/
HiRadMat HiRadMat

HiRadMat - PowerPoint Presentation

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
379 views
Uploaded On 2017-04-23

HiRadMat - PPT Presentation

Window Design report v30 1 Michael MONTEIL 12 April 2010 Specifications v30 Interface between machine vacuum and Atmospheric pressure 10 8 mbar P atm Protective atmosphere ID: 540687

michael 2010 april monteil 2010 michael monteil april pressure load thermal foil deflection option solutions temperature ansys design flange

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "HiRadMat" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

HiRadMat WindowDesign report v3.0

1

Michael MONTEIL - 12 April 2010Slide2

Specifications v3.0Interface between machine vacuum and Atmospheric pressure

10

-8 mbar / Patm

Protective atmosphere !!!Aperture min 60 mmResist to a proton beam size on the window :

1s = 0.5 mm

“Beam Size at the TT66 Vacuum Window”,

C. Hessler, 26.02.2010

2

Michael MONTEIL - 12 April 2010Slide3

Solution #5 : Be + C-C

Same as solution #4 but the pressure load is supported by a C-C plate

Simple window assembly

Thin thickness (no differential pumping…)Be cannot pollute vacuum chamber unless C-C fail

Tight

Price of Be but no pumps

Michael MONTEIL - 12 April 2010

3Slide4

Solutions - Sum-up#1: C-C (Differential pumping)

Protective atm (Nitrogen ?)

Radiations?#2: C-C + Graphite foil (useless now)#3: Tight steel “ring” with a C-C plate

#4: BerylliumSafety problem

#5: C-C + Beryllium

Michael MONTEIL - 12 April 2010

4

 TodaySlide5

Different grades of Be

5

Michael MONTEIL - 12 April 2010

Data: Brush WellmanSlide6

Different grades of BePF-60 ?Low rate of Beryllium oxide compare to PS-200

Good quality-price ratio (Next slides…)

1.5 to 2 time cheaper than IF-1Almost the same temperature distribution as pure Be and IF-1 (IF-1 a bit better…)Used in CNGS…

Michael MONTEIL - 12 April 2010

6

Collaboration: J. BlancoSlide7

DesignSpecificationBe & C-CAperture min. 60mmDN80 or DN60 conical flange connection

15 cm depth maximumRemark

Cannot machine Be at CERNMichael MONTEIL - 12 April 2010

7Slide8

DesignCommon design – ChoicesStandard flanges only (cheaper)Be window assembled in lab between 2 flanges (safety)

Conical flange (faster assembly once in experimental area)

DesignConical Flange (plug-in flange)

Tube (connection conical flange <--> conflat flange)

2 x Conflat (Window in-between)

Michael MONTEIL - 12 April 2010

8Slide9

“CNGS” likeCNGSHiRadMat

– Option 1

Michael MONTEIL - 12 April 2010

9

Nota: Those drawing are drafts. Above dimensions are not representative of the realitySlide10

“CNGS” likeMichael MONTEIL - 12 April 2010

10

Data: Brush WellmanSlide11

“CNGS” likeMichael MONTEIL - 12 April 2010

11

Data: Brush WellmanSlide12

“TED @ TI2, TT40” – Beryllium version“TED @ TI2, TT40”

HiRadMat – Option 2

Michael MONTEIL - 12 April 2010

12Slide13

“TED @ TI2, TT40” – Beryllium versionQuote from BW

Michael MONTEIL - 12 April 2010

13Slide14

2 design proposalsOption 1

Option 2

Not that much

Precautions for the assembly

Non Standard conflat

assembly (Tightness)

Might be careful to not cut (shear cut) the Be foil during assembly

Michael MONTEIL - 12 April 2010

14

Life warranty on Be + flange assembly

Easy to assembly

Standard

conflat

assembly

Tightness OK

Not that much

Nota: Those drawing are drafts. Above dimensions are not representative of the realitySlide15

2 design proposalsCost estimationBe Foil

Option 1

Option 2

Number of foil to order : 3Spare : 1Window installed : 1

“In case we break a foil while assembling” : 1

Michael MONTEIL - 12 April 2010

15

Number of flange to order : 2

Spare : 1

Window installed : 1

Nota: Those drawing are drafts. Above dimensions are not representative of the realitySlide16

2 design proposalsCost estimationBe Foil

Option 1

Flange

Option 2FoilMichael MONTEIL - 12 April 2010

16

Nota: Those drawing are drafts. Above dimensions are not representative of the realitySlide17

About thickness, how does BW design their own Be foils?With (Thickness 0.25mm, radius 35mm, pressure 1.01

kPa, E 303Gpa, Poisson 0.08

)Resultssedge=

305MPa > 275 Mpa !!s

center= 297Mpa > 275

Mpa

!!

Michael MONTEIL - 12 April 2010

17

Data: Brush WellmanSlide18

However…BW : “With confirm that your calculations with reference to the DB450277 assembly are correct and show over the recommended values, however, the assembly was designed using empirical data as well taking into consideration the calculated values.

We have performed tests on this design and found it to be reliable, with units sold to customers over the years performing well under real-life conditions

.”ExplanationBecause of plasticity effects, Be foil withstands 1

Atm (according to BW tests) even if Roark’s calculation says that it doesn’t withstand

Michael MONTEIL - 12 April 2010

18

Data: Brush WellmanSlide19

To knowBe have ultra high resistance to fatigue crackingHigh endurance strength level

Michael MONTEIL - 12 April 2010

19

Data: Brush WellmanSlide20

Solutions #5

stresses and deflection -

C-C+Be

under D

P = 1

atm

Linear circular fixed support

2 planes of symmetry

Geometry

Diameter f

80 mm

Thickness: 0.254 mm

Aperture:

f

60 mm

Pressure 1

atm

20

Michael MONTEIL - 12 April 2010Slide21

ANSYS Study - Solutions #5

stresses and deflection -

C-C+Be

under D

P = 1

atm

Beryllium foil study

Smooth and continuous temperature distribution

Through-thickness energy deposition

Coefficient of Thermal Expansion varying with temperature

Be (pure elasticity):

Poisson’s ratio = 0.08

High R

e

= 303

Mpa

21

Michael MONTEIL - 12 April 2010Slide22

Michael MONTEIL - 12 April 2010

22Slide23

Michael MONTEIL - 12 April 2010

23Slide24

Michael MONTEIL - 12 April 2010

24Slide25

Michael MONTEIL - 12 April 2010

25Slide26

Michael MONTEIL - 12 April 2010

26Slide27

Michael MONTEIL - 12 April 2010

27Slide28

Michael MONTEIL - 12 April 2010

28Slide29

Michael MONTEIL - 12 April 2010

29Slide30

Michael MONTEIL - 12 April 2010

30Slide31

Michael MONTEIL - 12 April 2010

31Slide32

Michael MONTEIL - 12 April 2010

32Slide33

Conclusion: influence of gap reducingSo if we flatter the foil on the C-C, we reduce the Max stress (as shows ANSYS calculation with non plasticity model), maybe also stay in elastic domain (Bellow 275Mpa at room Temp).

 We will manage to reduce this gap (flattering the Be foil as much as possible on C-C plate)

Michael MONTEIL - 12 April 2010

33Slide34

Easiness to reduce Gap C-C / BeOption 1

Option 2

Michael MONTEIL - 12 April 2010

34

+

-Slide35

To do :Order Beryllium

Delivery: 4 Weeks ARO for flanges (Option 1)Delivery: 6 Weeks ARO fro foil (Option 2)

AssemblyTestMichael MONTEIL - 12 April 2010

35Slide36

Michael MONTEIL - 12 April 2010

36Slide37

V2.0 slidesMichael MONTEIL - 12 April 2010

37Slide38

Window geometry – C-C option

Carbon/Carbon composite: 1501 G

from SGLCylindrical window

Diameter f 80 mmAperture

f 60 mm

Thickness: 0.5 cm

Aperture (

flange internal diameter

): f 60 mm

38

Michael MONTEIL - 12 April 2010Slide39

Solutions #1 for C-C tightness problem:Differential vacuum

(V2.0)

1 Window C-C

Pumping speed needed: 2.3x108

l/s …2 Windows C-C with differential pumping

Pumping speed needed: 8.94

x

10

2 l/s OK !3 Windows C-C with differential pumpingPumping speed needed: 13 l/s Too low ?!

39

Michael MONTEIL - 12 April 2010Slide40

Solutions #1What about radiations in this area ?Possible maintenance needed on the roots pump…

Protective atmosphere

Decreasing pressure in Vacuumside with serial pumps

Michael MONTEIL - 12 April 201040Slide41

Michael MONTEIL - 12 April 201041

P2 : Roots pump

100 –> 1500 m

3

/h

10

-3

-> 10 Bar

P3 : Ion pump

400 l/s

ReferenceSlide42

Solutions #2 for C-C tightness problem: Add a Graphite foil (v1.0)

42

Michael MONTEIL - 12 April 2010

Solution #3 : Tight

steel“ring

” with a C-C plate (v1.0)

Solution #4 : BerylliumSlide43

Michael MONTEIL - 12 April 2010

43Slide44

ANSYS Study - Solutions #1stresses and deflection -

C-C

under

DP =

1.4

atm

Linear circular fixed support

2 planes of symmetry

Geometry

Diameter f 80 mm

Thickness: 5 mm

Aperture:

f

60 mm

Pressure 1.4 bar

44

Michael MONTEIL - 12 April 2010Slide45

ANSYS Study - Solutions #1

stresses and deflection -

C-C under

D

P = 1.4

atm

Orthotropic properties : 18 plies [0°/90°…]

Smooth and continuous temperature distribution

Through-thickness energy deposition

Coefficient of Thermal Expansion varying with temperature and directions

45

Michael MONTEIL - 12 April 2010Slide46

C-C - Pressure load - Deflection

46

Michael MONTEIL - 12 April 2010

7.4

μmSlide47

C-C - Pressure load – Von-Mises

47

Michael MONTEIL - 12 April 2010

5.9

MpaSlide48

C-C - Pressure load – Tsaï-Wu

48

Michael MONTEIL - 12 April 2010Slide49

C-C - Thermal load ANSYS input =

FLUKA output

Radial

C-C | 1

s

=

0.5

mm

| 1.7e11 p+ | 288 bunches

Axisymmetrical

radial temperature field

Depth

49

Michael MONTEIL - 12 April 2010

T (°C)

R (cm)

T (°C)

Z (cm)Slide50

C-C - Pressure + Thermal load – Deflection

50

Michael MONTEIL - 12 April 2010

10.6

μmSlide51

C-C - Pressure + Thermal load – Von-Mises

51

Michael MONTEIL - 12 April 2010

31

MpaSlide52

C-C - Pressure + Thermal load – Tsaï-Wu

52

Michael MONTEIL - 12 April 2010Slide53

Michael MONTEIL - 12 April 2010

53Slide54

ANSYS Study - Solutions #4

stresses and deflection -

Be under

D

P = 1.4

atm

Linear circular fixed support

2 planes of symmetry

Geometry

Diameter

f

80 mm

Thickness: 0.254 mm

Aperture:

f

60 mm

Pressure 1.4 bar

54

Michael MONTEIL - 12 April 2010Slide55

ANSYS Study - Solutions #4

stresses and deflection -

Be under

D

P = 1.4

atm

Smooth and continuous temperature distribution

Through-thickness energy deposition

Coefficient of Thermal Expansion varying with temperature

Be:

Poisson’s ratio = 0.1

High R

e

= 275

Mpa

High

R

m

= 551

MPa

55

Michael MONTEIL - 12 April 2010Slide56

Be - Pressure load - Deflection

56

Michael MONTEIL - 12 April 2010

0.81 mmSlide57

Be - Pressure load – Von-Mises

57

Michael MONTEIL - 12 April 2010

319

MpaSlide58

Be - Pressure load – Safety factor Ult. Strength

Michael MONTEIL - 12 April 2010

58

1.7Slide59

Be - Thermal load ANSYS input =

FLUKA output

Be | 1

s

=

0

. 5

mm

| 1.7e11 p+ | 288 bunches

Axisymmetrical

radial temperature field

Z (cm)

T (°C)

59

Michael MONTEIL - 12 April 2010

Z (cm)

Radial Be

T (°C)Slide60

Be - Pressure + Thermal load – Deflection

60

Michael MONTEIL - 12 April 2010

0.8

mmSlide61

Be - Pressure + Thermal load – Von-Mises

61

Michael MONTEIL - 12 April 2010

315

MpaSlide62

Be - Pressure + Thermal load – Safety factor Ult. Strength

Michael MONTEIL - 12 April 2010

62

1.7Slide63

ANSYS Study - Solutions #5stresses and deflection -

C-

C+Be under

DP

=

1.4

atm

2 Studies

C-C

(See Solution #4)

Pressure load

Pressure + Temperature loads

Be

(Following slides)

Flattered on a C-C plate (Fixed support)

and apply pressure load on the other side

Flattered on a C-C plate (Fixed support)

and apply pressure load on the other side

+ Temperature load

2 planes of symmetry

Geometry

Diameter

f

80

mm

Thickness

C-C: 5 mm

Be: 0.254 mm

Aperture:

f

60

mm

Pressure 1.4 bar

63

Michael MONTEIL - 12 April 2010Slide64

ANSYS Study - Solutions #5

stresses and deflection -

C-C+Be

under

DP =

1.4

atm

Smooth and continuous temperature distribution

Through-thickness energy deposition

Coefficient of Thermal Expansion varying with temperature

64

Michael MONTEIL - 12 April 2010Slide65

Michael MONTEIL - 12 April 201065

Be (flatter on C-C) - Pressure load – DeformationSlide66

Be (flatter on C-C) - Pressure load – Von-Mises

Michael MONTEIL - 12 April 2010

66Slide67

Thermal load

ANSYS input =

FLUKA output

Radial C-C

C-C + Be | 1

s

=

0.5

mm

| 1.7e11 p+ | 288 bunches

Axisymmetrical

radial temperature field

T (°C)

Z (cm)

67

Michael MONTEIL - 12 April 2010

Z (cm)

Radial Be

Depth C-C

Z (cm)

T (°C)Slide68

Be (flatter on C-C) - Pressure + Thermal load – DeflectionMichael MONTEIL - 12 April 2010

68

x 2.6e+002

5.4 umSlide69

Be (flatter on C-C) - Pressure + Thermal load – Von-Mises

Michael MONTEIL - 12 April 2010

69Slide70

Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength

Michael MONTEIL - 12 April 2010

70

x 2.6e+002Slide71

To do :Rough mechanical design

Solution #1 C-C with differential pumpingMaybe coating

15 cm length between upstream and downstream sidesSolution #5 C-C + BeOrder quotes of Be

Same design that window in TI8, TI2, TT41 (Design by Kurt Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foilNickel-coating to prevent oxidation on Be ?15 cm length between upstream and downstream sides

71

Michael MONTEIL - 12 April 2010

Related Contents

Next Show more