/
Integration by substitution There are occasions when it is possible to perform an apparen Integration by substitution There are occasions when it is possible to perform an apparen

Integration by substitution There are occasions when it is possible to perform an apparen - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
649 views
Uploaded On 2014-12-22

Integration by substitution There are occasions when it is possible to perform an apparen - PPT Presentation

This has the e64256ect of changing the variable and the integran d When dealing with de64257nite integrals the limits of integrat ion can also change In this unit we will meet several examples of integrals where it is appropri ate to make a substitu ID: 27546

This has the e64256ect

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Integration by substitution There are oc..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IntegrationbysubstitutionThereareoccasionswhenitispossibletoperformanapparentlydicultpieceofintegrationby rstmakingasubstitution.Thishasthee ectofchangingthevariableandtheintegrand.Whendealingwithde niteintegrals,thelimitsofintegrationcanalsochange.Inthisunitwewillmeetseveralexamplesofintegralswhereitisappropriatetomakeasubstitution.Inordertomasterthetechniquesexplainedhereitisvitalthatyouundertakeplentyofpracticeexercisessothattheybecomesecondnature.Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto:carryoutintegrationbymakingasubstitutionidentifyappropriatesubstitutionstomakeinordertoevaluateanintegralContents1.Introduction22.Integrationbysubstitutingu=ax+b23.FindingZf(g(x))g0(x)dxbysubstitutingu=g(x)61c\rmathcentreDecember1,2008 1.IntroductionThereareoccasionswhenitispossibletoperformanapparentlydicultpieceofintegrationby rstmakingasubstitution.Thishasthee ectofchangingthevariableandtheintegrand.Whendealingwithde niteintegrals,thelimitsofintegrationcanalsochange.Inthisunitwewillmeetseveralexamplesofthistype.Theabilitytocarryoutintegrationbysubstitutionisaskillthatdevelopswithpracticeandexperience.Forthisreasonyoushouldcarryoutallofthepracticeexercises.Beawarethatsometimesanapparentlysensiblesubstitutiondoesnotleadtoanintegralyouwillbeabletoevaluate.Youmustthenbepreparedtotryoutalternativesubstitutions.2.Integrationbysubstitutingu=ax+bWeintroducethetechniquethroughsomesimpleexamplesforwhichalinearsubstitutionisappropriate.ExampleSupposewewantto ndtheintegralZ(x+4)5dx(1)Youwillbefamiliaralreadywith ndingasimilarintegralZu5duandknowthatthisintegralisequaltou6 6+c,wherecisaconstantofintegration.Thisisbecauseyouknowthattheruleforintegratingpowersofavariabletellsyoutoincreasethepowerby1andthendividebythenewpower.IntheintegralgivenbyEquation(1)thereisstillapower5,buttheintegrandismorecompli-catedduetothepresenceofthetermx+4.Totacklethisproblemwemakeasubstitution.Weletu=x+4.Thepointofdoingthisistochangetheintegrandintothemuchsimpleru5.However,wemusttakecaretosubstituteappropriatelyforthetermdxtoo.Intermsofdi erentialswehavedu=du dxdxNow,inthisexample,becauseu=x+4itfollowsimmediatelythatdu dx=1andsodu=dx.So,substitutingbothforx+4andfordxinEquation(1)wehaveZ(x+4)5dx=Zu5duTheresultingintegralcanbeevaluatedimmediatelytogiveu6 6+c.Wecanreverttoanexpressioninvolvingtheoriginalvariablexbyrecallingthatu=x+4,givingZ(x+4)5dx=(x+4)6 6+cWehavecompletedtheintegrationbysubstitution.c\rmathcentreDecember1,20082 ExampleSupposenowwewishto ndtheintegralZcos(3x+4)dx(2)Observethatifwemakeasubstitutionu=3x+4,theintegrandwillthencontainthemuchsimplerformcosuwhichwewillbeabletointegrate.Asbefore,du=du dxdxandsowithu=3x+4anddu dx=3Itfollowsthatdu=du dxdx=3dxSo,substitutingufor3x+4,andwithdx=1 3duinEquation(2)wehaveZcos(3x+4)dx=Z1 3cosudu=1 3sinu+cWecanreverttoanexpressioninvolvingtheoriginalvariablexbyrecallingthatu=3x+4,givingZcos(3x+4)dx=1 3sin(3x+4)+cWehavecompletedtheintegrationbysubstitution. Itisveryeasytogeneralisetheresultofthepreviousexample.Ifwewantto ndZcos(ax+b)dx,thesubstitutionu=ax+bleadsto1 aZcosuduwhichequals1 asinu+c,thatis1 asin(ax+b)+c.Asimilarargument,whichyoushouldtry,showsthatZsin(ax+b)dx=1 acos(ax+b)+c. KeyPointZsin(ax+b)dx=1 acos(ax+b)+cZcos(ax+b)dx=1 asin(ax+b)+c 3c\rmathcentreDecember1,2008 ExampleSupposewewishto ndZ1 12xdx.Wemakethesubstitutionu=12xinordertosimplifytheintegrandto1 u.Recallthattheintegralof1 uwithrespecttouisthenaturallogarithmofu,lnjuj.Asbefore,du=du dxdxandsowithu=12xanddu dx=2Itfollowsthatdu=du dxdx=2dxTheintegralbecomesZ1 u1 2du=1 2Z1 udu=1 2lnjuj+c=1 2lnj12xj+c Theresultofthepreviousexamplecanbegeneralised:ifwewantto ndZ1 ax+bdx,thesubstitutionu=ax+bleadsto1 aZ1 uduwhichequals1 alnjax+bj+c.Thismeans,forexample,thatwhenfacedwithanintegralsuchasZ1 3x+7dxwecanimme-diatelywritedowntheansweras1 3lnj3x+7j+c. KeyPointZ1 ax+bdx=1 alnjax+bj+c c\rmathcentreDecember1,20084 Alittlemorecaremustbetakenwiththelimitsofintegrationwhendealingwithde niteintegrals.Considerthefollowingexample.ExampleSupposewewishto ndZ31(9+x)2dxWemakethesubstitutionu=9+x.Asbefore,du=du dxdxandsowithu=9+xanddu dx=1Itfollowsthatdu=du dxdx=dxTheintegralbecomesZx=3x=1u2duwherewehaveexplicitlywrittenthevariableinthelimitsofintegrationtoemphasisethatthoselimitswereonthevariablexandnotu.Wecanwritetheseaslimitsonuusingthesubstitutionu=9+x.Clearly,whenx=1,u=10,andwhenx=3,u=12.SowerequireZu=12u=10u2du=1 3u31210=1 3123103=728 3Notethatinthisexamplethereisnoneedtoconverttheanswergivenintermsofubackintooneintermsofxbecausewehadalreadyconvertedthelimitsonxintolimitsonu.Exercises1.1.Ineachcaseuseasubstitutionto ndtheintegral:(a)Z(x2)3dx(b)Z10(x+5)4dx(c)Z(2x1)7dx(d)Z11(1x)3dx.2.Ineachcaseuseasubstitutionto ndtheintegral:(a)Zsin(7x3)dx(b)Ze3x2dx(c)Z=20cos(1x)dx(d)Z1 7x+5dx.5c\rmathcentreDecember1,2008 3.FindingZf(g(x))g0(x)dxbysubstitutingu=g(x)ExampleSupposenowwewishto ndtheintegralZ2xp 1+x2dx(3)Inthisexamplewemakethesubstitutionu=1+x2,inordertosimplifythesquare-rootterm.Weshallseethattherestoftheintegrand,2xdx,willbetakencareofautomaticallyinthesubstitutionprocess,andthatthisisbecause2xisthederivativeofthatpartoftheintegrandusedinthesubstitution,i.e.1+x2.Asbefore,du=du dxdxandsowithu=1+x2anddu dx=2xItfollowsthatdu=du dxdx=2xdxSo,substitutingufor1+x2,andwith2xdx=duinEquation(3)wehaveZ2xp 1+x2dx=Zp udu=Zu1=2du=2 3u3=2+cWecanreverttoanexpressioninvolvingtheoriginalvariablexbyrecallingthatu=1+x2,givingZ2xp 1+x2dx=2 3(1+x2)3=2+cWehavecompletedtheintegrationbysubstitution. Letusanalysethisexamplealittlefurtherbycomparingtheintegrandwiththegeneralcasef(g(x))g0(x).Supposewewriteg(x)=1+x2andf(u)=p uThenwenotethatthecomposition1ofthefunctionsfandgisf(g(x))=p 1+x2. 1when ndingthecompositionoffunctionsfandgitistheoutputfromgwhichisusedasinputtof,resultinginf(g(x))c\rmathcentreDecember1,20086 Further,wenotethatifg(x)=1+x2theng0(x)=2x.SotheintegralZ2xp 1+x2dxisoftheformZf(g(x))g0(x)dxToperformtheintegrationweusedthesubstitutionu=1+x2.Inthegeneralcaseitwillbeappropriatetotrysubstitutingu=g(x).Thendu=du dxdx=g0(x)dx.OncethesubstitutionwasmadetheresultingintegralbecameZp udu.InthegeneralcaseitwillbecomeZf(u)du.Providedthatthis nalintegralcanbefoundtheproblemissolved.Forpurposesofcomparisonthespeci cexampleandthegeneralcasearepresentedside-by-side:Z2xp 1+x2dx Zf(g(x))g0(x)dxletu=1+x2 letu=g(x)du=du dxdx=2xdx du=du dxdx=g0(x)dxZ2xp 1+x2dx=Zp udu Zf(g(x))g0(x)dx=Zf(u)du2 3u3=2+c 2 3(1+x2)3=2+c KeyPointToevaluateZf(g(x))g0(x)dxsubstituteu=g(x),anddu=g0(x)dxtogiveZf(u)duIntegrationisthencarriedoutwithrespecttou,beforerevertingtotheoriginalvariablex. Itisworthpointingoutthatintegrationbysubstitutionissomethingofanart-andyourskillatdoingitwillimprovewithpractice.Furthermore,asubstitutionwhichat rstsightmightseemsensible,canleadnowhere.Forexample,ifyouweretryto ndRp 1+x2dxbylettingu=1+x2youwould ndyourselfupablindalley.Bepreparedtopersevereandtrydi erentapproaches.7c\rmathcentreDecember1,2008 ExampleSupposewewishtoevaluateZ4x p 2x2+1dxBywritingtheintegrandas1 p 2x2+14xwenotethatittakestheformZf(g(x))g0(x)dxwheref(u)=1 p u,g(x)=2x2+1andg0(x)=4x.Thesubstitutionu=g(x)=2x2+1transformstheintegraltoZf(u)du=Z1 p uduThisisevaluatedtogiveZ1 p udu=Zu1=2du=2u1=2+cFinally,usingu=2x2+1toreverttotheoriginalvariablegivesZ4x p 2x2+1dx=2(2x2+1)1=2+corequivalently2p 2x2+1+cExampleSupposewewishto ndZsinp x p xdx.Considerthesubstitutionu=p x.Thendu=du dxdx=1 2x1=2dx=1 2x1=2dx=1 2p xdxsothatZsinp x p xdx=2Zsinudufromwhich2Zsinudu=2cosu+c=2cosp x+cWecanalsomakethefollowingobservations:theintegrandcanbewrittenintheformsinp x1 p x.c\rmathcentreDecember1,20088 Writingf(u)=sinuandg(x)=p xtheng0(x)=1 2x1=2=1 2x1=2=1 2p x.Further,f(g(x))=sinp x.Hencewewritethegivenintegralas2Zsinp x1 2p xdxwhichisoftheform2Zf(g(x))g0(x)dxwithfandgasgivenabove.Asbeforethesubstitutionu=g(x)=p xproducestheintegral2Zf(u)du=2Zsinudufromwhich2Zsinudu=2cosu+c=2cosp x+cExercises21.Ineachcasetheintegrandcanbewrittenasf(g(x))g0(x).Identifythefunctionsfandgandusethegeneralresultonpage7tocompletetheintegration.(a)Z2xex25dx(b)Z2xsin(1x2)dx(c)Zcosx 1+sinxdx.2.Ineachcaseusethegivensubstitutionto ndtheintegral:(a)Z2xex2dx,u=x2.(b)Zxsin(2x2)dx,u=2x2.(c)Z50x3p x4+1dx,u=x4+1.3.Ineachcaseuseasuitablesubstitutionto ndtheintegral.(a)Z5xp 1x2dx(b)Zdx p x(1+p x)2(c)Zx4(1+x5)3dx(d)Zx3 p x4+16dx(e)Zcosx (5+sinx)2(f)Z10x3 p x4+12dx(g)Z5x2p 1x3dx(h)Zecosxsinxdx(i)Zesinxcosxdx.9c\rmathcentreDecember1,2008 AnswerstoExercisesExercises11.(a)(x2)4 4+c(b)4651 5=9301 5(c)(2x1)8 16+c(d)4.2.(a)cos(7x3) 7+c(b)e3x2 3+c(c)1.382(3dp)(d)1 7lnj7x+5j+cExercises21.(a)f(u)=eu,g(x)=x25,ex25+c,(b)f(u)=sinu,g(x)=1x2,cos(1x2)+c(c)f(u)=1 u,g(x)=1+sinx,lnj1+sinxj+c.2.(a)ex2+c(b)cos(2x2) 4+c(c)2610(4sf).3.(a)5 3(1x2)3=2+c(b)2 1+p x+c(c)1 20(1+x5)4+c(d)1 2(x4+16)1=2+c(e)1 5+sinx+c(f)0.0707(g)10 9(1x3)3=2+c(h)ecosx+c(i)esinx+c.c\rmathcentreDecember1,200810