PPT-Supervised machine learning
Author : karlyn-bohler | Published Date : 2018-10-27
01242012 Agenda 0 Introduction of machine learning Some clinical examples Introduction of classification 1 Cross validation 2 Overfitting Feature gene selection
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Supervised machine learning" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Supervised machine learning: Transcript
01242012 Agenda 0 Introduction of machine learning Some clinical examples Introduction of classification 1 Cross validation 2 Overfitting Feature gene selection Performance assessment. using . Attributes and Comparative Attributes. Abhinav Shrivastava, Saurabh Singh, Abhinav Gupta. The Robotics Institute. Carnegie Mellon University. Supervision. Supervised. Active. Learning. Big-Data. John Blitzer. 自然语言计算组. http://research.microsoft.com/asia/group/nlc/. Why should I know about machine learning? . This is an NLP summer school. Why should I care about machine learning?. Introduction. Labelled data. Unlabeled data. cat. dog. (Image of cats and dogs without labeling). Introduction. Supervised learning: . E.g. . : image, . : class. . labels. Semi-supervised learning: . Omer Levy. . Ido. Dagan. Bar-. Ilan. University. Israel. Steffen Remus Chris . Biemann. Technische. . Universität. Darmstadt. Germany. Lexical Inference. Lexical Inference: Task Definition. Dena B. French, . EdD. , RDN, . LD. ISPP Program Director & Experiential Coordinator. ISPP Class of 2017. Objectives. What is an ISPP?. Fontbonne’s. ISPP. Campus . “Tour”. Program overview & curriculum . CSE . 6363 – Machine Learning. Vassilis. . Athitsos. Computer Science and Engineering Department. University of Texas at . Arlington. 1. What is Machine Learning. Quote by Tom M. Mitchell:. "A . computer program is said to learn . Learning What is learning? What are the types of learning? Why aren’t robots using neural networks all the time? They are like the brain, right? Where does learning go in our operational architecture? Algorithms and Applications. Christoph F. . Eick. Department of Computer Science. University of Houston. Organization of the Talk. Motivation—why is it worthwhile generalizing machine learning techniques which are typically unsupervised to consider background information in form of class labels? . The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand with Incomplete Class Hierarchies. Bhavana Dalvi. , Aditya Mishra, William W. Cohen. Semi-supervised Entity Classification. 2. Semi-supervised Entity Classification. Subset. 3. Disjoint. Semi-supervised Entity Classification. (CS725). Autumn 2011. Instructor: . Prof. . Ganesh. . Ramakrishnan. TAs: . Ajay Nagesh, Amrita . Saha. , . Kedharnath. . Narahari. The grand goal. From the movie . 2001: A Space Odyssey. (1968). Outline. Berrin Yanikoglu. Slides are expanded from the . Machine Learning-Mitchell book slides. Some of the extra slides thanks to T. Jaakkola, MIT and others. 2. CS512-Machine Learning. Please refer to . http. Self-Learning Learning . Technique. . for. Image . Disease. . Localization. . Rushikesh. Chopade1, . Aditya. Stanam2, . Abhijeet. Patil3 & . Shrikant. Pawar4*. 1. Department of . Geology.
Download Document
Here is the link to download the presentation.
"Supervised machine learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents