciency.Moreover,theyprovidedtheÞrstexampleofHR-basedgenomeeditinginzebraÞshusingsingle-strandedDNAasadonor.TheGoldyTALENscaffoldwasalsoappliedforefÞcientgeneknockoutinlivestock(Carlsonetal.,2012).BecausetheIcatalyticdomainmustdimerizetobecomeactive,twoTALENsubunitsareassembledasheterodimersatthecleavagesite.However,cleavage-competenthomodimerscomposedofeachsubunitmayalsoformandgenerateoff-targetcleavage,whichcanlimitsafetyorefÞciency.Toaddressthislimitation,obligateheterodimermutationswereintroducedatthedimerinterfaceoftheIcleavagedomainwhichpreventedhomodimerizationbasedonelectrostaticandhydrophobicinteractions.ThecreationofIvariantsthatpreferentiallyheterodimerizesuccessfullyreducedoff-targetcleavageofZFNsandrelievedtoxicity(Doyonetal.,2011;Milleretal.,2007;Szczepeketal.,2007).AsimilarprinciplewasappliedtoTALENsbyCadeetal.(2012)forthegenerationofzebraÞshknockoutlines.TheheterodimericTALENsshowsimilarorevengreateractivitiesthantheirhomodimericcounterparts.Moreover,theTALENsconstructedwithheterodimericIdomainsinducedsmallernumbersofabnormalordeadembryos,indicatingreducedtoxicity.ThisobligateheterodimericTALENconÞgurationhasalsobeenreportedbyothergroupsforgeneknockoutstudies(Dahlemetal.,2012;Huangetal.,2011;Leietal.,2012).DNARecognitionSpeciÞcityTheDNArecognitionspeciÞcityofTALENsisconferredbytherepeat-variablediresidues(RVDs)atpositions12and13ofeachrepeat.Morethan20differentRVDshavebeenidentiÞedinTALEs,amongwhichNI,NG,HD,NN,andHGarethemostcommononesrecognizingthenucleotidesA,T,C,G/A,andT,respectively(Bochetal.,2009;MoscouandBogdanove,2009).Basedoncrystalstructures,TALEbindstotargetDNAasaright-handedsuperhelix(Fig.2B).Eachrepeatunitformsaleft-handed,two-helixbundlethatpresentsanRVD-containinglooptotheDNAmajorgroove(Dengetal.,2012a;Maketal.,2012).TheÞrstresidueofeachRVD(residue12ofeachrepeat),eitherHisorAsn,doesnotcontactDNAdirectly.Instead,thesidechainformsahydrogenbondtothebackbonecarbonyloxygenofAlaatposition8(Ala)ofeachrepeat,stabilizingthelocalconformationoftheRVD-containingloop(Fig.2CÐE).Sequence-speciÞccontactsofTALEstotargetDNAaremadebythesecondresidueofeachRVD(residue13ofeachrepeat)tothecorrespondingbaseonthesensestrand.Inthe TableII.EngineeredTALENscaffoldswithdifferentNTSsandCTSs.NTS(aa)CTS(aa)Spacer(bp)ReportersystemRefs.28829516Ð31-galactosidaseassayinyeastLietal.(2011a)28828516TransientexpressionassayintobaccoleavesMahfouzetal.(2011)28723113Ð30-galactosidaseassayinyeastChristianetal.(2010)2876315MutagenesisinmedakaembryosAnsaietal.(2013)2076314Ð32-galactosidaseassayinyeastSunetal.(2012b)2073110Ð16-galactosidaseassayinyeastSunetal.(2012b)1534712Ð21dsEGFPassayinHEK293Mussolinoetal.(2011)1531712dsEGFPassayinHEK293Mussolinoetal.(2011)1366312Ð20SurveyornucleaseassayinK562Milleretal.(2011)1362812Ð13SurveyornucleaseassayinK562Milleretal.(2011)1361813Ð16-galactosidaseassayinyeastChristianetal.(2012)Thespacerlengthwasnotoptimizedinthestudy.BiotechnologyandBioengineering,Vol.110,No.7,July,2013 HDRVDsspeciÞcforCnucleotides,thecarboxylateoxygenofAspformsahydrogenbondtotheaminegroupofcytosine,whichexcludestheotherbasesthroughphysicalorelectrostaticclash(Fig.2C).InthecaseofNGandHGRVDsspeciÞcforTnucleotides,thebackbonecarbonofthemakesanon-polarvanderWaalscontactwiththemethylgroupoftheopposingthyminebase,whichislessfavorablefortheotherbases(Fig.2DandE).IntheNIRVDsspeciÞcforAnucleotides,thealiphaticsidechainofIlemakesnon-polarvanderWaalsinteractionstoC8andN7ofadenine,whichreducesthebindingafÞnitytotheotherbases(Fig.2F).NNRVDsarecommonlyusedtorecognizeGnucleotides.ThesidechainofAsnresiduemakesahydrogenbondwiththeN7nitrogenoftheopposingguaninebase(Fig.2G).ButsimilarinteractionmightbemadewiththeN7nitrogenofadenine,whichmakesNNRVDsassociatewithAandGnucleotideswithalmostidenticalfrequency.BecauseHDandNNRVDsformhydrogenbondswithDNAbases,thebindingafÞnitiesofHDtocytosineandNNtoguaninearemuchstrongerthanthevanderWaalscontactsofNItoadenineandNG/HGtothymine.Ithasbeensuggestedtoincorporateatleast3Ð4strongRVDsfortheconstructionofefÞcientTALENs(Streubeletal.,2012).ThelackofspeciÞcRVDstorecognizeguaninelimitsTALENsÕbroaderapplicationsbecausenon-speciÞcbindingcangenerateoff-targetcleavage,resultinginunexpectedgenomicinstabilityandcytotoxicity.Morbitzeretal.(2010)discoveredthattheNKRVDscanfacilitatespeciÞctargetingofGnucleotidesthroughinplantafunctionanalysis.Based Figure2.CrystalstructuresofTALEs.:TheTALENTSfeaturesfourcontinuousrepeats,whichareimportantfortheDNAbindingafÞnity(adaptedfromGaoetal.,2012,PDBidentiÞcationcode:4HPZ).:OverallstructureoftheTALEPthXo1centralrepeatdomainincomplexwithitstargetsite(adaptedfromMaketal.,2012,proteindatabank(PDB)identiÞcationcode:3UGM).:InteractionofRVDHDwithcytosine(adaptedfromGaoetal.,2012,PDBidentiÞcationcode:4HPZ).Hydrogenbondsareindicatedbycyanlines.:InteractionofRVDHGwiththymine(adaptedfromMaketal.,2012,PDBidentiÞcationcode:3UGM).Anon-polarvanderWaalsinteractionisshowninadottedline.:InteractionofRVDNGwiththymine(adaptedfromGaoetal.,2012,PDBidentiÞcationcode:4HPZ).:InteractionofRVDNIwithadenine(adaptedfromMaketal.,2012,PDBidentiÞcationcode::InteractionofRVDNNwithguanine(adaptedfromMaketal.,2012,PDBidentiÞcationcode:3UGM).:InteractionofRVDNGwith5-methylcytosine(adaptedfromDengetal.,2012b,PDBidentiÞcationcode:4GJR).:InteractionofRVDNwith5-methylcytosinebasedonastructuralmodel.:InteractionoftheNTSwiththe5-precedingthymine.(AdaptedfromMaketal.,2012,PDBidentiÞcationcode:3UGM.)ThecoloringofthetworepeatsinTALENTSmatchesthatinA.SunandZhao:TranscriptionActivator-LikeEffectorNucleasesBiotechnologyandBioengineering ontheSELEXassay,Milleretal.(2011)providedinvitroevidencethatRVDNKhasamuchstrongerpreferenceforguanineoveradenine,whichrepresentsapromisingcodeforthespeciÞcrecognitionofGnucleotides.However,substitutionofRVDNNwithNKsigniÞcantlyreducedTALENactivityinzebraÞshembryo(Huangetal.,2011).SubstantiallyloweractivitiesinNKcontainingTALEshavealsobeenobservedinplantsandinmammaliancells(Congetal.,2012;Streubeletal.,2012).Therefore,RVDNKisnotidealforguaninerecognitionbecausetheimprovementinspeciÞcitysacriÞcesefÞciency.Alternatively,NHhasbeenreportedasacompetentguanine-speciÞcRVD,whichhasmuchhigherefÞciencythanRVDNK(Congetal.,2012;Streubeletal.,2012).ComputationalmodelinganalysisshowedthattheimidazoleringontheHisoftheNHRVDhasacompactbase-stackinginteractionwiththeguaninebase,suggestingapossiblemechanismforitsincreasedspeciÞcityforGnucleotidewhilemaintainingthebindingafÞnity(Congetal.,2012).Althoughsuccessfullyusedinvariouscellularcontexts,TALEDNAbindingdomainshavebeenreportedtobeincapableoftargetingmethylatedDNA(Bultmannetal.,2012).OftenconsideredastheÞfthbase,5-methylcytosine(5mC)isamajorepigeneticmarkandwidelydistributedinfungi,plant,andmammaliangenomes(Suetal.,2011).Inaddition,5mChasbeenidentiÞedinCpGislandsofmanypromoters,whichareimportantregulatoryregionsforgenomemodiÞcation(Maunakeaetal.,2010).Recently,twogroupsdiscoveredthatRVDNGandN(anasteriskindicatesadeletionatresidue13intherepeatunit)canaccommodate5mCefÞcientlyinvitroandinvivo(Dengetal.,2012b;Valtonetal.,2012).Thymineisstructurallysimilarto5mC,withtheonlydifferenceatposition4,whichisnotinvolvedinbindingtoTALErepeats.ThisobservationindicatesthattheNGRVDspeciÞcforthyminemightbeusedtorecognize5mC.TheproteincrystalstructuresolvedbyDengetal.(2012b)showsthatlackofsidechainofGlyinNGRVDsprovidessufÞcientspacetoaccommodatethe5-methylgroupof5mCandallowstheformationofvanderWaalscontacts(Fig.2H).BecauseRVDsarefollowedimmediatelybytwoconservedGlyresidues,NisroughlyequivalenttoNGexceptforashortenedRVDloop(Fig.2I).UsingNtocodefor5mC,Valtonetal.(2012)demonstratedtheÞrstexampleofTALEN-mediatedmodiÞcationatamethylatedlocusinhumancells.Accommodationof5mCbyTALErepeatsthroughtheRVDNGorNextendstheDNArecognitioncodeandenablesresearcherstodesignTALENstotargethyper-methylatedDNAregions,whichhasgreatpotentialinepigeneticsstudiesandhumantherapeuticapplications.AllnaturallyoccurringTALEtargetsitesareprecededbya-thymineatposition0,whichwaspreviouslybelievedtobeessentialforTALEfunction(Bochetal.,2009;MoscouandBogdanove,2009).TheTALEcrystalstructurerevealsthattwodegeneraterepeatspriortothecentralrepeatdomainappeartocooperatetospecifytheconserved5(Maketal.,2012).TheindoleringofaTrpresidueintherepeatR(-1)formsavanderWaalscontactwiththemethylgroupofthethyminebase,suggestingapossiblemechanismfortheconservedspeciÞcityatposition0(Fig.2J).SunandcoworkersreportedthatTALENswithshorterCTSs(31aa)showhigherefÞciencyagainstnaturalTALErecognitionsitesprecededbya5-TthanthatagainstunnaturalTALEsitesprecededbyA,C,orG.However,TALENvariantswithlongerCTSs(63Ð117aa)arecapableofcleavingunnaturalDNAsubstrateswithsimilarefÞciencycomparedwiththatofnaturalTALEsites(Sunetal.,2012b).Otherstudiesalsoprovidedevidencethatathymineatposition0isnotstrictlyrequiredforTALENactivity(Briggsetal.,2012;Milleretal.,2011;Yuetal.,2011).Notably,therearenineleucinezipper-likeheptadrepeatscloselylinkedtotheCterminusoftheTALEcentralrepeatdomain(YangandGabriel,1995).Theseleucine-richrepeatsmaymediateTALE/DNAinteractionsandincreaseDNAbindingafÞnity,makingthe5-Tlessofarequirement.Detailedstructuralstudiescouldhelpsolvethisuncertainty.Therequirementofapreceding5-TcanbemitigatedusingcertainTALENscaffolds,allowinggreaterßexibilityinchoosingtargetsitesingenomeeditingendeavors.AssemblyofTALERepeatArraysBecauseofthehighsimilaritybetweeneachTALErepeatunit,itischallengingtoconstructplasmidsencodinglongarraysofTALErepeats.Toaddressthislimitation,numerousmethodshavebeendevelopedtoassemblethehighlyrepetitiveTALEcentralrepeatdomainsrapidlyandcost-effectively(JoungandSander,2013).Basedonastandardcloningstrategy,Sanderandcoworkersdescribedarestrictionenzymeandligation(REAL)method,inwhichsingleTALErepeatsarejoinedtogetherusingroutinerestrictiondigestionandligationtechniques(Sanderetal.,2011).Initially,theyconstructedalibraryofplasmidsencodingvariousindividualTALErepeatsbyDNAsynthesis.Intheassemblystep,twoTALErepeatsareÞrstjoinedtogetherbyligatingcompatibleoverhangsgeneratedbydigestionwithrestrictionendonucleases.Next,theligationproductencodingtwoTALErepeatsisjoinedwithanotherTALErepeatdimerinthesamemanner,resultinginaDNAfragmentencodingfourTALErepeats.ThisprocesscontinuesinaniterativefashionuntilaTALErepeatarrayofthedesiredlengthisassembled(Fig.3A).Usingalargeplasmidlibraryofpre-assembledmultipleTALErepeats,REALcanbeperformedinamorerapidandlesslabor-intensivefashion,whichisreferredtoasREAL-Fast(Reyonetal.,2012a).Withthehelpofisocaudamerrestrictionenzymes(e.g.,IandI),aunitassemblymethodhasbeendescribedforbuildinglongTALErepeatarraysinthesimilarhierarchicalfashion(Huangetal.,2011).UtilizationofGoldenGatecloninghasgreatlyfacilitatedandacceleratedthesynthesisofTALEgenes(Cermaketal.,2011;Geissleretal.,2011;Lietal.,2011b,2012a;Morbitzeretal.,2011;Sanjanaetal.,2012;Weberetal.,2011;ZhangBiotechnologyandBioengineering,Vol.110,No.7,July,2013 etal.,2011).GoldenGatecloninghasbeendevelopedtoovercomethedifÞcultyofassemblingthemonomersintoorderedmultimerarrays(Engleretal.,2008).ItemploystypeIISrestrictionendonucleasesthatcutoutsideoftheirrecognitionsequencesandproducenon-palindromic,4bp-overhangs.SincetherecognitionandcleavagesitesarespatiallyseparatedintypeIISrestrictionenzymes,essentiallyanydesired5-overhangsequencecanbegenerated.Moreover,becausethecorrectligationproductslacktheenzymerecognitionsiteandcannotberecut,thecleavageandligationcanbecarriedoutinthesamereactionmixtureinasinglestep.ToconstructaTALEcentralrepeatdomaintorecognizeadesiredtargetsite,eachindividualrepeatmustbeßankedbythetypeIISrestrictionsitesatboth5-and-ends.Restrictionendonucleasedigestionremovestheßankingrestrictionsitesandgeneratesuniqueterminaloverhangs.TheoverhangsaredesignedsothateachrepeatligatesspeciÞcallytoanotherrepeatwithacompatibleoverhang.Thus,the3-endofÞrstrepeatcanonlyligatetothe5-endofthesecondrepeat,the3-endofthesecondrepeatcanonlyligatetothe5-endofthethirdrepeatandsoon.Therefore,thepositionofeachrepeatwithintheTALEcentralrepeatdomainisdeÞnedexclusivelybythegivenoverlap.FortheÞrstroundofGoldenGatereaction,6Ð10repeatsareclonedintoanintermediateplasmid.ThesecondroundofGoldenGatereactionassemblestheTALErepeatarraysofeachintermediateplasmidintotheÞnalbackboneplasmidandmakesthecompleteTALEcentralrepeatdomainfusedwithIorotherfunctionalproteindomains(Fig.3B).ToincreasetheassemblyefÞciency,the Figure3.SchematicofthestrategiesfortheassemblyofTALErepeatarrays.:TheREALstrategybasedonhierarchicalligations(Sanderetal.,2011).:TheGoldenGatecloning-basedstrategy(Cermaketal.,2011).EachrepeatunitisßankedbytherecognitionsitesofatypeIISrestrictionendonuclease(blacktriangles).TheÞrstroundofGoldenGatereactionassemblesmultipleTALErepeatunitsinasinglestep.ThesecondroundofGoldenGatereactionreliesontherecognitionsiteofadifferenttypeIISrestrictionenzyme(pinktriangles),whichassemblesthecompleteTALEgenesfrompre-assembledrepeatmultimers.:TheFLASHassemblymethodbasedonsolid-phaseligation(Reyonetal.,2012b).Ligationsarecarriedoutiterativelyonastreptavidin-coatedmagneticbead(browncircle),whichcontainsanimmobilizedbiotinylatedDNAdouble-strandadaptor(greenbox).TheÞnalligationproductisreleasedfromthesolidphasebyrestrictiondigestionandsubclonedintotheÞnalbackbonevector.SunandZhao:TranscriptionActivator-LikeEffectorNucleasesBiotechnologyandBioengineering andthetoxicgeneareintroducedforblue/whitescreeningandselection,respectively.WiththehelpofpreassembledTALErepeattetramersandtrimers,asingle-stepGoldenGatestrategyhasbeendevelopedtogenerateTALENsthatrecognize15bptargetsiteswithin2days(Dingetal.,2013).Duetoitseaseofuseandpublicavailability,GoldenGateassemblyprovidesaconvenientmeanstoconstructTALENsforacademiclaboratories.Forindustrialscalesynthesis,developmentofasolid-phaseligationstrategyhasfacilitatedthecloningofTALEgenesinahigh-throughputandcost-effectivemanner(Briggsetal.,2012;Reyonetal.,2012b;Wangetal.,2012).Thesolid-phasestrategyassemblesTALErepeatunitsonastreptavidin-coatedmagneticbeadthatcontainsanimmo-bilizedbiotinylatedDNAdouble-strandadaptorwitharestrictionendonucleasesiteononeend.LigationofTALErepeatunitsisunidirectionalanditerative.Ineachcycle,newlyaddedTALErepeatunitsareligatedtotheimmobilizedDNAfragmentsandsubsequentwashingstepsremoveundesiredproducts.Thecycleiscontinueduntilanarrayofthedesiredlengthisassembled.TheÞnalligationproductisthenreleasedfromthesolidphasebyrestrictiondigestionandsubclonedintotheÞnalbackbonevector(Fig.3C).Withthisstrategy,TALErepeatunitsareassembledonsolid-phaseratherthaninsolution,therebyavoidingtheneedforgelisolation,puriÞcation,oranalysisofintermediateplasmids.With376archivedplasmidsencodingTALErepeatsastetramers,trimers,dimers,andmonomers,thefastligation-basedautomatablesolid-phasehigh-throughput(FLASH)systemenablesassemblyof96TALEgenesinlessthanoneday.Withautomation,FLASHcanmakesequence-veriÞedTALEexpressionplasmidsfor$100each,includingthecostoflabor(Reyonetal.,2012b).Insteadofusingapre-assembledplasmidlibrary,iterativecappedassembly(ICA)buildsfull-lengtharraysfromindividualTALErepeatmonomers(Briggsetal.,2012).Introductionofcappingoligonucleotideseliminatesincompleteligationandmonomerself-ligation,whichareessentialfortheproductionofpurefull-lengthTALErepeatarrays.Withautomation,ICAenablesefÞcientassemblyofTALEgenesbearingupto21repeatsfollowedbyligationintoanexpressionplasmidwithin3h.Wangetal.(2012)performedsolid-phaseligationonachip,whichallowsthesynthesisof100TALEgenesbearing16or20repeatsin3days.Recently,aligation-independentcloning(LIC)techniquehasbeendevelopedforhigh-throughputassemblyofTALEgenes(Schmid-Burgketal.,2013).ComparedwithGoldenGatecloning,LICreliesonmuchlonger(10Ð30bp)non-palindromicoverhangstoannealwiththeoverhangsofotherfragmentsinahighlyspeciÞcmanner.Thelongoverhangsaregeneratedbythecontrollable3-exonucleaseactivityofT4DNApolymerase.BecausethefragmentsÕlongoverlapsdonotdissociateduringtransformation,theannealedproductscanbedirectlytransformedintoEscherichiacoliwithoutpriorligationstepandligatedthroughbacterialligases.BecauseofitshighÞdelity,LICcircumventsagar-basedsingle-colonypickingstep,whichallowsgrowthofcellsdirectlyinpolyclonalculturesaftertransformation.Using64repeatdimer-containingplasmids,LICallowsgenerationofcorrectlyassembledTALEgenesbearing18.5repeatunitsinthreedaysthroughahierarchical,twostepassemblyprocess.Inaddition,acomprehensive5-merTALErepeatunitfragmentlibrarycomposedof3,072plasmidswascreated,whichenablesautomatedassemblyof600TALEgenesbearing15.5repeatunitsin1day.ConclusionsandFuturePerspectivesThelast3yearswitnessedthetremendousprogressoftheTALENtechnology.ThescaffoldoptimizationisolatedTALENvariantswithhighDNAcleavageefÞciency,whichisessentialfortargetedgenomeediting.ThecharacterizationofnovelRVDsextendedtheDNArecognitioncodeandhelpedtominimizeoff-targetcleavageactivityofTALENsbyincreasingguaninerecognitionspeciÞcity.DevelopmentofnovelstrategiesforconvenientandquickassemblyofTALErepeatarraysenabledhigh-throughputsynthesisofTALENsandmadeTALENtechnologyaccessibleandaffordableforanyacademicorindustriallab.BesidesTALENs,thereareothertoolsavailableforeditinggenomes.MeganucleasesarenaturalDNAendonucleaseswithhighactivityandspeciÞcity,butitisdifÞculttotailortheirDNArecognitionspeciÞcities.ItisrelativelyeasiertoengineerZFNstotargetcustom-designedDNAsequences,butsomeofthemsufferfromtherequirementofintensivelaborforconstructionandoff-targeteffects(asreviewedinSunetal.,2012a).Recently,Clusteredregularlyinterspacedshortpalindromicrepeats(CRISPR)-mediatedDNAcleav-agehasbeenappliedforgenomeediting(Choetal.,2013;Congetal.,2013;Hwangetal.,2013;Jiangetal.,2013;Jineketal.,2013;Malietal.,2013).ThissystemcanbereprogrammedreadilyusingcustomizedRNAsandenablemultiplexgenomeengineering.However,thelimitedtargetspeciÞcity(14bp)cancauseoff-targetcleavageandtherequirementforaprotospaceradjacentmotif(PAM)restrictsitstargetingrange.Comparedwiththesetools,TALENshavetheadvantageofhighspeciÞcityandmodularity,buttherearealsolimitationsthatremaintobeaddressedforfurtherimprovement.ThebulkysizeofTALENsmightlimittheirbroaderapplications,especiallyinthecaseswhenefÞcientgenedeliverycannotbeachieved.DevelopmentofstrategiesforefÞcientdeliveryofTALENgenesintocellswouldenableTALEN-mediatedgenomeeditinginmoredifferentorganismsandcelltypes.Ineukaryoticcells,DNAispackagedintochromatin.Therefore,chromosomalcontextandepigeneticmodiÞca-tionsplayamajorroleintheDNAaccessibilityofTALENs.ThecombinationofepigeneticmodiÞcationtoolsandTALENtechnologycouldexpandtherangeoftargetforTALEN-mediatedgenomemodiÞcations,whichmightbeapotentialareaforfutureexploration.UnlikeZFNs,theoff-BiotechnologyandBioengineering,Vol.110,No.7,July,2013 targeteffectsofTALENshavenotbeencomprehensivelycharacterized.Mussolinoetal.(2011)carriedoutaside-by-sidecomparisonbetweenZFNsandTALENsandfoundsigniÞcantlyreducednuclease-associatedcytotoxicitiesofTALENs.Dingetal.(2013)alsoreportedminimaloff-target-effectsofTALENsusingexomesequencingandwhole-genomesequencingatlowcoverage,buttheystillcouldnotcompletelyruleoutTALENoff-targeteffects.Therefore,carefulscreeningofthecompletegenomeofTALEN-modiÞedcellsusingdeepsequencinganalysiswouldbeinstructiveforsafeuseofTALENs,especiallyforhumanclinicalapplications.OtherthanfusingwithItomakeDNAendonucleases,TALEshavebeenusedtocreatenovelchimericproteinsbyfusingwithotherfunctionalproteindomains.TALE-basedtranscriptionactivatorshavebeenconstructedtoinducetranscriptionofendogenousgenesinplants(Morbitzeretal.,2010)andhumancells(Bultmannetal.,2012;Gargetal.,2012;Geissleretal.,2011;Lietal.,2012c;Tremblayetal.,2012;Zhangetal.,2011).Byfusingwithtranscriptionrepressordomains,TALEshavebeenusedtogenerateartiÞcialrepressorsforsequence-speciÞcgenerepressioninbacteria(Politzetal.,2012),yeast(Blountetal.,2012),plants(Mahfouzetal.,2012),andhumancells(Congetal.,2012;Lietal.,2012c).Inaddition,chimericTALErecombinases(TALERs)havebeenconstructedbyfusingahyperactivatedcatalyticdomainfromtheDNAinvertaseGinwithaTALEcentralrepeatdomain(Merceretal.,2012).TALERswithoptimizedarchitecturerecombineDNAefÞcientlyinbacterialandmammaliancells,providinganalternativeapproachfortargetedgenomeediting.ItwouldbeinterestingtocombineTALEcentralrepeatarrayswithotherdifferentfunctionaldomainsformanydifferentapplicationsinthefuture.Forexample,aTALEcombinedwithaligand-bindingdomaincanbeappliedforhigh-throughputdrugscreening;aTALEcombinedwithaDNAmethyltransferasecanbeusedfortargetedDNAmodiÞca-tion;aTALEcombinedwithahistonedeacetylasecanbeusedforspeciÞcchromatinmodiÞcation;aTALEcombinedwithacytosinedeaminasecanbeappliedforendogenoustargetedmutagenesis,etc.Thankstosimplicityindesign,convenienceinconstruc-tionandhighsuccessratesacrossspecies,TALENtechnologyhasreceivedmuchattentionsinceitsinvention.Althoughchallengesandobstaclesremain,TALENtechnol-ogywillcontinuetobeanimportanttopicforfutureresearchanddevelopmentandbeneÞtbothbasicandappliedbiologicalsciences.WethanktheNationalInstitutesofHealth(R21HL089418)andDepartmentofChemicalandBiomolecularEngineeringattheUni-versityofIllinoisatUrbana-ChampaignforÞnancialsupportinourpreviousandcurrentstudiesonthedevelopmentofnewgenomeengineeringtools.WethankDr.JulienValtonandDr.PhilippeDuchateaufromCellectisS.A.(Paris,France)forkindlysharingthestructuralmodelexhibitingRVDNinteractingwith5mC.AnsaiS,SakumaT,YamamotoT,ArigaH,UemuraN,TakahashiR,KinoshitaM.2013.EfÞcienttargetedmutagenesisinmedakausingcustom-designedtranscriptionactivator-likeeffectornucleases(TALENs).Genetics193(3):739Ð749.BedellVM,WangY,CampbellJM,PoshustaTL,StarkerCG,KrugRG2nd,TanW,PenheiterSG,MaAC,LeungAY,FahrenkrugSC,CarlsonDF,VoytasDF,ClarkKJ,EssnerJJ,EkkerSC.2012.Invivogenomeeditingusingahigh-efÞciencyTALENsystem.Nature491:114Ð118.BlountBA,WeeninkT,VasylechkoS,EllisT.2012.RationaldiversiÞcationofapromoterprovidingÞne-tunedexpressionandorthogonalregula-tionforsyntheticbiology.PLoSONE7:e33279.BochJ,ScholzeH,SchornackS,LandgrafA,HahnS,KayS,LahayeT,NickstadtA,BonasU.2009.BreakingthecodeofDNAbindingspeciÞcityofTAL-typeIIIeffectors.Science326:1509Ð1512.BogdanoveAJ,VoytasDF.2011.TALeffectors:CustomizableproteinsforDNAtargeting.Science333:1843Ð1846.BriggsAW,RiosX,ChariR,YangL,ZhangF,MaliP,ChurchGM.2012.Iterativecappedassembly:Rapidandscalablesynthesisofrepeat-moduleDNAsuchasTALeffectorsfromindividualmonomers.NucleicAcidsRes40:e117.BultmannS,MorbitzerR,SchmidtCS,ThanischK,SpadaF,ElsaesserJ,LahayeT,LeonhardtH.2012.TargetedtranscriptionalactivationofpluripotencygenebycombiningdesignerTALEsandinhibitionofepigeneticmodiÞers.NucleicAcidsRes40:5368Ð5377.CadeL,ReyonD,HwangWY,TsaiSQ,PatelS,KhayterC,JoungJK,SanderJD,PetersonRT,YehJR.2012.HighlyefÞcientgenerationofheritablezebraÞshgenemutationsusinghomo-andheterodimericTALENs.NucleicAcidsRes40(16):8001Ð8010.CarlsonDF,TanW,LillicoSG,StverakovaD,ProudfootC,ChristianM,VoytasDF,LongCR,WhitelawCB,FahrenkrugSC.2012.EfÞcientTALEN-mediatedgeneknockoutinlivestock.ProcNatlAcadSciUSA109:17382Ð17387.CarrollD.2011.Genomeengineeringwithzinc-Þngernucleases.Genetics188(4):773Ð782.CermakT,DoyleEL,ChristianM,WangL,ZhangY,SchmidtC,BallerJA,SomiaNV,BogdanoveAJ,VoytasDF.2011.EfÞcientdesignandassemblyofcustomTALENandotherTALeffector-basedconstructsforDNAtargeting.NucleicAcidsRes39:e82.ChenS,OikonomouG,ChiuCN,NilesBJ,LiuJ,LeeDA,AntoshechkinI,ProberDA.2013.Alarge-scaleinvivoanalysisrevealsthatTALENsaresigniÞcantlymoremutagenicthanZFNsgeneratedusingcontext-dependentassembly.NucleicAcidsRes41:2769Ð2778.ChoSW,KimS,KimJM,KimJS.2013.TargetedgenomeengineeringinhumancellswiththeCas9RNA-guidedendonuclease.NatBiotechnolChristianM,CermakT,DoyleEL,SchmidtC,ZhangF,HummelA,BogdanoveAJ,VoytasDF.2010.TargetingDNAdouble-strandbreakswithTALeffectornucleases.Genetics186:757Ð761.ChristianML,DemorestZL,StarkerCG,OsbornMJ,NyquistMD,ZhangY,CarlsonDF,BradleyP,BogdanoveAJ,VoytasDF.2012.TargetingGwithTALeffectors:AcomparisonofactivitiesofTALENsconstructedwithNNandNKrepeatvariabledi-residues.PLoSONE7:e45383.CongL,ZhouR,KuoYC,CunniffM,ZhangF.2012.ComprehensiveinterrogationofnaturalTALEDNA-bindingmodulesandtranscrip-tionalrepressordomains.NatCommun3:968.CongL,RanFA,CoxD,LinS,BarrettoR,HabibN,HsuPD,WuX,JiangW,MarrafÞniLA,ZhangF.2013.MultiplexgenomeengineeringusingCRISPR/Cassystems.Science339:819Ð823.CristeaS,FreyvertY,SantiagoY,HolmesMC,UrnovFD,GregoryPD,CostGJ.2013.Invivocleavageoftransgenedonorspromotesnuclease-mediatedtargetedintegration.BiotechnolBioeng110:871Ð880.DahlemTJ,HoshijimaK,JurynecMJ,GuntherD,StarkerCG,LockeAS,WeisAM,VoytasDF,GrunwaldDJ.2012.Simplemethodsforgener-atinganddetectinglocus-speciÞcmutationsinducedwithTALENsinthezebraÞshgenome.PLoSGenet8:e1002861.SunandZhao:TranscriptionActivator-LikeEffectorNucleasesBiotechnologyandBioengineering DengD,YanC,PanX,MahfouzM,WangJ,ZhuJK,ShiY,YanN.2012a.Structuralbasisforsequence-speciÞcrecognitionofDNAbyTALeffectors.Science335:720Ð723.DengD,YinP,YanC,PanX,GongX,QiS,XieT,MahfouzM,ZhuJK,YanN,ShiY.2012b.RecognitionofmethylatedDNAbyTALeffectors.CellRes22:1502Ð1504.DingQ,LeeYK,SchaeferEA,PetersDT,VeresA,KimK,KuperwasserN,MotolaDL,MeissnerTB,HendriksWT,TrevisanM,GuptaRM,MoisanA,BanksE,FriesenM,SchinzelRT,XiaF,TangA,XiaY,FigueroaE,WannA,AhfeldtT,DaheronL,ZhangF,RubinLL,PengLF,ChungRT,MusunuruK,CowanCA.2013.ATALENgenome-editingsystemforgeneratinghumanstemcell-baseddiseasemodels.CellStemCell12:238Ð251.DoyonY,VoTD,MendelMC,GreenbergSG,WangJ,XiaDF,MillerJC,UrnovFD,GregoryPD,HolmesMC.2011.Enhancingzinc-Þnger-nucleaseactivitywithimprovedobligateheterodimericarchitectures.NatMethods8:74Ð79.EnglerC,KandziaR,MarillonnetS.2008.Aonepot,onestep,precisioncloningmethodwithhighthroughputcapability.PLoSONE3(11):e3647.GaoH,WuX,ChaiJ,HanZ.2012.CrystalstructureofaTALEproteinrevealsanextendedN-terminalDNAbindingregion.CellRes22:1716ÐGargA,LohmuellerJJ,SilverPA,ArmelTZ.2012.EngineeringsyntheticTALeffectorswithorthogonaltargetsites.NucleicAcidsRes40:7584ÐGeisslerR,ScholzeH,HahnS,StreubelJ,BonasU,BehrensSE,BochJ.2011.TranscriptionalactivatorsofhumangeneswithprogrammableDNA-speciÞcity.PLoSONE6:e19509.HockemeyerD,WangH,KianiS,LaiCS,GaoQ,CassadyJP,CostGJ,ZhangL,SantiagoY,MillerJC,ZeitlerB,CheroneJM,MengX,HinkleySJ,RebarEJ,GregoryPD,UrnovFD,JaenischR.2011.GeneticengineeringofhumanpluripotentcellsusingTALEnucleases.NatBiotechnol29:731Ð734.HuangP,XiaoA,ZhouM,ZhuZ,LinS,ZhangB.2011.HeritablegenetargetinginzebraÞshusingcustomizedTALENs.NatBiotechnolHwangWY,FuY,ReyonD,MaederML,TsaiSQ,SanderJD,PetersonRT,YehJR,JoungJK.2013.EfÞcientgenomeeditinginzebraÞshusingaCRISPR-Cassystem.NatBiotechnol31:227Ð229.IshibashiS,CliffeR,AmayaE.2012.HighlyefÞcientbi-allelicmutationratesusingTALENsinXenopustropicalis.BiolOpen1:1273Ð1276.JiangW,BikardD,CoxD,ZhangF,MarrafÞniLA.2013.RNA-guidededitingofbacterialgenomesusingCRISPR-Cassystems.NatBiotech-nol31:233Ð239.JinekM,EastA,ChengA,LinS,MaE,DoudnaJ.2013.RNA-programmedgenomeeditinginhumancells.eLife2:e00471.JoungJK,SanderJD.2013.TALENs:Awidelyapplicabletechnologyfortargetedgenomeediting.NatRevMolCellBiol14:49Ð55.KimH,UmE,ChoSR,JungC,KimH,KimJS.2011.Surrogatereportersforenrichmentofcellswithnuclease-inducedmutations.NatMethodsLeiY,GuoX,LiuY,CaoY,DengY,ChenX,ChengCH,DawidIB,ChenY,ZhaoH.2012.EfÞcienttargetedgenedisruptioninXenopusembryosusingengineeredtranscriptionactivator-likeeffectornucleases(TALENs).ProcNatlAcadSciUSA109:17484Ð17489.LiT,HuangS,JiangWZ,WrightD,SpaldingMH,WeeksDP,YangB.2011a.TALnucleases(TALNs):HybridproteinscomposedofTALeffectorsandFokIDNA-cleavagedomain.NucleicAcidsRes39:359ÐLiT,HuangS,ZhaoX,WrightDA,CarpenterS,SpaldingMH,WeeksDP,YangB.2011b.ModularlyassembleddesignerTALeffectornucleasesfortargetedgeneknockoutandgenereplacementineukaryotes.NucleicAcidsRes39:6315Ð6325.LiL,PiatekMJ,AtefA,PiatekA,WibowoA,FangX,SabirJS,ZhuJK,MahfouzMM.2012a.RapidandhighlyefÞcientconstructionofTALE-basedtranscriptionalregulatorsandnucleasesforgenomemodiÞca-tion.PlantMolBiol78:407Ð416.LiT,LiuB,SpaldingMH,WeeksDP,YangB.2012b.High-efÞciencyTALEN-basedgeneeditingproducesdisease-resistantrice.NatBio-technol30:390Ð392.LiY,MooreR,GuinnM,BlerisL.2012c.Transcriptionactivator-likeeffectorhybridsforconditionalcontrolandrewiringofchromosomaltransgeneexpression.SciRep2:897.LiuJ,LiC,YuZ,HuangP,WuH,WeiC,ZhuN,ShenY,ChenY,ZhangB,DengWM,JiaoR.2012.EfÞcientandspeciÞcmodiÞcationsoftheDrosophilagenomebymeansofaneasyTALENstrategy.JGenetGenomics39:209Ð215.MaS,ZhangS,WangF,LiuY,LiuY,XuH,LiuC,LinY,ZhaoP,XiaQ.2012.HighlyefÞcientandspeciÞcgenomeeditinginsilkwormusingcustomTALENs.PLoSONE7:e45035.MahfouzMM,LiL,ShamimuzzamanM,WibowoA,FangX,ZhuJK.2011.Denovo-engineeredtranscriptionactivator-likeeffector(TALE)hy-bridnucleasewithnovelDNAbindingspeciÞcitycreatesdouble-strandbreaks.ProcNatlAcadSciUSA108:2623Ð2628.MahfouzMM,LiL,PiatekM,FangX,MansourH,BangarusamyDK,ZhuJK.2012.TargetedtranscriptionalrepressionusingachimericTALE-SRDXrepressorprotein.PlantMolBiol78:311Ð321.MakAN,BradleyP,CernadasRA,BogdanoveAJ,StoddardBL.2012.ThecrystalstructureofTALeffectorPthXo1boundtoitsDNAtarget.Science335:716Ð719.MaliP,YangL,EsveltKM,AachJ,GuellM,DicarloJE,NorvilleJE,ChurchGM.2013.RNA-guidedhumangenomeengineeringviaCas9.Science339(6121):823Ð826.MaunakeaAK,NagarajanRP,BilenkyM,BallingerTJ,DÕSouzaC,FouseSD,JohnsonBE,HongC,NielsenC,ZhaoY,TureckiG,DelaneyA,VarholR,ThiessenN,ShchorsK,HeineVM,RowitchDH,XingX,FioreC,SchillebeeckxM,JonesSJ,HausslerD,MarraMA,HirstM,WangT,CostelloJF.2010.ConservedroleofintragenicDNAmethyl-ationinregulatingalternativepromoters.Nature466:253Ð257.MercerAC,GajT,FullerRP,BarbasCFIII.2012.ChimericTALErecombinaseswithprogrammableDNAsequencespeciÞcity.NucleicAcidsRes40:11163Ð11172.MillerJC,HolmesMC,WangJ,GuschinDY,LeeYL,RupniewskiI,BeausejourCM,WaiteAJ,WangNS,KimKA,GregoryPD,PaboCO,RebarEJ.2007.Animprovedzinc-ÞngernucleasearchitectureforhighlyspeciÞcgenomeediting.NatBiotechnol25:778Ð785.MillerJC,TanS,QiaoG,BarlowKA,WangJ,XiaDF,MengX,PaschonDE,LeungE,HinkleySJ,DulayGP,HuaKL,AnkoudinovaI,CostGJ,UrnovFD,ZhangHS,HolmesMC,ZhangL,GregoryPD,RebarEJ.2011.ATALEnucleasearchitectureforefÞcientgenomeediting.NatBiotechnol29:143Ð148.MooreFE,ReyonD,SanderJD,MartinezSA,BlackburnJS,KhayterC,RamirezCL,JoungJK,LangenauDM.2012.Improvedsomaticmuta-genesisinzebraÞshusingtranscriptionactivator-likeeffectornucleases(TALENs).PLoSONE7:e37877.MorbitzerR,RomerP,BochJ,LahayeT.2010.Regulationofselectedgenomelociusingdenovo-engineeredtranscriptionactivator-likeeffector(TALE)-typetranscriptionfactors.ProcNatlAcadSciUSA107:21617Ð21622.MorbitzerR,ElsaesserJ,HausnerJ,LahayeT.2011.AssemblyofcustomTALE-typeDNAbindingdomainsbymodularcloning.NucleicAcidsRes39:5790Ð5799.MoscouMJ,BogdanoveAJ.2009.AsimpleciphergovernsDNArecogni-tionbyTALeffectors.Science326:1501.MunozBodnarA,BernalA,SzurekB,LopezCE.2013.TellmeataleofTALEs.MolBiotechnol53:228Ð2235.MussolinoC,MorbitzerR,LutgeF,DannemannN,LahayeT,CathomenT.2011.AnovelTALEnucleasescaffoldenableshighgenomeeditingactivityincombinationwithlowtoxicity.NucleicAcidsRes39:9283ÐPattanayakV,RamirezCL,JoungJK,LiuDR.2011.Revealingoff-targetcleavagespeciÞcitiesofzinc-Þngernucleasesbyinvitroselection.NatMethods8:765Ð770.Perez-PineraP,OusteroutDG,GersbachCA.2012.Advancesintargetedgenomeediting.CurrOpinChemBiol16:268Ð277.BiotechnologyandBioengineering,Vol.110,No.7,July,2013 PolitzMC,CopelandMF,PßegerBF.2012.ArtiÞcialrepressorsforcon-trollinggeneexpressioninbacteria.ChemCommun(Camb),DOI:10.1039/c2cc37107cRadeckeS,RadeckeF,CathomenT,SchwarzK.2010.Zinc-Þngernuclease-inducedgenerepairwitholigodeoxynucleotides:Wantedandunwant-edtargetlocusmodiÞcations.MolTher18:743Ð753.RamirezCL,FoleyJE,WrightDA,Muller-LerchF,RahmanSH,CornuTI,WinfreyRJ,SanderJD,FuF,TownsendJA,CathomenT,VoytasDF,JoungJK.2008.UnexpectedfailureratesformodularassemblyofengineeredzincÞngers.NatMethods5:374Ð375.ReyonD,KhayterC,ReganMR,JoungJK,SanderJD.2012a.Engineeringdesignertranscriptionactivator-likeeffectornucleases(TALENs)byREALorREAL-Fastassembly.CurrProtocMolBiolChapter12:UnitReyonD,TsaiSQ,KhayterC,FodenJA,SanderJD,JoungJK.2012b.FLASHassemblyofTALENsforhigh-throughputgenomeediting.NatBiotechnol30:460Ð465.SajwanS,TakasuY,TamuraT,UchinoK,SezutsuH,ZurovecM.2013.EfÞcientdisruptionofendogenousBombyxgenebyTALeffectornucleases.InsectBiochemMolBiol43:17Ð23.SanderJD,CadeL,KhayterC,ReyonD,PetersonRT,JoungJK,YehJR.2011.TargetedgenedisruptioninsomaticzebraÞshcellsusingengi-neeredTALENs.NatBiotechnol29:697Ð698.SanjanaNE,CongL,ZhouY,CunniffMM,FengG,ZhangF.2012.Atranscriptionactivator-likeeffectortoolboxforgenomeengineering.NatProtoc7:171Ð192.Schmid-BurgkJL,SchmidtT,KaiserV,HoningK,HornungV.2013.Aligation-independentcloningtechniqueforhigh-throughputassemblyoftranscriptionactivator-likeeffectorgenes.NatBiotechnol31:76Ð81.ShanQ,WangY,ChenK,LiangZ,LiJ,ZhangY,ZhangK,LiuJ,VoytasDF,ZhengX,ZhangY,GaoC.2013.RapidandefÞcientgenemodiÞcationinriceandBrachypodiumusingTALENs.MolPlant,DOI:10.1093/StreubelJ,BlucherC,LandgrafA,BochJ.2012.TALeffectorRVDspeciÞcitiesandefÞciencies.NatBiotechnol30:593Ð595.StroudDA,FormosaLE,WijeyeratneXW,NguyenTN,RyanMT.2013.Geneknockoutusingtranscriptionactivator-likeeffectornucleases(TALENs)revealsthathumanNDUFA9proteinisessentialforstabi-lizingthejunctionbetweenmembraneandmatrixarmsofcomplexI.JBiolChem288:1685Ð1690.SuZ,HanL,ZhaoZ.2011.ConservationanddivergenceofDNAmethylationineukaryotes:Newinsightsfromsinglebase-resolutionDNAmethylomes.Epigenetics6:134Ð140.SunN,AbilZ,ZhaoH.2012a.Recentadvancesintargetedgenomeengineeringinmammaliansystems.BiotechnolJ7:1074Ð1087.SunN,LiangJ,AbilZ,ZhaoH.2012b.OptimizedTALeffectornucleases(TALENs)foruseintreatmentofsicklecelldisease.MolBiosyst8:1255Ð1263.SungYH,BaekIJ,KimDH,JeonJ,LeeJ,LeeK,JeongD,KimJS,LeeHW.2013.KnockoutmicecreatedbyTALEN-mediatedgenetargeting.NatBiotechnol31(1):23Ð24.SzczepekM,BrondaniV,BuchelJ,SerranoL,SegalDJ,CathomenT.2007.Structure-basedredesignofthedimerizationinterfacereducesthetoxicityofzinc-Þngernucleases.NatBiotechnol25:786Ð793.TessonL,UsalC,MenoretS,LeungE,NilesBJ,RemyS,SantiagoY,VincentAI,MengX,ZhangL,GregoryPD,AnegonI,CostGJ.2011.KnockoutratsgeneratedbyembryomicroinjectionofTALENs.NatBiotechnolTongC,HuangG,AshtonC,WuH,YanH,YingQL.2012.Rapidandcost-effectivegenetargetinginratembryonicstemcellsbyTALENs.JGenetGenomics39:275Ð280.TremblayJP,ChapdelaineP,CoulombeZ,RousseauJ.2012.Transcriptionactivator-likeeffectorproteinsinducetheexpressionofthefrataxingene.HumGeneTher23:883Ð890.UrnovFD,RebarEJ,HolmesMC,ZhangHS,GregoryPD.2010.GenomeeditingwithengineeredzincÞngernucleases.NatRevGenet11:636ÐValtonJ,DupuyA,DaboussiF,ThomasS,MarechalA,MacmasterR,MelliandK,JuilleratA,DuchateauP.2012.Overcomingtranscriptionactivator-likeeffector(TALE)DNAbindingdomainsensitivitytocytosinemethylation.JBiolChem287:38427Ð38432.WangZ,LiJ,HuangH,WangG,JiangM,YinS,SunC,ZhangH,ZhuangF,XiJJ.2012.Anintegratedchipforthehigh-throughputsynthesisoftranscriptionactivator-likeeffectors.AngewChemIntEdEngl51:8505Ð8508.WatanabeT,OchiaiH,SakumaT,HorchHW,HamaguchiN,NakamuraT,BandoT,OhuchiH,YamamotoT,NojiS,MitoT.2012.Non-transgenicgenomemodiÞcationsinahemimetabolousinsectusingzinc-ÞngerandTALeffectornucleases.NatCommun3:1017.WeberE,GruetznerR,WernerS,EnglerC,MarillonnetS.2011.AssemblyofdesignerTALeffectorsbyGoldenGatecloning.PLoSONE6:WhiteFF,PotnisN,JonesJB,KoebnikR.2009.ThetypeIIIeffectorsofXanthomonas.MolPlantPathol10:749Ð7766.WoodAJ,LoTW,ZeitlerB,PickleCS,RalstonEJ,LeeAH,AmoraR,MillerJC,LeungE,MengX,ZhangL,RebarEJ,GregoryPD,UrnovFD,MeyerBJ.2011.TargetedgenomeeditingacrossspeciesusingZFNsandTALENs.Science333:307.YangY,GabrielDW.1995.Xanthomonasavirulence/pathogenicitygenefamilyencodesfunctionalplantnucleartargetingsignals.MolPlantMicrobeInteract8:627Ð631.YuY,StreubelJ,BalzergueS,ChampionA,BochJ,KoebnikR,FengJ,VerdierV,SzurekB.2011.ColonizationofriceleafbladesbyanAfricanstrainofXanthomonasoryzaepv.oryzaedependsonanewTALeffectorthatinducesthericenodulin-3Os11N3gene.MolPlantMicrobeInteract24:1102Ð1113.ZhangF,CongL,LodatoS,KosuriS,ChurchGM,ArlottaP.2011.EfÞcientconstructionofsequence-speciÞcTALeffectorsformodulatingmam-maliantranscription.NatBiotechnol29:149Ð153.ZhangY,ZhangF,LiX,BallerJA,QiY,StarkerCG,BogdanoveAJ,VoytasDF.2013.Transcriptionactivator-likeeffectornucleasesenableefÞcientplantgenomeengineering.PlantPhysiol161:20Ð27.SunandZhao:TranscriptionActivator-LikeEffectorNucleasesBiotechnologyandBioengineering